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INVERSE PROBLEMS OF HEAT TRANSFER∗

Jǐŕı Vala

1 Introduction

Well-posed problems of heat transfer, much-favoured by most mathematicians, as
an important class of simplified mathematical formulations of real physical processes,
based on the conservation principles of classical mechanics, exploited in mechanical,
electrical, civil etc. engineering, require the complete setting of i) initial conditions,
ii) boundary conditions (prescribed temperature or heat flux everywhere) and iii) ma-
terial characteristics. However, in engineering applications some data of types i), ii)
or iii) are uncertain, inaccurate or missing. The remedy, coming from their recon-
struction from some additional information, obtained from temperature or heat flux
measurements, generate various classes of ill-posed problems with specific difficulties:
even the apparently simple one-dimensional linearized model of heat propagation in
a rod [6] needs non-trivial a priori estimates (valid under some additional regularity
assumptions), combined truncation and regularization methods, to be able to apply
the Schauder fixed point theorem.

The theoretical, experimental and computational analysis of inverse problems
of heat transfer and related physical processes of the last decades has its own his-
tory: from different points of view it is monitored in [1], [3], [4] and [9]. In this
paper we shall pay special attention to the missing data iii) in the analysis of in-
sulation and accumulation properties of building materials (typically with a micro-
scopically porous irregular structure), i.e. to the reliable identification of their basic
macroscopic material characteristics. Following the Czech and European technical
standards, we shall work with the thermal conductivity λ, heat capacity c and ma-
terial density ρ, constant at least within certain reasonable temperature range, in
an isotropic medium. Whereas the experimental setting of ρ is easy, the stationary
measurements of λ and c do not give, according to the required measurement time,
good results. The conventional non-stationary measurement equipments are expen-
sive, use strange sets of calibration materials and their applicability to non-classical
materials is limited. The development of alternative non-stationary identification
methods (the frequency-domain method, the step-heating method, the hot-strip /
hot-wire method, the infrared photography access, etc.) is documented in [1]. A class
of primary inexpensive measurement devices, introduced in this paper, combines the
hot-wire approach with the MATLAB-based numerical and computational support.
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0021630511 and by the OP Education for Competitiveness No. CZ.1.07/2.2.00/07.0410.
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2 Physical and mathematical preliminaries

Let us consider the 3-dimensional Euclidean space, supplied by the Cartesian
coordinate system x = (x1, x2, x3), and a domain Ω in this space, occupied by
a (macroscopically) homogeneous and isotropic material with unknown character-
istics a = λ/(cρ) and b = 1/λ, whose (sufficiently smooth) boundary ∂Ω involves
some parts ΓD with prescribed boundary conditions of Dirichlet type

T (x, t) = T∗(x) ∀ t ∈ I ∀x ∈ ΓD (1)

and ΓN with those of Neumann type

∇T (x, t) · ν(x) + bq(t) = 0 ∀ t ∈ I ∀x ∈ ΓN (2)

where ν(x) refers to a local unit outside normal vector.
Since any real measurement device consists of a finite number n of further material

layers Ωi with i ∈ {1, . . . , n} (cf. Illustrative example), the analogous notation can
be applied to each i-th materials with prescribed characteristics ai and bi. Moreover,
(2) holds also with the heat flux q(t), occurring on some part Γ ⊆ ∂Ω \ ΓN of the
union of interfaces Ω ∩ Ω1, . . . ,Ω ∩ Ωn. Similar heat fluxes are present on mutual
interfaces of Ω1, . . . ,Ωn. All such fluxes are not known explicitly, being determined
from contact conditions; here we shall consider only perfect contacts with continuous
temperature distributions.

Following Chap. 3 of [2], the principle of conservation of energy together with the
empirical constitutive Fourier law gives

Ṫ (x, t)− a∇2T (x, t) = 0 (3)

where the dot symbol is reserved for a derivative with respect to t and ∇2(·) means
div(grad(·)) briefly; for t = 0 we shall consider T (x, 0) = Te with the constant
environmental temperature Te and the same, i.e. T (·, t) = Te, should be true in
any time t ∈ I on all outer surfaces of the layered measurement device to guarantee
a physically closed measurement system.

