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MODELLING OF MULTICOMPONENT DIFFUSIVE PHASE
TRANSFORMATION IN SOLIDS∗

Jǐŕı Vala

Abstract

Physical analysis of phase transformation of materials consisting from several (both
substitutional and interstitial) components, coming from the Onsager extremal ther-
modynamic principle, leads, from the mathematical point of view, to a system of
partial differential equations of evolution type, including certain integral term, with
substantial differences in particular phases (α, γ) and in moving interface of finite
thickness (β), in whose center the ideal liquid material behaviour can be detected.
The numerical simulation of this process in MATLAB is able to explain some phe-
nomena (e.g. the interface velocity as a function of temperature) better than known
simplified models assuming the sharp interface and additional boundary and transfer
conditions.

1. Introduction

The simulation of diffusional phase transformation requires to solve the coupled
problem of bulk diffusion and interface migration. Most models pay attention es-
pecially to binary (two-component) alloys with substitutional components – cf. [1]
and [6]. Usually the interface is assumed to be sharp (in other word: its thickness
is supposed to be negligible), thus some artificial boundary and transfer conditions
have to be applied at the interface, as e.g. the ortho- or para-equilibrium contact con-
ditions for a multi-component model in [10]. However, a real migrating interface of
finite thickness h may drag segregated impurity atoms forming concentration profiles
across the interface. Such a local diffusion process reduces the migration velocity v
due to the Gibbs energy dissipated by this process; this decelerating effect is known
as solute drag. In this paper we shall consider alloys with a finite number (at least
two) of components. In [11], following some ideas of [8], coming from the Onsager
extremal thermodynamic principle (derived originally in [7], for more details and var-
ious generalizations see [5]), the steady-state diffusion of solute across the interface is
driven by the difference of chemical potentials µ(c?), corresponding to the vector c?

of mole fractions (as concentrations characteristics) related to all q substitutional
components, e.g. c? = (c1, . . . , cq); since c1 + . . . + cq = 1, it is useful to introduce
c = (c1, . . . , cq−1), too. As discussed in [2], at least for the steady-state case this
approach gives identical results with the solute drag formula proposed in [4]. In [15]
the same approach is generalized to admit the evolution of molar fractions in time

∗This work was supported by grant No. IAA200410601 of the Academy of Sciences of the Czech
Republic.
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and the presence of r interstitial components; consequently c? = (c1, . . . , cq, . . . , cq+r)
and c = (c1, . . . , cq−1, cq+1, . . . , cq+r). Nevertheless, [15] shows only one practical ex-
ample of such evolution near the initial time; the algorithm suggested in this paper
handles also slow long-time redistributions.

All material characteristics (chemical potentials, diffusion factors, interface mo-
bility) should correspond to a material structure where usual lengths are in micro-
meters; moreover, the usual interface thickness can be 10−10 m. Consequently, it is
not easy to identify such characteristics in the laboratory. This is the first reason
for the one-dimensional formulation of the problem in this paper, the second one
is the requirement of simple, transparent and reader-friendly notations; some useful
generalizations will be sketched in concluding remarks. For certain material sample
of length H, in addition to c? and c it is useful to introduce vectors of diffusive fluxes
j? = (j1, . . . , jq, . . . , jq+r) where j1 + . . . + jq = 0. We shall study the redistribution
of c and j in an arbitrary positive time t in a closed system with j(.) = 0 at the
boundary (consisting of two points, whose distance is H). Such system requires no
additional boundary conditions; we need only to know all initial values c for t = 0.
If x refers to the standard Cartesian coordinate system and v is positive for the
interface motion from the left to the right we can localize the interface (for x) into
the interval 〈0, h〉 and the exterior boundary of a sample into two points

xL(t) = xL(0)−
∫ t

0
v(ς) dς xR(t) = xR(0)−

∫ t

0
v(ς) dς ;

clearly xR(t) − xL(t) = H and j(xL) = j(xR) = 0 for any t. Finally we have the
first phase, denoted in all following considerations by α, for x < 0, separated from
the second phase, denoted by γ, for x > h, by the phase interface, denoted formally
by β, for 0 ≤ x ≤ h.

