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NUMERICAL SIMULATION OF THE TWO-PHASE FLOW
THROUGH THE ENERGETICAL EQUIPMENT∗

Jan Nejedlý, Roman Vaibar

Abstract

A mathematical model of homogeneous and heterogeneous condensation in the
turbomachinery is presented. The mathematical model consists of conservation laws
of mass, momentum, energy and conservation laws for the description of the rise
and growth of water droplets with the homogeneous and heterogeneous condensation.
The relaxation method is introduced for solving the two-dimensional unsteady flow
through the turbine cascades. The method is developed for unstructured grids and is
applied to the flow in the Laval nozzle.

1. Mathematical model of two-phase wet steam

1.1. Two-phase flow wet steam

M. Št’astný [4], [5] designed the mathematical model for the description of the
wet steam flow through an energetical equipment with condensation (phase-change
vapour-liquid). The condensation model consists of the homogeneous condensation
(spontaneous) and heterogeneous condensation - condensation on chemical impurities
emerging in wet steam.

The homogeneous condensation — the condensation cores development and the
growth of water droplets are modeled within this phenomena.

The heterogeneous condensation — condensation cores are composed of cluster
molecules of salt (NaCl) and the growth of water droplets is modeled.

The mathematical model is based on many theoretical and experimental obser-
vations. The model consists of

(a) the description of vapour flow and

(b) a condensation model for the description of dynamical processes during con-
densation (the rise and growth of water droplets).

Numerical simulation can be used to analyse phenomena, including condensation,
ocurring in wet steam flowing through turbine cascades.

The mathematical model of the steam flow with heterohomogenous condensation
is decribed by the system of hyperbolic partial differential equations

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= H(U), (1)
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where U = U(x, y, t) is the vector of nine unknown functions (density, velocity,
energy, droplets characteristics), F = F(U) and G = G(U) are the corresponding
flow functions, and H(U) describes environmental interaction. This complex model
has been presented in [4].

2. Reconstruction of the gradient on the unstructured grid

In this paragraph, we describe the construction of the gradient of multidimen-
sional function, which is necessary for a numerical method (e.g. relaxation method)
on the unstructured grid.

For the description of the reconstruction procedure on an element of the compu-
tational grid we use the Taylor expansion of variable [3]

U = Um +∇Um · r, (2)

where Um is the cell-averaged value of U prescribed in the cell center of the element
m, ∇Um is the cell-centered gradient, computed as described bellow, r is the vector
outgoing from the cell center to the center of any of three interfaces of the element
m.

If the gradient is assumed constant over the cell m, Green’s theorem yields

∇Um =
1

A

∮

δA
UndS. (3)

Gradient plane is uniquely defined by three non-collinear points. We will use the
reconstruction technique which computes gradients from two vertices (end points of
an interface) and a cell center (on either side of an interface). Consider the two
triangles 413m,41a3 in Fig. 1. We use equation (3) for elements 413m,41a3 and
we begin the reconstruction of the gradient.

(Ux)13m =
1

2A13m

[U1ym3 + Umy31 + U3y1m] , (4)

(Uy)13m =
−1

2A13m

[U1xm3 + Umx31 + U3x1m] , (5)

(Ux)1a3 =
1

2A1a3

[U1y3a + U3ya1 + Uay13] , (6)

(Uy)1a3 =
−1

2A1a3

[U1x3a + U3xa1 + Uax13] , (7)

where ym3 = y3−ym, xm3 = x3−xm etc. are components of the normal vector, defined
by the interface of the element. For example, for the vector m3 = [x3− xm, y3− ym]
we obtain the normal vector nm3 = [y3 − ym,−(x3 − xm)]. To reconstruct the
face gradient (on the alignment of elements 413m,41a3) we use the areaweighted
average of the gradients for elements 413m,41a3

(Ux)1a3m =
A13m(Ux)13m + A1a3(Ux)1a3

A13m + A1a3

, (8)

(Uy)1a3m =
A13m(Uy)13m + A1a3(Uy)1a3

A13m + A1a3

. (9)
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Fig. 1: Stencil for the reconstruction of the gradient ∇Um and a typical computational
cell. The dashed line shows the computational area for function (20).

Substituing equations (4) and (6) into (8) and similary equations (5) and (7) into (9),
we get the face gradient equations in the form

(Ux)1a3m =
1

2A1a3m

[(Ua − Um)y13 + (U1 − U3)yma] , (10)

(Uy)1a3m =
1

2A1a3m

[(Ua − Um)x13 + (U1 − U3)xma] , (11)

where A1a3m = A13m + A1a3.

