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SPACE-TIME ADAPTIVE hp-FEM:
METHODOLOGY OVERVIEW∗

Pavel Šoĺın, Karel Segeth, Ivo Doležel

Abstract

We present a new class of self-adaptive higher-order finite element methods
(hp-FEM) which are free of analytical error estimates and thus work equally well for
virtually all PDE problems ranging from simple linear elliptic equations to complex
time-dependent nonlinear multiphysics coupled problems. The methods do not con-
tain any tuning parameters and work reliably with both low- and high-order finite
elements. The methodology was used to solve various types of problems including
thermoelasticity, microwave heating, flow of thermally conductive liquids etc. In this
paper we use a combustion problem described by a system of two coupled nonlin-
ear parabolic equations for illustration. The algorithms presented in this paper are
available under the GPL license in the form of a modular C++ library HERMES1.

1. Introduction

Partial differential equations (PDEs) describe many physical processes whose pre-
diction and control are important to people. The most frequently used technique for
the numerical solution of PDEs is the finite element method (FEM). The origins of
this method are often associated with R. Courant [2] who solved numerically torsion
problems in cylinders, drawing on a large body of earlier results for PDEs developed
by Rayleigh, Ritz, and Galerkin. Since the 1940s, the method achieved a high degree
of maturity and also the computational standards have changed. Nowadays, the sig-
nificance of error control is greater than ever before, and the number of computations
where adaptive mesh refinement algorithms are employed is rising very quickly.

On the other hand, self-adaptive finite element methods for PDEs have been
studied by mathematicians for decades but so far, practitioners have been rather re-
luctant to use them. To understand why, note that every self-adaptive finite element
method is guided by an error estimator. With a suitable error estimator in hand,
the rest of automatic adaptivity (such as mesh refinement) is a purely technical mat-
ter. The current standard in computational PDEs are analytical error estimators –
mathematical formulae “on paper”. However, there is a very large number of such
formulae, often they contain simplifying assumptions, are restricted to numerical

∗This work was supported by grant 102/07/0496 of the Czech Science Foundation, grants
IAA100190803 and IAA100760702 of the Grant Agency of the Academy of Sciences of the Czech
Republic, Research Plan of the Academy of Sciences of the Czech Republic AV0Z10190503, and by
Research Center 1M4674788502 of the Ministry of Education, Youth, and Sports.

1See the home page of the HERMES project http://spilka.math.unr.edu/hermes/.
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methods of low order of accuracy, involve constants of unknown size, and/or include
problem-dependent parameters that need to be tuned. In general, analytical error
estimators are neither simple to use nor universal enough to cover a wide spectrum of
problems of interest to practitioners. One cannot use them efficiently without a deep
understanding of the underlying mathematics. From the point of view of a prac-
titioner whose expertise is elsewhere and who would like to solve PDEs routinely,
in order to obtain information that he or she needs for his research or application,
the cost of dealing with burdens associated with self-adaptive methods often is not
acceptable.

In this paper, we propose a way to circumvent this problem and make self-
adaptive computational methods easily accessible to the broad computational com-
munity. The main idea of our approach is to use universal, computational error
estimators that are motivated by modern embedded self-adaptive methods for ordi-
nary differential equations (ODEs). These ODE methods are highly popular among
engineers and practitioners due to their simplicity and universality: In every step,
the algorithm computes two approximations with different orders of accuracy, and
the error is estimated by their difference. Note that such error estimator is vir-
tually independent of the underlying equation. The key requirement for practical
applicability, however, is that the two approximations are computed efficiently. For
example, in embedded Runge-Kutta RK2(3) methods, one evaluates two stages to
obtain a second-order accurate approximation, and adds one more stage to obtain
an approximation that is third-order accurate. Hence, one only pays the cost of
a third-order method but also obtains a second-order error estimator.

