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NUMERICAL APPROACH TO A RATE-INDEPENDENT MODEL
OF DECOHESION IN LAMINATED COMPOSITES∗

Jan Zeman, Pavel Gruber

Abstract

In this paper, we present a numerical approach to evolution of decohesion in lami-
nated composites based on incremental variational problems. An energy-based frame-
work is adopted, in which we characterize the system by the stored energy and dissi-
pation functionals quantifying reversible and irreversible processes, respectively. The
time-discrete evolution then follows from a solution of incremental minimization prob-
lems, which are converted to a fully discrete form by employing the conforming finite
element method. Results of a benchmark problem suggest that the resulting model
allows to describe both initiation and propagation of interfacial decohesion, with a low
sensitivity to spatial discretization.

1 Introduction

The overall behavior of the vast majority of engineering materials and structures
is significantly affected or even dominated by the presence of interfaces (i.e. inter-
nal boundaries). This is particularly true for composite materials, where interfaces
provide weak spots from which damage initiates at different levels of resolution.
Therefore, in the engineering community, considerable research efforts have been fo-
cused on the adequate description and simulation of interfacial behavior; see, e.g.,
a recent review [14] for additional details.

During the last decade, the cohesive zone concept has established itself to be
a convenient tool to predict interfacial damage initiation and propagation, both from
the modeling [19] and computational [3] viewpoints. In this framework, originally
introduced for quasi-brittle material by Hillerborg et al. [8], behavior of the bulk
material is assumed to be damage-free, whereas the interfacial response is described
by means of an inelastic law formulated in terms of interfacial separation and cohesive
tractions bridging the crack. Such description is also well-suited to treatment by
methods of computational inelasticity, particularly when applied in the quasi-static
setting (i.e. neglecting viscosity and inertia effects).

Under this modeling assumption, the delamination problem can be conveniently
described by the theory of Energetic Rate-Independent Systems developed by Mielke
and co-workers, see [11] for a general overview. In this framework, a mechanical sys-
tem is characterized by a time-dependent stored energy functional E and a dissipation
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distance D, quantifying the reversible and irreversible processes in the system, respec-
tively. When supplemented with suitable initial data, evolution of the system then
follows from conditions of energetic stability and conservation of energy, formulated
solely in terms of E and D. This provides a mathematical basis to study a wide range
of problems of inelastic solid mechanics in a unified way. Moreover, the framework
naturally leads to the time-incremental energy minimization concept, thus providing
a starting point for the subsequent numerical treatment by optimization methods.

In the context of delamination, the rate-independent approach was first employed
by Kočvara et al. [9] to study systems with perfectly brittle interfaces and later
extended even to fully rate-dependent systems subject to temperature changes [17].
In this contribution, the focus is on numerical and engineering aspects of the rate-
independent setting. In Section 2, we introduce an energy-based delamination model
of the Ortiz-Pandolfi type [15], characterized by a piecewise affine traction-separation
law. For simplicity, the small-strain setting is adopted and the bulk material is
assumed to be described by linear elasticity. In Section 3, we briefly review available
existence results for the time-independent problem, which are used to construct fully
discrete schemes based on the finite element method in Section 4. The paper is
concluded by an illustrative example of flexural delamination.

2 The model setup

Let Ω ⊂ Rd (d = 2, 3) be a bounded Lipschitz domain with boundary ∂Ω and let
us consider its decomposition into a finite number of mutually disjoint Lipschitz sub-
domains Ω(i), i = 1, ..., N . Further, for N ≥ j > i, we denote by Γ(ij) = ∂Ω(i) ∩ ∂Ω(j)

the (possibly empty) common boundary between Ω(i) and Ω(j).