It is natural to search for T (x, t) in the space of abstract functions L2(I, V ), map-
ping I into some appropriate subspace V of the Sobolev space W 1,2(Ω), although
better regularity results can be obtained – see [4, p. 256]. In the direct formula-
tion with given material characteristics a and b the solvability of (3) with boundary
conditions (1) and (2) and convergence properties of sequences of approximate so-
lutions in finite-dimensional spaces follow, at least for the most frequently discussed
case ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, from the Lax–Milgram theorem. Unfor-
tunately, the inverse formulations with unknown a and/or b, or, alternatively, with
partially unknown initial or boundary conditions, result typically in ill-conditioned
mathematical problems and unstable numerical algorithms, as discussed in [4, p. 21].

For simplicity, let us assume that just both a and b are unknown, consequently
infinitely many solution of (3) with boundary conditions (1) and (2) may exist.
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Let us introduce the following notations of scalar products: (·, ·) in L2(Ω) and in
[L2(Ω)]3, 〈·, ·〉 in L2(∂Ω), 〈·, ·〉D in L2(ΓD), 〈·, ·〉N in L2(ΓN), 〈·, ·〉I in L2(I, L2(Γ)).
Applying any test function Φ (usually) from V to (3), the Green–Ostrogradskii the-
orem (at least in sense of distributions) gives a−1(Φ, Ṫ )− (Φ,∇2T ) = 0, a−1(Φ, Ṫ )+
(∇Φ,∇T )−〈Φ,∇T ·ν〉 = 0 and a−1(Φ, Ṫ )− (∇2Φ, T )−〈Φ,∇T ·ν〉+ 〈∇Φ ·ν, T 〉 = 0;
thus by (1) and (2) we have

a−1(Φ, Ṫ )−B(Φ, T ) = b〈Φ, q〉N − 〈∇Φ · ν, T∗〉D . (4)

for B(Φ, T ) := (∇2Φ, T ) + 〈Φ,∇T · ν〉D − 〈∇Φ · ν, T 〉N .
The ideal final aim is to find T ∈ L2(I, V ), together with real constants a and b,

satisfying (4) and (2). More realistic approaches try to satisfy (2) (or rarely (4)) in
some weaker (inaccurate) sense – for the detailed overview see [1]. We shall apply
the least squares technique, minimizing

F (a, b) =
1

2
〈bq +∇T (a, b) · ν, bq +∇T (a, b) · ν〉I ; (5)

F here is only a real function of two variables a and b, T (x, t) from (4) depend on
parameters a and b, thus we have T (x, t, a, b) now, omitting the first two variables x
and t for brevity; the rectangular quadrature rule on I in m + 1 nodes t = jh for
j ∈ {0, 1, . . . ,m} and h := τ/m is needed in practice. The first and second derivatives
of F ,with respect to a and b, i.e. F,a(a, b), F,b(a, b), F,aa(a, b), F,ab(a, b) and F,bb(a, b),
can be then evaluated from the first and second temperature derivatives T,a(a, b),
T,b(a, b), T,aa(a, b), T,ab(a, b) and T,bb(a, b). In the case of lack of boundary data
(when F becomes a more general functional), some (rather complicated) iterative
procedures are available, e.g. that based on the conjugate gradient algorithm applied
to direct, adjoint and sensitivity problems in [9, p. 21].

