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AN EFFICIENT IMPLEMENTATION OF THE SEMI-IMPLICIT
DISCONTINUOUS GALERKIN METHOD FOR COMPRESSIBLE

FLOW SIMULATION∗

Vı́t Doleǰśı

Abstract

We deal with a numerical simulation of the inviscid compressible flow with the
aid of the combination of the discontinuous Galerkin method (DGM) and backward
difference formulae. We recall the mentioned numerical scheme and discuss imple-
mentation aspects of DGM, particularly a choice of basis functions and numerical
quadratures for integrations. An illustrative numerical example is presented.

1. Introduction

Our aim is to develop a sufficiently robust, accurate and efficient numerical
scheme for a simulation of compressible flows. Among several types of numerical
schemes the discontinuous Galerkin method (DGM) seems to be a promising tech-
nique, see e.g., [2], [3], [5], [8], [9]. DGM is based on a piecewise polynomial but dis-
continuous approximation and represents a generalization of the finite element and
finite volume methods. Although authors mostly claim that DGM is very suitable
for the compressible flow simulation they admit one disadvantage: a high computa-
tional cost which prevents DGM from practical applications. Therefore an efficient
implementation exhibits a challenging task.

In this paper we recall the semi-implicit numerical scheme proposed in [4],which is
based on a combination of DGM for the space semi-discretization and the backward
difference formula for the time discretization (Section 3.). Then we discuss some
implementation aspects with respect to the CPU time, particularly a choice of the
basis functions and numerical quadratures for integrations (Section 4.). Finally, one
numerical example of an unsteady inviscid compressible flow through the forward
facing step is presented for an illustration.

2. Problem formulation

The system of the Euler equations describing 2D inviscid compressible flow can
be written in the form

∂w

∂t
+

2∑

s=1

∂f s(w)

∂xs

= 0 in QT = Ω× (0, T ), (1)

∗This work is a part of the research project MSM 0021620839 financed by the Ministry of Edu-
cation of the Czech Republic and was partly supported by the Grant No. 316/2006/B-MAT/MFF
of the Grant Agency of Charles University Prague.
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where Ω ⊂ IR2 is a bounded polygonal domain occupied by a gas, T > 0 is the
length of a time interval, w = (w1, . . . , w4)

T = (ρ, ρv1, ρv2, e)T is the state vector
and f s(w) = (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, (e + p) vs)

T, s = 1, 2, are the inviscid
(Euler) fluxes. We use the following notation: ρ – density, p – pressure, e – total
energy, v = (v1, v2) – velocity, δsk – Kronecker symbol, γ > 1 – Poisson adiabatic
constant. The equation of state implies that p = (γ−1) (e−ρ|v|2/2). The system (1)
is equipped with a set of initial and boundary conditions, for details see, e.g., [7].

3. Discretization

In [4], we presented the discretization of the Euler equations (1) by the discon-
tinuous Galerkin method (DGM). Therefore we do not derive the numerical scheme
again but only present the main relations.

Let Th ≡ {Ki}i∈I denote a triangulation of the closure Ω of the domain Ω into
a finite number of closed elements (triangles or quadrilaterals) Ki, i ∈ I with mutu-
ally disjoint interiors. Let ∂Ki ≡ ∪j∈S(i)Γij ∀Ki ∈ Th, where S(i), i ∈ I are suitable
index sets, Γij is either a common face between neighbouring elements Ki and Kj

or a boundary face (i.e. Γij ⊂ ∂Ω). Moreover, nij = ((nij)1, (nij)2) is the unit outer
normal to ∂Ki on the face Γij.

