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A SECOND ORDER UNCONDITIONALLY POSITIVE SPACE-TIME
RESIDUAL DISTRIBUTION METHOD FOR SOLVING

COMPRESSIBLE FLOWS ON MOVING MESHES∗

Jǐŕı Dobeš, Herman Deconinck

Abstract

A space-time formulation for unsteady inviscid compressible flow computations in
2D moving geometries is presented. The governing equations in Arbitrary Lagrangian-
Eulerian formulation (ALE) are discretized on two layers of space-time finite elements
connecting levels n, n + 1/2 and n + 1. The solution is approximated with linear
variation in space (P1 triangle) combined with linear variation in time. The space-time
residual from the lower layer of elements is distributed to the nodes at level n+1/2 with
a limited variant of a positive first order scheme, ensuring monotonicity and second
order of accuracy in smooth flow under a time-step restriction for the timestep of the
first layer. The space-time residual from the upper layer of the elements is distributed
to both levels n + 1/2 and n + 1, with a similar scheme, giving monotonicity without
any time-step restriction. The two-layer scheme allows a time marching procedure
thanks to initial value condition imposed on the first layer of elements. The scheme
is positive and second order accurate in space and time for arbitrary meshes and it
satisfies the Geometric Conservation Law condition (GCL) by construction.

Example calculations are shown for the Euler equations of inviscid gas dynamics,
including the 1D problem of gas compression under a moving piston and transonic
flow around an oscillating NACA0012 airfoil.

1. Introduction

Residual Distribution (RD) schemes have reached a certain level of maturity for
the simulation of steady flow problems. The RD approach allows to construct second
order methods on a compact stencil, which are positive at the same time. They are
used as state of the art methods to solve complex steady problems e.g. 3D turbulent
Navier-Stokes equations or Magneto-Hydro-Dynamic equations [5, 2, 1].

In [9] it has been noted that for an unsteady computation a mass matrix coupling
space and time discretizations has to be taken into the account, otherwise the spatial
accuracy is lost. This matrix is not a M-matrix, hence if inverted, the positivity of
the spatial discretization is compromised.

In [10, 1, 3] an alternative approach for unsteady problems has been proposed,
based on space-time RD schemes for a bilinear space-time element approximation.
In particular, in [10, 1] a first order scheme corresponding to the N scheme with
Crank-Nicholson time integration has been shown to be positive under a time step
restriction. This restriction can be overcome by adding one more time layer [3].

∗This research was partially supported by Research plan of MSMT no. 6840770003.
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An extension of the conditionally positive, one layer method for moving meshes
was presented in [6]. In this paper we extend the two layer method for computations
on moving meshes. Because the underlying scheme can be written as the modification
of the spatial N scheme with Crank-Nicholson time integration, we use the Arbitrary
Lagrangian-Eulerian formulation of the RD method [11].

2. ALE formulation

We define the ALE mapping which for each t ∈ I associates a point ~Y of reference
configuration Ω0 to a point ~x on the current domain configuration Ωt, At : Ω0 ⊂ Rd →
Ωt ⊂ Rd, ~x(~Y , t) = At(~Y ). The ALE mapping At is chosen sufficiently smooth and
invertible with nonzero determinant of Jacobian JAt . A domain velocity ~w(~x, t) is

defined as the time derivative of ~x for constant ~Y . We start from the conservative
ALE formulation of the Euler equations in d spatial dimensions

1

JAt

∂JAtu

∂t

∣∣∣∣
~Y

+∇x · [~f(u)− u~w] = 0 , (1)

where u = (ρ, ρvi, E)T is the vector of conserved variables and ~f(u) the well known
vector of flux functions. The system is closed with the equation for a perfect gas.
The problem is equipped with an appropriate set of initial and boundary conditions.
The following equality, called geometrical conservation law, will be used later

∇x · ~w =
1

JAt

∂JAt

∂t

∣∣∣∣
~Y

. (2)

The RD schemes operate on the quasi-linear form of the equation, which can be
obtained with ∇x · (u~w) = ~w · ∇xu + u∇x · ~w and identity (2)
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= 0. (3)

3. Numerical scheme

The problem is solved on mesh T h consisting of simplex elements {E}. The
unknowns are stored in the vertices of the mesh. A straightforward application of
the N scheme [6] with Crank-Nicholson time integrator operating between layers n
and n + 1/2 (i.e. lower layer of the elements) to the problem (3) gives
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where Si is the area of median dual cell around node i, Di denote all the elements
sharing node i, un

i is the solution in node i at time level n, ∆t is the time-step, ~ni

is the normal to the face opposite to the node i scaled by its surface and k+
i is the

positive part of the upwind matrix ki in the sense of its eigen-decomposition. Note
that the Jacobian includes the mesh velocity. The Jacobian and mesh velocity ~w are
taken in an averaged state, such that the resulting method is conservative [11, 4].
Note, that the method presented here is different from [11] in the treatment of the
source term, what allows us to show the positivity of the scheme for scalar problems
under the time-step restriction

∆tlower ≤ µ(En+1/2) + µ(En)

k+,E
i (d + 1)