Kinematics of the system is described by independent domain displacement fields
u(i) : Ω(i) → Rd. Local impenetrability is enforced by means of the Signorini condi-
tion, requiring

JunK(ij) ≥ 0 on Γ(ij) where JunK(ij) = JuK(ij) · n(ij), (1)

Here, n(ij) denotes the unit normal to Γ(ij) oriented from Ω(j) to Ω(i) and JuK(ij) =
u(i)|Γ(ij) − u(j)|Γ(ij) , JuK(ij) : Γ(ij) → Rd denotes the interfacial displacement jump,
with u(i)|Γ(ij) being the trace of u(i) on Γ(ij). We assume that the system is subject
to a time-dependent boundary displacement wD(t), t ∈ [0;T ] imposed on the time-
independent Dirichlet part of the boundary ΓD ⊂ ∂Ω. As for the interfacial damage
processes, these are quantified by the damage variable ω(ij) : Γ(ij) → [0; 1], with
ω(ij)(x) = 0 and ω(ij)(x) = 1 indicating a healthy and a fully damaged interfacial
point x ∈ Γ(ij), see Figure 1(a) for an illustration.

As indicated earlier, we shall characterize evolution of the system by means of
certain energetic functionals. First, we introduce the spaces of admissible state
variables in the form
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U =
{
u ∈ L2(Ω;Rd) : u(i) ∈ W 1,2(Ω(i);Rd),u(i) = 0 on ∂Ω(i) ∩ ΓD, (2)

JunK(ij) ≥ 0 on Γ(ij)
}
,

Z =
{
ω ∈ L∞(∪ijΓ

(ij)) : ω(ij) ∈ L∞(Γij) : 0 ≤ ω(ij) ≤ 1 on Γ(ij)
}
, (3)

and define the stored energy functional E : [0;T ]× U × Z → R as

E(t,u, ω) =
N∑
i=1

1
2

∫

Ωi

ε
(
u(i) + u

(i)
D (t)

)
: C(i) : ε

(
u(i) + u

(i)
D (t)

)
dΩ

+
N∑
i=1

N∑
j=i+1

∫

Γ(ij)

e(ij)
(JuK(ij), ω(ij)

)
dS, (4)

where ε(u) = 1
2
(∇u + (∇u)T) ∈ Rd×d denotes the small-strain tensor, C(i) ∈

Rd×d×d×d is the positive-definite material stiffness tensor of the i-th domain and
e(ij) : Rd × R → R denotes the density of stored interfacial energy presented
later in Section 2.1. Further, u

(i)
D (t) is the restriction of an extension uD(t) of

the the time-dependent Dirichlet boundary conditions, i.e. uD(t)|ΓD
= wD(t) with

uD(t) ∈ W 1,2(Ω;Rd).
Since the domains are assumed to be elastic, the irreversible processes occur only

at the interfaces. Therefore, the dissipation distance D : Z × Z → R, quantifying
the energy dissipated by changing the internal variable from ω1 to ω2, admits the
expression

D(ω1, ω2) =
N∑
i=1

N∑
j=i+1

∫

Γ(ij)

d(ij)(ω
(ij)
1 , ω

(ij)
2 ) dS, (5)

where d(ij) : R×R→ R is the density of dissipated interfacial energy specified next.

2.1 Interfacial constitutive law

To introduce the cohesive zone model, we consider the following decomposition
of interfacial displacement jumps (the superscript •(ij) is dropped for the sake of
brevity)

Ω(1)

Ω(2)
Γ(12)

ΓD

ΓD

ΓD

ΓD

n
(12)

ω
(12) = 0 ω

(12) = 10 < ω
(12)

< 1

δ

σ

σc

δc

Gc

ωδc0

1 k(ω)

(a) (b)

Fig. 1: (a) An example of the introduced notation and of (b) the traction-separation law.
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JuK = JunKn+ JusK, (6)

where the normal displacement jump un follows from Eq. (1) and JusK denotes the
tangential component. The vector of interfacial tractions t ∈ Rd is decomposed
analogously:

t = σnn+ ts where σn = t · n. (7)

Following [15], we introduce the effective interfacial displacement jumps and tractions
in the form

δ(JuK)2 = u2
n + β2‖us‖2, σ(t)2 = σ2

n + β−2‖ts‖2, (8)

where β > 0 is a mode mixity parameter, which needs to be determined from ex-
periments. Due to the adopted linear traction-separation law, the perfect interface
(with ω = 0) is characterized by its strength σc (in Pa) and maximal effective open-
ing δc (in m), cf. Figure 1(b). The area under the traction-separation line gives the
density of the dissipated energy Gc =

1
2
σcδc for ω1 = 0 and ω2 = 1. For general case,

this yields the following expression for the stored and dissipated energies:1

e(JuK, ω) =
1

2

σc(1− ω)

δcω
δ2(JuK) = 1

2
k(ω)δ2(JuK), (9)

d(ω1, ω2) =

{
Gc(ω2 − ω1) for ω2 ≥ ω1,

+∞ otherwise.
(10)

Note that the ’+∞’ term in Eq. (10) corresponds to the damage unidirectionality,
i.e. the damage variable ω never decreases during the decohesion process.