The outline of the paper is as follows: In Sections 2 and 3 we present two tech-
niques which are essential for the space-time adaptive algorithms: conforming higher-
order approximation with arbitrary-level hanging nodes and the multimesh hp-FEM.
In Section 4 we present a universal adaptivity algorithm for higher-order finite ele-
ment methods. In Section 5 we extend this technique to time-dependent problems
by combining the multi-mesh FEM with the classical Rothe’s method. Example
application to a flame propagation problem is shown in Section 7.

2. Approximation with arbitrary-level hanging nodes

The efficiency and algorithmic simplicity of our adaptive higher-order finite ele-
ment algorithms is largely due to the technique of arbitrary-level hanging nodes [7].
When working with regular meshes (where two elements either share a common ver-
tex, common edge, or their intersection is empty), adaptivity often is done using the
red-green refinement strategy [1]. This technique first subdivides desired elements
into geometrically convenient subelements with hanging nodes and then it elimi-
nates the hanging nodes by forcing refinement of additional elements, as illustrated
in Fig. 1.

This approach preserves the regularity of the mesh at the price of producing ad-
ditional (forced) refinements and new degrees of freedom. Often, it creates elements

186



Element marked for refinement:
Additional refinements forced

Mesh after the "red" step: by the "green" step:

Fig. 1: Red-green refinement.

with sharp angles which, in general, are not desirable in finite element analysis.
The “green” refinements can be avoided by introducing hanging nodes, i.e., by

allowing irregular meshes where element vertices can lie in the interior of edges of
other elements. To ease the computer implementation, most finite element codes
working with hanging nodes limit the maximum difference of refinement levels of
adjacent elements to one (1-irregularity rule) – see, e.g., [3, 9]. In the following, by
k-irregularity rule (or k-level hanging nodes) we mean this type of restriction where
the maximum difference of refinement levels of adjacent elements is k. In this context,
k = 0 corresponds to adaptivity with regular meshes and k = ∞ to adaptivity with
arbitrary-level hanging nodes. It is illustrated in Fig. 2 that even the 1-irregularity
rule does not avoid all forced refinements:

Fig. 2: Refinement with 1-irregularity rule.

The amount of forced refinements in the mesh depends on the level of hanging
nodes allowed. Let us introduce a simple model problem which shows how the level
of hanging nodes influences the number of degrees of freedom and condition number
of the stiffness matrices: Consider a square domain Ω = (−1, 1)2 covered with a mesh
consisting of four cubic elements, as shown in Fig. 3.

We solve the Poisson equation −∆u = f in Ω with u = 0 on the boundary.
Assume a right-hand side f such that the corresponding exact solution u is zero
everywhere in Ω with the exception of a significant local perturbation contained
inside of a small triangle Tn with the vertices [−2−n,−2−n], [0, 0], [−2−n, 2−n]. Fig. 4
shows, for n = 5, meshes obtained under various irregularity rules:
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Fig. 3: Domain Ω and initial coarse mesh.

Fig. 4: Meshes obtained with k-irregularity rules, k = 1, 2, 3,∞.

Notice that the amount of forced refinements within the elements K2, K3, and K4

decreases as the parameter k grows. Next we run the adaptive procedure with cubic
elements for n = 1, 2, . . . , 15. Fig. 5 shows the number of degrees of freedom corre-
sponding to the final meshes. The horizontal axis represents the spatial scale 2−n.
Fig. 6 shows the condition number of the corresponding stiffness matrices.

These results demonstrate that the performance of automatic adaptivity with
arbitrary-level hanging nodes is superior to adaptivity on regular meshes, and even
to adaptivity with one-, two-, or three-irregular meshes. Obviously, quantitative
gains in the number of degrees of freedom and condition number of the stiffness
matrix depend on specific features of the solved problem. In our experience, the
advantages of the technique of arbitrary-level hanging nodes are most apparent in
problems containing curvilinear material interfaces or boundary/internal layers.