The approximate solution of (1) is sought in the space of discontinuous piecewise
polynomial functions Sh defined by

Sh ≡ [Sh]
4, Sh ≡ Sp,−1(Ω, Th) ≡ {v; v|K ∈ P p(K) ∀K ∈ Th}, (2)

where P p(K) denotes the space of all polynomials on K of degree at most p ≥ 0, p is
an integer. For wh,ϕh ∈ Sh we introduce the forms

(wh,ϕh) =
∫

Ω
wh(x) ·ϕh(x) dx, (3)

bh(wh,ϕh) = − ∑

K∈Th

∫

K

2∑

s=1

f s(wh) · ∂ϕh

∂xs

dx

+
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

H(wh|Γij
,wh|Γji

,nij) ·ϕhdS,

where H is a numerical flux, w(t)|Γij
and w(t)|Γji

are the values of w on Γij consid-
ered from the interior and the exterior of Ki, respectively, and at time t. The values
of w(t)|Γji

for Γij ⊂ ∂Ω are given by the boundary conditions, for details, see [7].
Then we define the semidiscrete problem:
Definition 1: Function wh is a semidiscrete solution of the problem (1), if

a) wh ∈ C1([0, T ]; Sh), (4)

b)

(
∂wh(t)

∂t
,ϕh

)
+ bh(wh(t),ϕh) = 0 ∀ϕh ∈ Sh ∀ t ∈ (0, T ),

c) wh(0) = w0
h,
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approximation
#dof P1 P2 P3

FEM n 2.5n 6n
DGM 6n 12n 20n

Tab. 1: Comparison of degree of freedom of DGM and FEM for a triangular grid having
n vertices.

where w0
h ∈ Sh denotes the initial condition. Here C1([0, T ]; Sh) is the space of

continuously differentiable mappings of the interval [0, T ] into Sh.
The problem (4), a) – c) exhibits a system of ordinary differential equations for

wh(t) which has to be discretized by a suitable ODE method. In [4] we introduced
the semi-implicit discretization of (4), a) – c), where the form bh(·, ·) was linearized
and then the linear terms were treated implicitly by a multi-step backward differ-
ence formula and the nonlinear terms were approximated by a suitable higher order
explicit extrapolation. Then the full space-time discretization leads to a system of
linear algebraic equations at each time level, the numerical scheme is practically
unconditionally stable and has a high order of accuracy with respect to the time
coordinate.

Since for the purposes of this paper an exact form of the time discretization is
not important we write the full space-time discretization schematically by

(
M + τkC(wk

h)
)
wk+1

h = g(wk
h), k = 0, 1, . . . ,

where wk
h ∈ Sh, k = 0, 1, . . . represents an approximation of the solution at t = tk,

M is the mass matrix (6), C(·) is a matrix representing the form bh(·, ·), g(·) is
a right-hand-side and τk ≡ tk+1 − tk is a time step. For more details see [4].

4. Implementation aspects

Although DGM exhibits a very promising approach for a simulation of com-
pressible flows, its main disadvantage is a higher number of degrees of freedom in
comparison with the classical finite element method (FEM) which leads to a higher
requirement on CPU time. Table 1 compares the degrees of freedom of DGM and
FEM on a triangular grid with n vertices (than the number of triangles ≈ 2n) for
piecewise linear, quadratic and cubic approximations. We observe several times
higher number of degrees of freedom for DGM than FEM. Therefore a very efficient
implementation is a natural requirement for an industrial use of DGM. We discuss
two items: choice of basis functions and numerical quadratures. Other aspects (e.g.
linear solver, preconditioning,. . . ) are a subject of the future research.

4.1. Choice of basis

For a numerical simulation of compressible flows it is suitable to use meshes con-
sisting of triangles and quadrilaterals since numerical experiments show that quadri-
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laterals are better for a resolution of effects within boundary layers around solid
walls whereas triangles are more suitable for capturing of discontinuities (e.g., shock
waves) with a general direction. An use of the Lagrangian basis known from FEM is
not suitable for a combination of triangles and quadrilaterals. Since we have a discon-
tinuous approximation we can employ a local basis on each element independently.
A natural choice is an use of the Taylor basis on element Ki ∈ Th in the form