3 Incremental energetic minimization

The evolution of the mechanical system will be described using a time-incremental
approach, where each step corresponds to a variational minimization problem. To
this goal, we discretize the time interval [0;T ] as 0 = t0 < t1 = t0 + ∆t < · · · <
tM = T and abbreviate uk = u(tk) and ωk = ω(tk). Then, given the initial condition
(u0, ω0) ∈ U × Z , the time-incremental solution is defined via

Definition 1 (Time-incremental solution). For k = 1, 2, . . . ,M , find iteratively
(uk, ωk) ∈ U × Z such that

(uk, ωk) = arg min
(u,ω)∈U ×Z

E(tk, u, ω) +D(ωk−1, ω). (11)

1Note that for k → ∞ for ω → 0+, which agrees with the assumption of perfect interface, but
leads to numerical difficulties. Therefore, in the numerical experiments, the ω = 0 case is replaced
with ω = ωin < 1.
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The existence of the time-discrete solution to the delamination problem follows
from the next proposition, proven in [9]:

Proposition 1. Assume that measd−1

(
∂Ω(i) ∩ ΓD

) 6= 0 for i = 1, 2, . . . , N , wD(tk) ∈
W 1/2,2(ΓD;Rd) for k = 1, 2, . . . ,M and that

(u0, ω0) = arg min
(u,ω)∈U ×Z

E(0, u, ω) +D(ω0, ω). (12)

Then for all k = 1, 2, . . . ,M we have

i) existence of time-incremental solution (uk, ωk) ∈ U × Z ,

ii) stability of (uk, ωk):

E(tk,uk, ωk) ≤ E(tk,u, ω) +D(ωk, ω) (13)

for all (u, ω) ∈ U ×Z,

iii) two-sided energy inequality
∫ tk

tk−1

∂tE(t,uk, ωk) dt ≤ E(tk−1,uk−1, ωk−1) +D(uk−1, ωk)− E(tk,uk, ωk)

≤
∫ tk

tk−1

∂tE(t,uk−1, ωk−1) dt. (14)

4 Numerical treatment

The developments presented up to this point provide a convenient framework for
an implementable numerical scheme, obtained by discretizing the time-incremental
formulation (11) in the space variables by the finite element method. In particular,
we employ low-order discretizations of domain displacements u(i) by P 1-continuous
finite elements and of interfacial damage variables ω(ij) by P 0 finite elements, as this
choice is supported by convergence proofs for h → 0 in [12].

To this goal, each domain Ωi is triangulated using elements with a mesh size h.
We assume that the discretization is conforming, i.e. that two interfacial nodes be-
longing to the adjacent domains Ωi and Ωj are geometrically identical, and that
the same mesh is used to approximate variables u and ω. Then, the finite element
discretization with a suitable numbering of nodes yields a discrete incremental min-
imization problem in the form

minimize (u,w) 7→ E(tk,u,w) +D(wk−1,w)
subject to BEu = 0, BIu ≥ 0, wk−1 ≤ w ≤ 1.

}
(15)

where u ∈ Rnu stores the nodal displacements for individual sub-domains and
w ∈ Rnω designates the delamination parameters associated with interfacial ele-
ment edges. The discretized stored energy functional E → [0;T ] × Rnu × Rnω → R
receives the form, cf. (4),

E(t,u,w) = 1
2
(u+ uD(t))

TK (u+ uD(t)) +
1
2
JuKTk(w)JuK, (16)
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where K = diag(K(1),K(2), . . . ,K(N)) is a symmetric positive semi-definite block-
diagonal stiffness matrix of order nu (derived from C(i)), JuK ∈ Rnk stores the dis-
placement jumps at interfacial nodes, and k is a symmetric positive-definite inter-
facial stiffness matrix of order nk, which depends non-linearly on w as follows from
Eq. (9). The discrete dissipation distance is expressed by a linear function