3 Computational algorithm

If some reasonable estimate of the characteristics a and b is available, we can apply
the Newton algorithm to obtain their improved values a? and b? in the well-known
form [

F,aa(a, b) F,ab(a, b)
F,ab(a, b) F,bb(a, b)

]
·
[
a? − a
b? − b

]
= −

[
F,a(a, b)
F,b(a, b)

]
. (6)

The derivatives included in this formula should be as simple as possible.
Namely if ∂Ω = ΓD = Γ and ΓN = ∅ then T is independent of b and all derivatives

of F vanish or simplify substantially. For the discretization on Ω the finite element
technique using the Hermite polynomials and the set of discrete unknown variables
ψ := (T,∇T ) is available. Applying the Crank–Nicholson scheme, for any j ∈
{1, . . . ,m} we obtain

1

ah
N(ψj − ψj−1)− 1

2
K(ψj + ψj−1) =

1

2
(gj + gj−1) (7)
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with certain real symmetric sparse square matrices N and K and corresponding real
vectors g0, g1, . . . gm (dependding on the choice of finite element mesh on Ω), i.e.
briefly Sψj = Qψj−1+γj with M := N/h, S := a−1M−K/2, Q := a−1M +K/2 and
γj := (gj + gj−1)/2. Consequently we receive Sψj,a = Qψj−1,a + a−2M(ψj − ψj−1)
and Sψj,aa = Qψj−1,aa+2a−2M(ψj,a−ψj−1,a)−2a−3M(ψj −ψj−1). Thus (7) enables
us to evaluate all a-derivatives of T and ∇T required in (6).

The 2- and 3-dimensional configurations typically do not admit ΓN = ∅. More-
over, the heat fluxes q(t) in the modified (2) are available (unlike those from the
original (2)) only indirectly, from solutions of (4) on Ωi with i ∈ {1, . . . , n} instead
of Ω; this will be highlighted using the index i. Let us assume Γ = ΓD and ΓN =
Γ \ ΓD 6= ∅. Then (4) gets the form a−1(Φ, Ṫ )−B(Φ, T ) = b〈Φ, q〉N − 〈∇Φ · ν, T∗〉D,
a−1
i (Φ, Ṫ )i − B(Φ, T )i = bi〈Φ, q〉Ni − 〈∇Φ · ν, T∗〉Di for all i ∈ {1, . . . , n}. Thanks

to the identity of heat fluxes on all nonempty sets ∂Ω ∪ ∂Ωi and ∂Ωi ∪ ∂Ωk with
i, k ∈ {1, . . . , n} all remaining q(t) can be eliminated to receive ψ1, . . . , ψn from the
analogy of (7) as functions of a and linear functions of b (not only functions of a
as in the preceding case); for the detailed structure of corresponding linear systems
(involving both thermal conduction and convection) see [3, p. 116]. This approach
enables us to define S, Q, γj, etc., in the same way as from (7) again; their linear
dependence on b guarantees that the formulae for the evaluation of derivatives of F
(using the numerical quadrature on ΓD × I) with respect to a and b do not disturb
the efficiency of the algorithm (6).

The same algorithm offers the possibility of quick evaluation of changes of a
and b forced by the modified input data. The variance-based sensitivity analysis
(the construction of Sobol indices) by [5] can be then useful to study the effect
of stochastic uncertainty on the resulting a and b. However, the general approach
considers the variables q(x, t, θ), T (x, t, θ), etc. also as functions of parameters θ
from the sample space Θ of elementary events; such sample space must be supplied
by the minimal σ-algebra on Θ and by certain probability measure P . Then it is
possible to replace F (a, b) from (5) by

F (a, b) =
1

2

∫

Θ
〈bq +∇T (a, b) · ν, bq +∇T (a, b) · ν〉I dP (8)

and apply some uncertainty representation technique to (8), as the Karhunen-Loève
or polynomial chaos expansions by [9, p. 10], or, alternatively, a Bayesian approach
by [9, p. 25].

