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FINITE ELEMENT MODELING OF WOOD STRUCTURE∗

Petr Koňas

Abstract

This work is focused on a weak solution of a coupled physical task of the microwave
wood drying process with stress-strain effects and moisture/temperature dependency.
Due to the well known weak solutions for the individual physical fields, the author
concerns with the coupled stress-strain relation coupled with the moisture and tem-
perature distributions. For the scale dependency the subgrid upscaling method was
used. The solved region is assumed to be divided into discontinuous subregions ac-
cording to the investigated scale. This approach suggests sequential type of solution
for highly coupled tasks. This way, very huge structures (huge with regard to the
geometry and also physics) can be solved in the reasonable time and with reason-
able memory consumptions. Main emphasis was put on evaluation of the structural
response of the whole complex. Due to the influence of the moisture, temperature,
and time, the coupled physical task of the structural response is solved. Suggested
approach is of course usable not only for the structural response, but also for the other
physical fields, which were taken into account. The weak solution is based on a slight
modification of the Ritz-Galerkin method.

Keywords: FEM, multiphysics, microwave wood drying, upscaling, homogenization

1. Introduction

Microwave drying of wood is one of the most difficult problems of Wood Science.
The problem is coupled according to the following variables: moisture w, tempera-
ture T , velocity of free water within the conductive wood elements v, intensity of
electric field E, intensity of magnetic field B, static pressure p and displacement
of structural parts u. Parabolic equations arise as models of many partial physical
processes which occur during the drying process. The time-dependency affects most
of these processes. Generally, diffusive partial differential equations (PDE) represent
usually the base constitutive relationships. The electromagnetic field is sufficiently
described by the reduced system of Maxwell’s equations. To solve the coupled system,
we evaluate the following unknowns: T,w, p,u,v,E,B,H,J,D. These quantities are
considered as elements of appropriate Hilbert spaces.

The first set of equations in the coupled system consists of the Maxwell’s equations

∇× E =
∂B

∂t
, ∇ ·D = ρe, (1)

∇×H = J +
∂D

∂t
, ∇ ·B = 0,

∗This work was supported by grant No. GP106/06/P363 of the Czech Science Foundation.
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where t is the time, B is the magnetic flux density, D is the electric flux density, H is
the magnetic field intensity, E is the electric field intensity, J is the current density,
ρe is the electric charge density. Due to the anisotropy of wood, we can itemize these
variables to D = εE, B = µH, J = σE, where ε is permittivity, µ is permeability,
and σ is the electric conductivity of the material.

Natural requirement for continuous charge is satisfied by the equation of conti-
nuity

∇ · J = −∂ρe

∂t
. (2)

However, the electro-dynamical effects are not alone. Also the influence of the
moisture and pressure changes in wood should be included. Content of water in the
material is obviously separated into free water and water bonded through H-bridges
(the chemical bonded water by stronger types of bindings are omitted). Bonded
water keeps diffusive character. Interaction of moisture, temperature and static
pressure can be described by system of equations (6). Widely disputed is the diffusive
character of the static pressure. For this reason, the last equation is often omitted
in the following system

ρC
∂T

∂t
−∇kTw∇w −∇kTp∇p−∇kTT∇T = qabs + kbT

(Text − T ) ,

∂w

∂t
−∇kww∇w −∇kwp∇p−∇kwT∇T = kbw (wext − w) , (3)

∂p

∂t
−∇kpw∇w −∇kpp∇p−∇kpT∇T = kbp (pext − p) ,

where ρ is the density, C is the heat capacity, qabs is the density of energy, Text

is the temperature in the surroundings, w is the mass concentration (moisture
content), wext and pext are moisture content, and static pressure in the surround-
ings, respectively, kbw ,kbT

,kbp are convective coefficients and kTw,kTp,kTT,kww,
kwp,kwT,kpw,kpp, kpT are the matrices of diffusion coefficients.

Structural response of the wood structure is described by parabolic equation

ρ
∂u

∂t2
− (∇cEG + (w − wext)∇cKbw + (T − Text)∇cK

bT

)∇u−∇cλw,T
∇∂uvel

∂t
+ Cw · w + Cw2 · w2 + CT · T + CT2 · T 2 + CwT · wT + C = F. (4)

Definition of individual coefficients for equation (4) was described in [5], where
generally orthotropic elastic properties related to moisture and temperature are de-
fined. This described model is valid for diffusive transport of moisture and temper-
ature. It is not appropriate (due to the physical nature of the phenomenon) for the
free water movement. This transport is allocated into inter-cellular spaces and cell
lumen. Description of this process can be done with Navier-Stokes equation
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∂ν

∂t
+ (∇× ν)× ν +

1

2
∇ν2 = −∇pfl

ρ
−∇U +

η

ρ
∇2ν, (5)

where ∇U is the potential and ν the velocity of the fluid.
Since the weak form of equations (1)–(3) and (5) is well known, see e.g. [2], [1],

we focus on equation (4), where we will outline the variational formulation for the
mixed type of elements in numerical subgrid upscaling method ([8], [6], [7], and [4]).
It should be noted that we will suppose the sequential type of mentioned equations.
This assumption leads to simplification of equation (4), where T and w are constant
in one time-step.