3. Multi-mesh hp-FEM

The basic ingredient for the self-adaptive finite element methods presented in
this paper is an algorithmic framework that allows us to work efficiently with var-
ious physical fields or various approximations of the same physical field defined on
geometrically and polynomially different meshes. The higher-order multi-mesh FEM
was first introduced in the context of linear thermoelasticity in [8], where the dis-
placement components u1, u2 and the temperature T were approximated on different
meshes equipped with independent adaptivity mechanisms.
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Fig. 5: Relation between the size of the stiffness matrix and the level k of hanging nodes
(k = 0, 1, 2, 3,∞).
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Fig. 6: Relation between the condition number of the stiffness matrix and the level k of
hanging nodes (k = 0, 1, 2, 3,∞).
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The main ideas of the multi-mesh hp-FEM are as follows: For the sake of pro-
gramming feasibility, we restrict ourselves to meshes derived from a common coarse
master mesh τm via sequences of mutually independent local refinements. The mas-
ter mesh τm is very coarse and often it is not even used for discretization purposes –
it serves as the top of a tree-like data structure which is utilized by the multi-mesh
assembling procedure. The situation is illustrated in parts A – D of Fig. 7. In part E
of Fig. 7 we also show the geometrical union of all meshes in the system that we call
union mesh and denote by τu.

Fig. 7: Example of a master mesh τm (left), meshes τ1, τ2, τ3 obtained by its refinements,
and the corresponding union mesh τu (right).

It is worth mentioning that the union mesh is never created physically in the
computer memory but its virtual elements are parsed by the element-by-element as-
sembling procedure as usual in higher-order finite element methods [10], and that
the multi-mesh FEM uses hanging nodes of arbitrary level (see [7], also available
as a preprint on-line2). This technique eliminates forced refinements and thus con-
tributes greatly to the modularity and efficiency of automatic adaptivity algorithms.
The multi-mesh FEM would work (less efficiently) also with one-level hanging nodes,
but not on regular meshes (due to possibly conflicting green refinements).

4. Adaptive hp-FEM with arbitrary-level hanging nodes

In contrast to standard adaptive FEM (h-FEM), automatic adaptivity in the
hp-FEM requires more information about the behavior of the error in element in-
teriors (see, e.g., [3, 4, 10] and the references therein). Some authors investigate
numerically the analyticity of the solution in every element in order to decide be-
tween p- and h-refinement [4]. Such approach uses two refinement candidates per
element, as illustrated in Fig. 8 (the numbers in elements stand for their polynomial
degrees). According to our experience, at least for elliptic problems this strategy
yields exponential convergence.

We prefer a different approach where more refinement candidates are considered,
as shown in Fig. 9.

Typically, we vary the polynomial degrees in the subelements by two, which
for a triangular element yields 34 = 81 h-refinement candidates. The strategy was
described in detail in [7]. Since in the latter case every refinement candidate can be

2http://www.math.utep.edu/preprints/2006/2006-07.pdf
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Fig. 8: hp-adaptivity with two refinement candidates (p and h refinement).

Fig. 9: hp-adaptivity with multiple refinement candidates.

reproduced using several steps with the pair of candidates of the former strategy, it
is not surprising that usually the convergence curves are almost identical when error
is plotted as a function of the number of degrees of freedom. However, according to
our experience, computations with the latter approach usually take less CPU time
since fewer adaptivity steps are needed and thus the discrete problem is solved less
frequently. This is illustrated in Fig. 10.

Obviously, the latter strategy requires even more information about the error than
the level of its analyticity. In order to select an optimal refinement candidate, we need
to know the approximate shape of the error function εh,p = u−uh,p. In principle, this
information could be recovered from suitable estimates of higher derivatives of the
solution, but such approach is not very practical and it has not been used by anyone
to our best knowledge. In practice, we employ the technique of reference solutions [3].
The reference solution uref is sought in an enriched finite element space Vref , and
the error function is approximated as εh,p ≈ uref − uh,p. The reference space Vref is
constructed in such a way that all elements in the mesh are subdivided uniformly and
their polynomial degree is increased, i.e., Vref = Vh/2,p+1. The method for selecting
the optimal refinement candidate will be described in the following.