The gradient of Um on the triangular cell m (triangle 4123) is constructed by
using the area weighted average of the corresponding face gradients

(Ux)m =
A1a3m(Ux)1a3m + A3c2m(Ux)3c2m + A2b1m(Ux)2b1m

A1a3m + A3c2m + A2b1m

, (12)

(Uy)m =
A1a3m(Uy)1a3m + A3c2m(Uy)3c2m + A2b1m(Uy)2b1m

A1a3m + A3c2m + A2b1m

. (13)
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3. Relaxation method

The numerical methods of this type are based on the idea [1], [2] to replace the
system of equations

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= 0 (14)

by the modified system of equations

∂U

∂t
+

∂V

∂x
+

∂W

∂y
= 0,

∂V

∂t
+ A2∂U

∂x
= −1

r
(V − F(U)) , (15)

∂W

∂t
+ B2∂U

∂y
= −1

r
(W −G(U)) ,

where r > 0 is the relaxation parameter and the matrices A and B are defined as
the diagonal matrices A = diag(a1, .., an) and B = diag(b1, .., bn). The elements of
matrices ai, bi have to satisfy the condition

|λi|
ai

+
|µi|
bi

≤ 1, i = 1, . . . , n, (16)

λi and µi are the eigenvalues of the Jacobi matrices ∂F(U)
∂U

and ∂G(U)
∂U

.
If r → 0 then the solution of (15) converges to the solution of system (14) and

V → F(U), W → G(U). (17)

Methods of this type on a rectangular grid are described in [2], [1].
Let us describe the usage of the relaxation method on the unstructured grid by

applying the gradient reconstruction described in Section 2.
We use an unstructured triangular grid on the computational domain Ω, which

have M elements. We define ωm in the cell center

ωm =
1

S∆m

∫

∆m

ω(x, y, t)dS, (18)

as the integral average over the triangle cell, m = 1, . . . , M . We write the semidiscrete
approximation of (15) in the form

dUm

dt
+ DxVm + DyWm = 0,

dVm

dt
+ A2DxUI = −1

r
(Vm − F(U)m) , (19)

dWm

dt
+ B2DyUI = −1

r
(Wm −G(U)m) ,

where Dx and Dy are, in our case, differential operators defined by the components
of the gradient (12) and (13).
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We will use the limited gradients presented in [3]

∇U l
m = ωa∇Ua + ωb∇Ub + ωc∇Uc, (20)

where ωi are weights computed as

ωa(ga, gb, gc) = (gbgc + ε2)/G,
ωb(ga, gb, gc) = (gagc + ε2)/G,
ωc(ga, gb, gc) = (gagb + ε2)/G,

G = g2
a + g2

b + g2
c + 3ε2,

ga = ||∇Ua||22, gb = ||∇Ub||22, gc = ||∇Uc||22,

(21)

where ε should be small enough.
The system (19) can be solved by several high-resolution numerical methods.

This system is semilinear, i.e., the flux functions are linear. We can easily compute
the eigenvalues of this system. We can use this fact to simplify appropriate Riemann
solvers that are the important part of every high-resolution scheme. If we use the
high-order methods we have to implement a limiting procedure.

4. Numerical results

The numerical results presented in Fig. 2 were obtained by software package
written in Matlab. These results were taken from the unsteady model. The initial
conditions simulated filling of the empty nozzle. The boundary conditions were
chosen as standard ones. We have no experiment based results, so we can not
compare our results with experiment, but obtained results fulfilled our expectations.
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Fig. 2: Plots of velocity, density and pressure in the nozzle, computed by the first order
relaxation scheme (Pressure scale should be multiplied by 105). Steady state.
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5. Conclusion

We put the main emphasis on the development of a software package for the
simulation of steam flow (2D). The software package is written as modular. We
expect that modular architecture allows an easy implementation of other numerical
methods (realized as modules) and cooperation with a pre- and postprocessor as
third-party modules. In future work, we want to implement other types of numerical
methods (composite methods, central methods, component-wise methods).

The mathematical model used for the steam flow can be augmented. The aug-
mentation will be realized in two stages. We will use the Navier-Stokes equations
for description of the steam flow, at this moment the Euler equations are used. The
system will be augmented by a turbulent model at the second stage. We want to use
large eddy simulation (LES) approach for the turbulent flow.
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