2. Methods

Assembling of the weak form of equation (4) is realized with regard to the schema
of the Ritz-Galerkin method by the following quadratic functional, which should be
minimal:

G(u) =

(
ρ
∂2u

∂t2
, ξ

)
−

((
∇cEG + (w − wext)∇cKbw

+ (T − Text)∇cK
bT

)
∇u, ξ

)
−

(
∇cλw,T

∇∂u

∂t
, ξ

)

− 2
(
F− (

Cw · w + Cw2 · w2 + CT · T + CT 2 · T 2 + CwT · wT + C
)
, ξ

)
= 0. (6)

This functional is well-defined for all ξ ∈ H (Ω) and (·, ·) stands for the scalar
product on this Hilbert space. By the above mentioned simplifications, we obtain the
integral form. Let the functional equation (6) be defined on the vector space V , which
is a finite dimensional subspace of H (Ω). Let us assume the Ω to be partitioned
into a finite number of subregions on very fine scale δ1. Further, we assume that m1

of these subregions are covered by mesh on this scale (subgrids). Functional from
equation (6) is then considered on vector subspaces V δ1

1 , V δ1
2 , . . . , V δ1

m1
⊆ V , where

V
δj

j for j = 1, . . . ,m1 are Raviart-Thomas (RT) spaces. Subspaces may not fill the

full space V . It means that V δ1
1 ∪ V δ1

2 ∪ V δ1
3 ∪ . . . ∪ V δ1

m1
≡ V δ1 ⊆ V . Simultaneously,

we declare mentioned vector subspaces with bases

{
ϕ

δj

Vj ,1, ϕ
δj

Vj ,2, . . . , ϕ
δj

Vj ,n1

}
⊆ V

δj

j , j = 1, 2, . . . , m1.

Complete basis

ϕδ1 ≡
m1⋃
j=1

{
ϕδ1

Vj ,1, ϕ
δ1
Vj ,2, . . . , ϕ

δ1
Vj ,nj

}
⊂ V δ1 .

on vector space V δ1 is derived from the fine mesh of subgrids, where linear basis func-
tions are used. Similarly, let us partition Ω by further linear meshes Ψδ2 , Ψδ3 , . . . , Ψδi
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for different scales δ1 < δ2 < . . . < δi, where again regions m2,m3, . . . , mi cover some
parts of Ω on the specific scale. Consequently, similar vector subspaces can be dis-
tinguished V δk

1 , V δk
2 , . . . , V δk

mk
⊆ V , k = 2, 3, . . . , i with the same requirements:

V δ2
1 ∪ V δ2

2 ∪ V δ2
3 ∪ . . . ∪ V δ2

m2
≡ V δ2 ⊆ V,

V δ3
1 ∪ V δ3

2 ∪ V δ3
3 ∪ . . . ∪ V δ3

m3
≡ V δ3 ⊆ V,

...

V δi
1 ∪ V δi

2 ∪ V δi
3 ∪ . . . ∪ V δi

mi
≡ V δi ⊆ V. (7)

In addition, we will tie subspaces by these important rules:

V δ1 ⊆ V δ2 ⊆ V δ3 ⊆ . . . ⊆ V δi ≡ V, (8)

where δi is maximal scale V δi ≡ V and V is defined on the entire Ω.
All unknown functions can be decomposed to individual scales, e.g.:

u = uδ1 + uδ2 + . . . + uδi , (9)

on some Ω0. This decomposition of unknowns to individual scales affects the solution
in the sense of finite elements and the minimization of functional equation (6) does
not provide the common appearance of Ritz system.

Let us consider PDE Au = f , u ∈ V with a differential operator A and let us
follow the common steps in the solution of this task for multi-scale problems.