4.1. Element-by-element adaptivity algorithm

With an a-posteriori error estimate of the form

εh,p ≈ uref − uh,p, (1)

the outline of our hp-adaptivity algorithm is as follows:

1. Assume an initial coarse mesh τh,p consisting of (usually) quadratic elements.
Besides other technical data, user input includes a prescribed tolerance
TOL > 0 for the H1-norm of the approximate error function (1) and the
number DDOF of degrees of freedom to be added in every hp-adaptivity step.
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Fig. 10: Illustration of performance of adaptivity schemes with two refinement candidates
per element (simple) and multiple candidates per element (ortho). The horizontal axis
shows the number of DOF (top) and CPU time (bottom).

2. Compute coarse mesh approximation uh,p ∈ Vh,p on τh,p.

3. Find reference solution uref ∈ Vref , where Vref is obtained by dividing all
elements and increasing the polynomial degrees by one.

4. Construct the approximate error function (1), calculate its norm

ERR2
i = ‖εh,p‖2

1,2

on every element Ki in the mesh, i = 1, 2, . . . ,M . Calculate the global error,

ERR2 =
M∑
i=1

ERR2
i .
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5. If ERR ≤ TOL, stop computation and proceed to postprocessing.

6. Sort all elements into a list L according to their ERRi values in decreasing
order.

7. While the number of newly added degrees of freedom in this step is less than
DDOF do:

(a) Take the next element K from the list L.

(b) Perform hp-refinement of K (to be described in more detail in Para-
graph 4.2). Note that the refinement of K may introduce new hanging
nodes on its edges, but the surrounding mesh elements are not affected.

8. Adjust polynomial degrees on unconstrained edges (edges without hanging
nodes, cf. [10]) using the minimum rule (every unconstrained edge is assigned
the minimum of the polynomial degrees on the pair of adjacent elements).

9. Continue with step 2.

4.2. Selection of optimal hp-refinement of an element

Let K ∈ τh,p be an element of polynomial degree pK that was marked for re-
finement. Without loss of generality, assume that K is a triangle, the procedure
for refinement of quadrilateral elements is analogous. We consider the following
Nref = k + (k + 1)4 refinement options, where k ≥ 0 is a user input parameter:

1. Increase the polynomial degree of K by 1, 2, . . . , k without spatial subdivision.
This yields k refinement candidates.

2. Split K into four similar triangles K1, K2, K3, K4. Define p0 to be the integer
part of pK/2. For each Ki, 1 ≤ i ≤ 4 consider k + 1 polynomial degrees
p0 ≤ pi ≤ p0 + k. This yields additional (k + 1)4 refinement candidates. In
this case, edges lying on the boundary of K inherit the polynomial degree pj

of the adjacent interior element Kj. Polynomial degrees on interior edges are
determined using the minimum rule.

For each of these Nref options, we perform a standard H1-projection of the reference
solution uref onto the corresponding vector-valued piecewise-polynomial space on
the refinement candidate. The candidate with minimum projection error relative to
the number of added degrees of freedom is selected.

Note that if the technique of arbitrary-level hanging nodes is not in effect, hp-
refinements involving spatial subdivision can be more costly than p-refinement candi-
dates, since the latter never cause forced refinements. If the selection of the optimal
element refinement is done locally, i.e., without taking the forced refinements into
account, the hp-adaptive algorithm may make wrong decisions.
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5. Space-time adaptive hp-FEM

Our space-time adaptive algorithm is based on a combination of the multi-mesh
hp-FEM presented in Section 3 with Rothe’s method. Rothe’s method is a natural
counterpart of the more widely used Method of Lines (MOL). While MOL preserves
the continuity in time and discretizes the spatial variable, yielding a system of ODEs
in time, Rothe’s method preserves the continuity of the spatial variable while dis-
cretizing time, which leads to one or more PDEs in space per time step. The actual
number of these PDEs is proportional to the order of accuracy of the time discretiza-
tion method. For example, the implicit Euler method yields one PDE in space per
time step. Note that Rothe’s method is fully equivalent to the MOL if no adaptivity
takes place. However, in contrast to MOL, Rothe’s method provides an excellent op-
portunity to exploit spatially adaptive algorithms in the context of time-dependent
problems.