D(w1,w2) = aT (w2 −w1) , (17)

where the entries of a ∈ Rm store the amount of energy dissipated by the complete de-
lamination of an interfacial element; see [7, 9] for additional details. The constraints
in problem (15) consist of the homogeneous Dirichlet boundary conditions prescribed
at nodes specified by a full-rank mE×nu Boolean matrix BE, nodal interpenetration
conditions specified by a full-rank matrix BI ∈ RmI×nu storing the corresponding
components of the normal vector, and the box constraints on the internal variable.

4.1 Alternating minimization algorithm

1. Require w(0), set j = 0

2. Repeat

(a) Set j = j + 1

(b) Solve for u(j):

minimize u 7→ E(tk,u,w(j−1))
subject to BEu = 0 BIu ≥ 0

}
(18)

(c) Solve for w(j):

minimize w 7→ E(tk,u(j),w) +D(wk−1,w)
subject to wk−1 ≤ w ≤ 1

}
(19)

(d) Until ‖w(j) −w(j−1)‖ ≤ η

3. Set uk = u(j) and wk = w(j)

Tab. 1: Conceptual implementation of the alternating minimization algorithm for the k-th
time step and an initial guess w(0).

The discrete incremental problem (15) represents a large-scale non-convex pro-
gram (due to the k(w)-term), which is very difficult to solve using a monolithic
approach. Nevertheless, it can be observed that the problem is separately convex
with respect to variables u and w. This directly suggests the concept of the alter-
nating minimization algorithm, proposed by Bourdin et al. [4] for variational models
of fracture. In the current context, the algorithm is briefly summarized in Table 1.
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The individual sub-problems of the alternating minimization algorithm can be
resolved using specialized solvers. In particular, step (18) now becomes a quadratic
programming problem, which can be efficiently solved when employing recent devel-
opments in duality-based solvers for domains separated by imperfect interfaces [10]
and for frictionless contact problems [6]. Owing to the piecewise constant approxi-
mation of the delamination parameters, problem (19) can be solved locally element-
by-element in a closed form, see [7] for additional details.

4.2 Time-stepping strategy

Even though the alternating minimization algorithm performs well for a wide
range of computational examples, it generally converges only to a local minimizer of
the objective function (15), which can violate the two-sided energetic inequality (14).
Exactly this observation was used in Mielke et al. [13] to propose a heuristic back-
tracking strategy summarized for the current problem in Table 2.

1. Set k = 1, w0 = w(0) = 0

2. Repeat

(a) Determine wk using the alternating minimization algorithm for time
tk and initial value w(0)

(b) If

∫ tk

tk−1

∂tE(t,uk,wk) dt ≤ E(tk−1,uk−1,wk−1) +D(wk−1,wk)− E(tk,uk,wk)

≤
∫ tk

tk−1

∂tE(t,uk−1,wk−1) dt (20)

set w(0) = wk and k = k + 1

(c) Else set w(0) = wk and k = k − 1

(d) Until k > M

Tab. 2: Conceptual implementation of time-stepping strategy.

The computational procedure proceeds as follows. At the k-th time level, the
approximate solution is found using the alternate minimization algorithm, initiated
with the solution w(0) (Step 2(a)). If the pair of solutions (uk−1,wk−1) and (uk,wk)
satisfies the discretized energy inequality, wk is certified as an initial guess for the
next time level (Steps 2(b)). In the opposite case, the solution (uk,wk) leads to
a smaller value of the objective function (15) at time tk−1 than the actual result
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(uk−1,wk−1). Therefore, it is used as an initial guess at time tk−1 (Step 2(c));2 see
also [2] for additional details and further discussion.

It should be emphasized that there is generally no guarantee that the algo-
rithm will locate the global optimum of the objective function (15) for all time
levels and that it will converge in a finite number of steps. Computational experi-
ments nevertheless indicate that it is sufficiently robust and that it delivers solutions
with (often substantially) lower energies than the basic alternating minimization
scheme [2, 5, 13].