Functional which will be minimized has the standard form ([3]):

G(u) = (u,u)A − 2 (f ,u) . (10)

Equation (9) will be substituted into the first part of equation (10):

L(u) =
(
uδ1 + uδ2 + . . . + uδi ,uδ1 + uδ2 + . . . + uδi

)
A

. (11)

It can be expanded due to the rules of the bilinear form in the following way:

L(u) =
i∑

k=1

i∑
j=1

(
uδk ,uδj

)
A

. (12)

Our problem is reduced into the task of finding such function u which minimizes
the functional (10). This functional is minimized by a function in the form:

ũδj
n =

sj∑

k=1

b
δj

k ϕ
δj

k , (13)

where sj = dim V δj , ϕ
δj

k denote the basis functions in V δj and b
δj

k represent variables

which will be evaluated in the point of the approximate minimum a
δj

k . As the first
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step, we estimate the functional in the subgrid on the scale δ1. The minimizing
function is denoted as:

uδj
n =

sj∑

k=1

a
δj

k ϕ
δj

k . (14)

To evaluate the coefficients a
δj

k , we compute the partial derivatives of L(un) with
respect to all coefficients on all scales and equal them to zero:

∂L(un)

∂bδk
l

∣∣∣bδ1
=aδ1

,...,bδi
=aδi

for k = 1, . . . , i; l = 1, . . . , sk, (15)

where aδj
=

(
a

δj

1 , . . . , a
δj
sj

)T

and bδj
=

(
b
δj

1 , . . . , b
δj
sj

)T

for j = 1, . . . , i. The partial

derivatives of L(un) with respect to coefficients bδk
can be computed as follows

∂
(
ũ

δj
n , ũδk

n

)
A

∂bδk
1 . . . ∂bδk

sk

= RL
Aδjδk

aδj
for j 6= k, (16)

where the symbol on the left-hand side stands for the vector of partial derivatives
with respect to bδk

1 , . . . , bδk
sk

and RL
Aδjδk

denotes the modified lower triangular matrix

of Ritz system:

RL
Aδjδk

=




(
ϕ

δj

1 , ϕδk
1

)
A

0 · · · 0

2
(
ϕ

δj

1 , ϕδk
2

)
A

(
ϕ

δj

2 , ϕδk
2

)
A

· · · 0

...
...

. . .
...

2
(
ϕ

δj

1 , ϕδk
sk

)
A

2
(
ϕ

δj

2 , ϕδk
sk

)
A

· · ·
(
ϕ

δj
sj , ϕ

δk
sk

)
A




. (17)

Similarly, partial derivatives of the first part of equation (10) with respect to
coefficients bδj

can be computed as

∂
(
ũ

δj
n , ũδk

n

)
A

∂b
δj

1 . . . ∂b
δj
sj

= RU
Aδjδk

aδk
for j 6= k, (18)

where RU
Aδjδk

is modified upper triangular matrix of Ritz system:

RU
Aδjδk

=




(
ϕ

δj

1 , ϕδk
1

)
A

2
(
ϕ

δj

1 , ϕδk
2

)
A

· · · 2
(
ϕ

δj

1 , ϕδk
sk

)
A

0
(
ϕ

δj

2 , ϕδk
2

)
A

· · · 2
(
ϕ

δj

2 , ϕδk
sk

)
A

...
...

. . .
...

0 0 · · ·
(
ϕ

δj
sj , ϕ

δk
sk

)
A




. (19)
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Finally, partial derivatives of the first part of equation (10) with respect to coef-
ficients bδj

on the same scale δj are given by:

∂
(
ũ

δj
n , ũ

δj
n

)
A

∂b
δj

1 . . . ∂b
δj
sj

= RAδjδj
aδj

, (20)

where RAδjδj
is the well known matrix of the Ritz system:

RAδjδj
= 2




(
ϕ

δj

1 , ϕ
δj

1

)
A

(
ϕ

δj

1 , ϕ
δj

2

)
A

· · ·
(
ϕ

δj

1 , ϕ
δj
sk

)
A(

ϕ
δj

1 , ϕ
δj

2

)
A

(
ϕ

δj

2 , ϕ
δj

2

)
A

· · ·
(
ϕ

δj

2 , ϕ
δj
sj

)
A

...
...