Let us illustrate the space-time adaptive algorithms on a simple example of a par-
abolic heat transfer equation of the form

∂u

∂t
−∆u = f. (2)

Note that the methodology is not restricted to linear parabolic problems as will be
shown in Section 7. When applying the backward Euler method to (2), we obtain

∂u

∂t
≈ un+1 − un

∆t
⇒ −∆t∆un+1 + un+1 = un + ∆tfn+1. (3)

If we choose to use a second-order accurate backward differentiation formula instead,
we obtain

∂u

∂t
≈ 3un+2 − 4un+1 + un

2∆t
⇒ −2∆t∆un+2 + 3un+2 = 4un+1 − un + 2∆tfn+2. (4)

Note that equations (3) and (4) contain spatial derivatives only, and can therefore
be solved using the spatially-adaptive algorithm which was described in Section 4.

Application of the multi-mesh hp-FEM

The approximation un on the right-hand side of (3) is defined on a locally refined
mesh that was constructed using an adaptive process during the previous time step.
The unknown approximation un+1 corresponding to the end of the current time step
is obtained using a new adaptive process that starts from some coarse mesh. Thus in
every step of the adaptive algorithm, assembling is done over two different meshes.
While the mesh for un remains the same during the adaptivity process, the mesh for
un+1 changes after each refinement step. Assembling over different meshes is done
using the multi-mesh technology which was described in Section 3. At the end of
the current time step, un+1 is defined on a new locally refined mesh that is different

194



from the mesh for un – it is finer in some regions and coarser in others. This effect
can be seen as simultaneous mesh refinement and coarsening between time steps. In
every time step, the adaptivity process stops when a prescribed accuracy in space is
reached. The stopping criterion is related to the norm of the difference between the
reference and coarse mesh solutions, as described in Section 4. Adaptive selection of
the time step is a simple matter and one can use standard ODE methods to do that.
The process will be illustrated on a flame propagation problem in Section 7.

In practice, the initial mesh for un+1 is either chosen to be the master mesh
(coarsest mesh in the multi-mesh hierarchy, see Section 3), or we take off the last
one or two refinement layers from the final mesh for un, and start from there. The
former approach yields a sequence of meshes which is more optimal from the point
of view of the number of DOF used but the computation is longer. On the other
hand, the latter one is faster but the final mesh for un+1 may contain some local
refinements which are due to un and not needed for un+1. As a consequence, one
may need more DOF to obtain un+1 on the desired level of accuracy. In our opinion,
the latter approach is preferable for practical computations where CPU time matters.
The former one can be used for presentation purposes, such as producing videos of
meshes evolving in time, etc. The situation is similar for the second-order backward
differentiation formula (4), where we need to assemble simultaneously more than
three different meshes.

6. Adaptive control of time step

A simple strategy for adaptive time step control was introduced by Valli et al. [11].
Their PID controller is based on the relative changes of a suitable indicator variable
(temperature, concentration, turbulent kinetic energy, eddy viscosity etc.) and can
be summarized as follows:

1. Compute the relative changes of the chosen indicator variable u

en =
||un+1 − un||
||un+1|| .

2. If they are too large (en > δ), reject un+1 and recompute it using

∆t∗ =
δ

en

∆tn.

3. Adjust the time step smoothly to

∆tn+1 =

(
en−1

en

)kP
(

TOL

en

)kI
(

e2
n−1

enen−2

)kD

∆tn.
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4. Limit the growth and reduction of the time step so that

∆tmin ≤ ∆tn+1 ≤ ∆tmax, m ≤ ∆tn+1

∆tn
≤ M.

The default values of the PID parameters as proposed by Valli et al. [11] are

kP = 0.075, kI = 0.175, kD = 0.01.