4 Illustrative example

The basic configuration of the measurement device, suggested originally in [8],
consists of the following layers: 1. thick insulation layer (polystyrene), 2. active heat-
ing plate (aluminium), 3. material specimen (with unknown material characteristics),
4. passive additional plate (aluminium), 5. thick insulation layer (polystyrene). The
interfaces 1./2. and 4./5. contain two sets of temperature sensors recording the
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temperature T∗(t) at (in practice discrete) times t from the time interval I = [0, τ ] of
a given length τ . The interface 1./2. hides also a carefully controlled built-in gener-
ator of time-variable heat flux q(t) for the same times t. However, such configuration
is not acceptable e.g. for the measurements of maturing silicate mixtures in massive
structures in situ: the remedy is to remove 4. and 5., considering the real massive
structure (nearly the half-space) instead of 3.

The above sketched special geometrical configuration is typical just for such one-
dimensional simplified systems with parallel layers, here especially n = 4. Unlike the
formally complicated algorithm of [7], coming from the a priori known temperatures
on the boundary of 1. and 5. and from the temperatures and heat fluxes at the left
side of 2. and right side of 4., we are able to prescribe the temperature at the whole
boundary of 3.

Fig. 1 and Fig. 2 show the results of identification of a and b from the experi-
ment, lasting τ = 300 s. The first half of both Fig. 1 and Fig. 2 refers to the new
building material specimen, tested at the Faculty of Civil Engineering of Brno Uni-
versity of Technology (resulting a = 1.09377 · 10−6 m2/s, b = 2.05909 · 101m·K/W),
the second one to the mineral wool, whose properties are similar to polystyrene
(resulting a = 6.55382 · 10−7m2/s, b = 1.13620m·K/W), as the test of algorithm
robustness only: the strongly insulated heating device from both sides causes the
low accuracy of recorded temperature differences. The experimental heating was
very special: constant for t ∈ [0, 300] s, zero for t ∈ [300, 600] s. Fig. 1 shows the
redistribution of temperature, its gradient and heat flux in the whole measurement
system in time: full lines for t ∈ [0, 300] s, dotted lines otherwise. Fig. 2 demonstrates
the least-squares-based fitting of computed interface values of heat flux with corre-
sponding experimental data. The complete original software code has been written
in MATLAB (without any additional packages).

5 Conclusions

The paper presents the mathematical preliminaries and the computational sup-
port for a rather general class of heat transfer problems, especially in building ma-
terials. An illustrative example demonstrates the MATLAB-based support for the
identification of material characteristics, i.e. for the missing information iii) from
Introduction. This approach is open to further generalization: to the analysis of
anisotropic material (λ becomes a real square symmetrical matrix), interface heat
convection (new material characteristics of interfaces occur), temperature-dependent
material characteristics, etc.

The proper mathematical analysis, including both the existence of solutions and
the convergence of sequences of approximate solutions in finite-dimensional function
spaces, constructed from the algorithm of above sketched type, contains still open
questions. However, the aim of sufficient generalization of the results of type [6]
seems to be realistic. The relevant analysis in probabilistic measures (instead of
standard Lebesgue ones) is needed, too, to handle the evaluation of uncertainty of
identified characteristics.
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Fig. 1: Temperature, its gradient and heat flux x-redistribution in time.
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Fig. 2: Fitting of computed interface values of heat flux with experimental data.

203



References

[1] Colaço, M., Orlande, H.R.B., and Dulikravich, G.S.: Inverse and optimization
problems in heat transfer. Journal of the Brazilian Society of Mechanical Sciences
and Engineering 28 (2006), 1–24.

[2] Davies, M.G.: Building heat transfer. J.Wiley & Sons, 2004.

[3] Duda, P.: Solution of multidimensional inverse heat conduction problem. Heat
and Mass Transfer 40 (2003), 115–122.

[4] Isakov, V.: Inverse problems for partial differential equations. Springer, 2006.

[5] Kala, Z.: Stability problems of steel structures in the presence of stochastic and
fuzzy uncertainty. Thin-Walled Structures 45 (2007), 861–865.

[6] Kozhanov, A.I.: Solvability of the inverse problem of finding thermal conductiv-
ity. Siberian Mathematical Journal 46 (2005), 841–856.
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