5 Example

The basic features of the model will be illustrated by means of the mixed-mode
flexure test, adopted from [18]. The beam specimen consists of two non-symmetric
aluminum layers, bonded together by a thin layer of resin adhesive. The beam is
simply supported and the loading is imposed by a prescribed displacement at the
mid-span, increasing linearly with time t up to the final value of 1.5 mm for t = T = 1.
The delamination is initiated by a pre-existing interfacial crack, see also Fig. 2 for
an illustration.

60 mm

120 mm

10 13

2× 3 mm

thickness: 20 mm prescribed deflection

initial crack

Fig. 2: Setup of the mixed-mode flexure test.

The material properties of the bulk material and the interface appear summarized
in Table 3. Two different sets of interfacial properties are considered, one charac-
terized by a higher value of fracture energy Gc and a lower value of initial stiffness
k(ωin) as defined by Eq. (9), whereas the brittle interface corresponds to a low frac-
ture energy Gc and high initial stiffness. The results below correspond to time step
∆t = 0.025 and the value of termination tolerance of the alternating minimization
algorithm set to η = 10−6, recall Table 1. All simulations were performed with an
in-house code implemented in MATLAB R©.

The energetics of the delamination process for the brittle interface is shown in
Figure 3, highlighting the difference between the local energy minimization (full lines)
and the time back-tracking scheme (dashed lines). The local scheme predicts initially
elastic behavior, followed by complete separation of the two layers at t ≈ 0.56, re-
sulting in the jump of the dissipated energy VarD. However, exactly at this step the
two-sided inequality is violated, as detected by the back-tracking algorithm. Induc-
tively using such solution as the initial guess of the alternating minimization scheme,

2Note that the stability of initial data (12) ensures that k ≥ 1.
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Fig. 3: Energetics of the delamination process for (a) brittle and (b) ductile interfaces.
EΩ = energy stored in the bulk, EΓ = interfacial stored energy and VarD = energy dissipated
during the whole process.

the algorithm returns to the original elastic path, thereby predicting a response lead-
ing to a lower value of the total energy for t ∈ [0.46, 0.56]. During the whole time
interval, the contribution of the stored interfacial energy EΓ remains relatively small,
owing to a large value of the interfacial stiffness.

The ductile interface shows a more gradual transition from the elastic response
up to the fully debonded state. In this case, the two-sided inequality (20) remains
valid during the whole loading program and no back-tracking is necessary. The inter-
facial delamination initiates first in the shearing mode, which corresponds to a rapid
increase in the dissipated energy for t ∈ [0.3; 0.4]. Then it propagates mainly due to
opening in the normal direction, which is manifested by the decrease of interfacial
energy; see also Fig. 4 for an illustration. We observe that the response remains
almost independent on the mesh size h, which is in agreement with theoretical con-
vergence results at disposal. Moreover, no artificial oscillations, reported e.g. in [1],
appear in the overall response for both variants of material data. This demonstrates
suitability of the algorithm for engineering applications.

Material parameter Ductile Brittle
Bulk material

Young’s modulus, E (GPa) 75 75
Poission’s ratio, ν 0.3 0.3

Interface
Fracture energy, Gc (Jm

−2) 250 25
Critical stress σc (MPa) 5 5
Initial damage ωin 10−1 10−3

Mode mixity parameter β 1 1

Tab. 3: Material parameters.
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t = 0.16 t = 0.25

t = 0.33 t = 0.50

t = 0.58 t = 0.67

t = 0.75 t = 0.84

t = 0.91 t = 1

Fig. 4: Snapshots of delamination evolution (displacements depicted as magnified by a fac-
tor of 5).

6 Conclusions

In this paper, we have presented a variational model for delamination phenom-
ena based on incremental energy minimization. Its algorithmic treatment relies on
the alternating minimization algorithm, complemented with a-posteriori two-sided
energy estimates to test the energetic stability of the evolution. Results of the
model problem indicate that the method is sufficiently robust for a wide range of
material parameters and allows to capture the whole delamination process from the
damage initiation up to the complete separation. Note that we have omitted the
time-continuous model, obtained as ∆t → 0. This aspect, together with additional
details and extensions, is available in a recent review [16].
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