. . .
...(

ϕ
δj

1 , ϕ
δj
sj

)
A

(
ϕ

δj

2 , ϕ
δj
sj

)
A

· · ·
(
ϕ

δj
sj , ϕ

δj
sj

)
A




. (21)

3. Results and discussion

The main result of this work is the minimization of the quadratic functional
with respect to the mentioned subspace division using the common Ritz system and
triangular matrices of the Ritz system. Detail reordering of individual equations
is beyond the scope of this contribution and also huge and inappropriate for the
proceedings. For this reason, just final results are introduced. Using the above
mentioned relations, the partial derivatives (15) can be expressed in the following
form

∂L(un)

∂bδ1
1 . . . ∂bδ1

s1

= RAδ1δ1
aδ1 + 2RU

Aδ1δ2
aδ2 + . . . + 2RU

Aδ1δi
,

∂L(un)

∂bδ2
1 . . . ∂bδ2

s2

= 2RL
Aδ1δ2

aδ1 + RAδ2δ2
aδ2 + 2RU

Aδ2δ3
aδ3 + . . . + 2RU

Aδ2δi
aδi

,

∂L(un)

∂bδ3
1 . . . ∂bδ3

s3

= 2RL
Aδ1δ3

aδ1 + 2RL
Aδ2δ3

aδ2 + RAδ3δ3
aδ3 + 2RU

Aδ3δ4
aδ4 + . . .

. . . + 2RU
Aδ3δi

aδi
,

...

∂L(un)

∂bδi
1 . . . ∂bδi

si

= 2RL
Aδ1δi

aδ1 + 2RL
Aδ2δi

aδ2 + . . . + RAδiδi
aδi

. (22)

This complex system can be rewritten in more readable form (T means vector
transposition):

SA(un) = RAδjδj
aδj

+ 2
i∑

k=j+1

RU
Aδjδk

aδk
+ 2

j−1∑

k=1

RL
Aδkδj

aδk
, (23)
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where SA(un) =

(
∂L(un)

∂b
δj
1

, ∂L(un)

∂b
δj
2

, . . . , ∂L(un)

∂b
δj
sj

)T

. In this way, we obtained a numerical

approximation of the first part of equation (10).
Minimization of functional equation (10) is done by the relation:

∂L(un)

∂bδk
l

∣∣∣bδ1
=aδ1

,...,bδi
=aδi

= 0 for k = 1, . . . , i; l = 1, . . . , sk. (24)

Thus, the approximate solution un can be computed by evaluation of aδj
in the

following equation:

SA(un) =
((

f, ϕ
δj

1

)
,
(
f, ϕ

δj

2

)
, . . . ,

(
f, ϕδj

sj

))T

, (25)

where SA(un) is given by (23).
By analogy, the solution of equation (6) with applying of SA(un) derivation can

be rewritten in this form:

SA(un)− SB(un)− SC(un) = 2
((

fc, ϕ
δj

1

)
,
(
fc, ϕ

δj

2

)
, . . . ,

(
fc, ϕ

δj
sj

))T

, (26)

where we use the following differential operators

SA(u) = ρ
∂2

∂t2
u,

SB(u) =
(∇cEG + (w − wext)∇cKbw + (T − Text)∇cK

bT

)∇u,

SC(u) = ∇cλw,T
∇ ∂

∂t
u,

and fc = F− (Cw · w + Cw2 · w2 + CT · T + CT2 · T 2 + CwT · w · T + C) .
If finite elements with linear basis functions are used, then system equation (26)

is uniquely solvable. Solution is realized in i consequent steps. In the first step,
equation (26) is formed for j = 1. Since the results of higher scales are unknown (in
Ritz or modified Ritz system), the solution on higher scales in individual nodes is
expressed by value of aδ1 or other appropriate lower scales. From this step, we obtain
suitable extrapolation in some nodes on higher scale(s) which include the region of
element on this solved scale. In the next step, we calculate the same equation, but
on the following higher scale. At the same time, some nodes on this scale are strictly
derived from previous step. This idea is repeated until the highest scale is reached.

4. Conclusions

Advantage of this type of solution is the null requirement of results enumeration
on lower scales. Simultaneously, just results on last scale can be enumerated, whereas
results on the scale are derived from lower scales. The solution can be simplified by
this statement:
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If a position of a node for higher scale is in some region of a lower scale mesh,
then aδj−k

can be mapped directly to results on higher scale aδj
,
(
aδj−k

→ aδj

)
. Let

each node of element on some higher scale Eδj coincides with node in element on
lower scale Eδj−k . All contributions of higher scales aδj>1

to subgrid can be derived
from consequent mapping of aδ1 , aδ2 , . . . , aδj−1

to required aδj .

5. Summary

The weak solution of coupled stress-strain task with moisture/temperature de-
pendency of material model was obtained in this project. The subgrid upscaling
homogenization method for large scale hierarchical structure, which is typical for
wood structure, was used. Modified Ritz-Galerkin method for simple solution was
derived. The coefficient form of the PDE suitable for nowadays numerical solvers was
used ([5]). Suggested weak solution offers unique and relatively accurate solution of
large scale problems with dependency on low scale. The solution is very general and
slight modification of the approach allows solution of a lot of common tasks in the
field of bio-mechanics.
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