, ∀i, E ∈ T h, (5)

where µ(E) is the volume of element E. This method can be interpreted as a space-
time method, distributing space-time nodal contribution φEST

i from the lower layer
of the elements (element between levels n and n + 1/2) to the nodes at level n + 1/2

u
n+1/2,m+1
i = u

n+1/2,m
i − αi

∑
E∈Di

φ
EST,lower,n+1/2
i , (6)

where αi is relaxation parameter given by the explicit stability constraint.
Although the method is implicit, it suffers from the time-step restriction (5). As

a cure, we add a second layer of elements with similar scheme, operating between
levels n+1/2 and n+1. This scheme distributes portions of the space-time residual
of the upper layer as follows:

• To the nodes at n + 1:
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i )un+1
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• To the nodes at n + 1/2:

φ
EST,upper,n+1/2
i = ∆tupper

∑
E∈Di

1
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(
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. (8)

Relaxation procedure (6) has then the form

u
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and the scheme is formally unconditionally stable with arbitrary ∆tupper.
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The space-time nodal contribution can be seen as a space-time residual distrib-
uted with (implicitly defined) distribution coefficient

φEST

i = βiφ
EST

,
∑
i∈E

βi = 1. (11)

The scheme described above is at most first order accurate. As it was proven in [1],
a condition for second order of accuracy is the uniform boundedness of the distrib-
ution coefficients βi. One of the possibilities to modify the distribution coefficients
is [1]

βmod
i =

β+
i∑

j∈E β+
j

. (12)

This modification preserves the sign of the distribution coefficients and ensures its
uniform boundedness, hence the method becomes second order accurate, while keep-
ing its positivity. In the case of the Euler equations the modification of the distribu-
tion coefficients is performed on simple waves given by the projection of the residual
to the Jacobian eigenvectors [1].

4. Numerical results

The first test case is motivated by an internal aerodynamics problem, namely
flow in a piston engine. A gas at rest is enclosed between two opposite walls in the
chamber. One of the walls slowly starts to move, compressing the gas inside the
chamber. This problem can be solved by the method of characteristics [12] until the
head of the pressure wave reflects from the end wall or a shock is created1. We have
used a rectangular domain of size 5× 1 with initial conditions u0 = 0, ρ0 = 1.4 and
p0 = 1. The piston starts to accelerate with derivative of acceleration

...
x = 0.2. The

numerical solution is plotted at time t = 4, when the piston has reached x = 2.133̄.
The mesh consist of 372 nodes and 674 triangular elements with 30 nodes along
the cylinder wall and 6 nodes along the end wall. Comparison is made with a finite
volume method using a linear least square reconstruction, Barth’s limiter, three point
backward differentiation scheme on moving meshes [7] (Fig. 1). The solution given
by the RD scheme perfectly follows the analytical solution, while the FV scheme
gives bigger differences.

The next problem involves a piston instantaneously accelerated to a uniform
speed. From the Rankine-Hugoniot jump conditions we can compute the solution
analytically.2 The comparison is shown in Fig. 2 at t = 2. Note the perfectly
monotone shock capturing. Both the FV and RD schemes give comparable results.
Note also the entropy layer in the vicinity of the piston, which is present both for
RD and FV methods. Its source has to be still investigated.

1The analytical solution is avaliable on an email request. Email: Jiri.Dobes@fs.cvut.cz.
2Piston velocity is 0.8, flow velocity is uL = 0.8, uR = 0, density is ρL = 2.8191, ρR = 1.4 and

pressure is pL = 2.78, pR = 1. Shock speed is 0.79461.
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Fig. 1: Smooth compression of the gas, Mach number cut. Left: present scheme. Right:
FV scheme.
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Fig. 2: Compression of the gas with a shock. Pressure and entropy cut. Left half: present
scheme. Right half: FV scheme.

Finally, a fully 2D test involves a NACA 0012 airfoil which is sinusoidally pitching
around its a quarter chord (test case AGARD CT 5[8]). The free stream Mach
number is 0.755 and the mean angle of incidence is 0.016◦ . The airfoil performs
a sinusoidal pitching motion with an amplitude of 2.51◦

α = 2.51 sin(2kt) + 0.016, (13)

where k is the reduced frequency of oscillation with respect to the half chord

k =
ωc

2u∞
= 0.0814, (14)

where c is the chord, u∞ is the free-stream velocity and ω the frequency.
The problem was solved on an unstructured mesh consisting of 5711 nodes and

11153 elements with 206 nodes around the airfoil. The free stream boundary was
located 20 chords away from the airfoil. The solution at time t = 115 is plotted in
Fig. 3. The FV solution is plotted by a dotted line, while the RD solution is plotted
as the continuous lines. The FV solution is more dissipative, as one can notice above
the profile, where the RD isolines are more crisp and running straight into the shock.
Interesting is a comparison of the lift coefficient depending on the angle of incidence.
On the zoom, one can notice a higher peak of the lift given by the RD method than
by the FV method, which points to the higher accuracy.
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Fig. 3: Flow past oscillating NACA 0012 airfoil. Top: isolines of the pressure. Bottom:
dependence of the lift on the angle. RD method – continuous line, FV method dotted line.
CFL = 5.

5. Conclusions

The two layer N-modified space-time multidimensional upwind residual distribu-
tion scheme of [1] was extended for computations on moving meshes. The scheme is
unconditionally positive and second order accurate on moving meshes. The method
was tested on a 1D piston problem (solved in 2D settings), where we have shown
excellent agreement with the analytical solution. The method was then applied to
the problem of a transonic flow around an oscillating NACA 0012 airfoil, showing
the more accurate and less dissipative behavior of RD scheme with respect to the
state of the art FV scheme.
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