Unlike in the case of adaptive time-stepping based on the local truncation error,
there is no need to compute an extra solution with a different time step. Hence,
the cost of the feedback mechanism is negligible. The method has been used with
favorable results by various researchers including [6].

7. Example: A flame propagation problem

We consider a freely propagating laminar flame and its response to a heat-
absorbing obstacle represented by a set of cooled parallel rods with a rectangular
cross-section. The domain Ω is shown in Fig. 11.

Γ2

Γ1

Γ2

3

3Γ

Γ

Γ3

3Γ

Γ3

Γ3

2Γ

Γ2

Γ2

Ω

Fig. 11: Computational domain for the flame propagation problem.

The domain has dimensionless length l = 60 and width w = 16. The narrow part
has width w/2, length l/4, and starts at l/4 from the left end point.

We use a low Mach number laminar flame propagation model taken from [5]
which assumes that the motion of the fluid is independent from the temperature and
species concentration. The flow velocity in the burner is considered to be zero. The
model consists of a system of two coupled nonlinear parabolic equations

∂θ

∂t
−∆θ = ω(θ, Y ) in Ω× (0, T0),

∂Y

∂t
− 1

Le
∆Y = −ω(θ, Y ) in Ω× (0, T0)

for the dimensionless temperature θ, 0 ≤ θ ≤ 1, and dimensionless concentration Y ,
0 ≤ Y ≤ 1. The dimensionless time T0 = 60. The goal of the computation is accurate
resolution of the nonstationary reaction rate (flame intensity) ω(θ, Y ) which is defined
by the Arrhenius law

ω(θ, Y ) =
β2

2Le
Y exp

β(θ − 1)

1 + α(θ − 1)
. (5)
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Here, Le = 1 is the Lewis number (ratio of diffusivity of heat and diffusivity of mass),
α = 0.8 the gas expansion coefficient in a flow with nonconstant density, and β = 10
the dimensionless activation energy.

On the left boundary edge Γ1, Dirichlet boundary conditions corresponding to
the burnt state are prescribed, i.e.,

θ = 1 in Γ1 × (0, T0),

Y = 0 in Γ1 × (0, T0).

The remaining part Γ2 of the boundary is assumed adiabatic with the homogeneous
Neumann conditions

∂θ

∂ν
= 0 in Γ2 × (0, T0),

∂Y

∂ν
= 0 in Γ2 × (0, T0).

The absorption of heat along Γ3 is modeled via Newton boundary conditions with
a heat loss parameter k = 0.1,

∂θ

∂ν
= −kθ in Γ3 × (0, T0),

∂Y

∂ν
= 0 in Γ3 × (0, T0).

As the initial condition, we prescribe the analytical solution of a one-dimensional
model [5]:

θ(0, x1) =

{
1 for x1 < x∗,
exp(x∗ − x1) for x1 ≥ x∗

(6)

and

Y (0, x1) =

{
0 for x1 < x∗,
1− exp(Le(x∗ − x1)) for x1 ≥ x∗

(7)

with x∗ = 9.

Figs. 12–14 show the reaction rate ω(Y, θ) and the underlying hp-FEM meshes
for three different time instants t1, t2, t3. The numbers inside elements indicate their
polynomial degrees. Notice that very small elements on the flame front are adja-
cent to very large elements. This is possible due to the technique of arbitrary-level
hanging nodes [7]. For problems with sharp fronts or curvilinear material interfaces,
this technique saves large amount of degrees of freedom which otherwise would be
needed to keep the mesh regular. Movies showing the dynamical evolution of ω(Y, θ)
along with the corresponding hp-FEM meshes for this problem can be found at
http://spilka.math.unr.edu/gallery/.
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Fig. 12: Reaction rate and higher-order finite element mesh at time t1.

Fig. 13: Reaction rate and higher-order finite element mesh at time t2.
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Fig. 14: Reaction rate and higher-order finite element mesh at time t3.
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