{ψKi
j }dofKi

j=1 ≡ {(x1 − xKi
1 )nx(x2 − xKi

2 )ny , nx, ny ≥ 0, nx + ny ≤ p}, (5)

where p is the degree of the polynomial approximation on Ki, dofKi
= (p+1)(p+2)/2

is the number of degree of freedom on Ki and (xKi
1 , xKi

2 ) is the barycentre of Ki.
However, numerical experiments show that the Taylor basis (5) is not suitable

for a computations, since the mass matrix defined by

M ≡
{
m(Ki,ni),(Kj ,nj)

}nj=1,...,dofKj
,Kj∈Th

ni=1,...,dofKi
,Ki∈Th

, m(Ki,ni),(Kj ,nj) ≡
∫

Ω
ψKi

ni
ψKj

nj
dx (6)

has elements with very different magnitudes which causes a slow convergence of the
linear algebraic problem. In order to save some CPU-time it is possible to use an
approach [1] where basis (5) is replaced by the following one

{ψ̃Ki
j }dofKi

j=1 , ψ̃Ki
j ≡ ψKi

j

‖ψKi
j ‖L2(Ω)

, j = 1, . . . , dofKi
, Ki ∈ Th. (7)

Based on numerical experiments we observed that the choice of the basis (7) saves
the computational time approximately 50% in comparison with the basis (5).

We extended the idea from [1] in such a way that not only “normalization” but
the full orthonormalization of the basis (5) is carried out. So that we employ the
basis

{ψ̄Ki
j }dofKi

j=1 , such that (ψ̄Ki
j , ψ̄Ki

l )L2(Ω) = δjl, j, l = 1, . . . , dofKi
, Ki ∈ Th. (8)

The orthonormalization is carried out by the Grant-Schmidt ortogonalization process.
Although it is a known fact, that this algorithm is ill-conditioned we do not observed
any problem with the stability of the Grant-Schmidt ortogonalization. It is caused
by the fact that the dimension of the finite element space on each element (dofKi

)
is small and moreover if the basis is not (exactly) orthogonal it does not mind. We
observe that the choice of the basis (8) saves the computational time approximately
90% in comparison with the basis (5).

4.2. Numerical integration

The integrals in (3) have to be evaluated with the aid of suitable numerical
quadratures. An use of a numerical quadrature with a low order of accuracy can
cause a loss of accuracy and on the other hand a numerical quadrature with a higher
number of integration nodes requires longer CPU time. Therefore an use of some
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type of integral integ. rule #nodes order
edge Gauss 2p 4p− 1

quadrilateral 2D Gauss (2p)2 4p− 1
triangle Dunavant 3p− 1

Tab. 2: List of the used quadrature rules with the orders of accuracy and the number of
integration nodes, p is the degree of polynomial approximation.

t = 1.0

t = 3.0

Fig. 1: Forward facing step, P3 approximation, Mach number distributions.

“optimal” numerical quadratures is necessary in order to balance the CPU-costs
and the accuracy. Based on numerical experiments the classical Gauss quadrature
formulas were employed for edge integrals. Concerning the volume integrals we used
the 2D version of the Gauss formulas for quadrilateral elements and the Dunavant
rules [6] for triangular elements. Table 2 shows the used quadrature rules with the
orders of accuracy and the number of integration nodes.

In order to obtain a high efficiency of the implementation, the values of the
test functions in integration nodes are evaluated a priori, so that we do not use any
mappings of reference elements to physical ones. Therefore the evaluation of integrals
in (3) exhibits a simple multiplicative multiplications of real arrays. This was the
reason why we use the programming language Fortran 95 which is optimalized for
arrays operations.
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5. Numerical example

We consider a flow through the well-known forward facing step proposed in [10]
with a constant initial condition given by ρ = 1.4, v = (3, 0), p = 1. Figure 1
shows Mach number distributions obtained by P3 approximation on a grid having
1 033 triangles at t = 0.1 and t = 0.3.
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