If the dot symbol denotes the partial derivative with respect to t and the prime
symbol the partial derivative with respect to x then we are able to calculate the total
time derivative of a variable u as du/dt = u̇ − vu′. Namely the mass conservation
law for the constant molar volume Ω reads

dc?/dt + Ωj?′ = ċ? − vc?′ + Ωj?′ = 0 ; (1)

the integration of (1) from xL to xR, making use of the new notation

C?(x, t) =
∫ x

0
c?(ξ, t)dξ ,

then yields
Ċ?(xR)− Ċ?(xL)− v(c?(xR)− c?(xL)) = 0 . (2)

In the second section of this paper we shall sketch the physical background of
the diffusive and massive phase transformation, applying the Onsager arguments. In
the third section the derived system of equations for an unknown field c (because
both j and v can be identified with certain functions of c) will be analyzed with the
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aim to construct an effective algorithm searching for its approximate solution. The
fourth section will demonstrate new numerical results for a special Fe-rich
3-component Fe-Cr-Ni alloy. The last section is reserved for concluding remarks and
possible generalizations in several directions.

2. Physical background

Let us consider a closed system with the simple geometry, introduced above.
Every index in all following relations can be understood as a sum index in sense of
the Einstein rule; only an underlined index prohibits summation. Let i be an arbi-
trary index from 1, . . . , q + r and f an arbitrary index from {α, β, γ} The chemical
potential µi(x, c?) can be evaluated at every point of the sample as

µi(x, c?) = wf (x)µf
i (c

?) , (3)

making use of some reasonably continuous weight functions wf (x), having the prop-
erties

wα(x) = 1 , wγ(x) = 0 if xL < x < h/2 ,
wα(x) = 0 , wγ(x) = 1 if h/2 < x < xR ,
wβ(x) = 1− wα(x)− wγ(x) if xL < x < xR .

The well-known Gibbs-Duhem relation, formulated e.g. in [9], yields

ci
dµf

i

dt
= 0 , ciµ

f ′
i = 0 . (4)

The total Gibbs energy of the system is given by

G =
1

Ω

∫ xR

xL

ciµi dx .

Its time derivative can be expressed as

dG

dt
=

1

Ω

∫ xR

xL

(
dci

dt
µi + ci

dµi

dt

)
dx .

Inserting µi into the second additive term from (3) and integrating by parts, we
obtain

dG/dt =
1

Ω

∫ xR

xL

(
dci/dt µi + ciw

fdµf
i /dt− vci(w

fµf
i )
′ + vciw

fµf ′
i

)
dx .

By (4) the second and fourth additive terms vanish, moreover wf = 1 for any f ∈
{α, γ} if x ≤ 0 or x ≥ h, thus we come to the result

dG/dt =
1

Ω

∫ xR

xL

dci/dt µi dx− v

Ω

∫ h

0
ciµ

′
i dx .
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By (1), integrating by parts for a closed system again, we have finally

dG/dt =
∫ xR

xL

jiµ
′
i dx− v

Ω

∫ h

0
ciµ

′
i dx . (5)

The rate of dissipation Q of the total Gibbs energy can be evaluated by [13] in the
form

Q =
∫ xR

xL

j2
i

Ai

dx +
v2

M
(6)

where

Ai =
ciDi

ΩRT
, (7)

Di is the tracer diffusion coefficient, R is the gas constant, T is the absolute temper-
ature and M is the interface mobility.

The kinetics of our system corresponds to the variation

δ
(
dG/dt +

Q

2

)
(j?, v) = 0

with respect to the above mentioned constraint for substitutional components: if k is
an index similar to i, but from {1, . . . , q} only, then we can write

δ
(
dG/dt +

Q

2
+ λδkk

)
(j?, v, λ) = 0

with certain Lagrange multiplier λ, but without any additional constraints; all δ with
a couple of indices, here and everywhere later, refer to Kronecker symbols. To support
the brief notation, let us introduce the component type factor ai, equal to 1 for
i ≤ q, zero otherwise. Performing the variation, step by step, for j1, . . . , jq, . . . , jq+r,
v and λ, we obtain

∫ xR

xL

(
j̃iµ

′
i +

j̃iji

Ai

+ j̃iaiλ

)
dx = 0

for every j̃i,

− ṽ

Ω

∫ h

0
ciµ

′
i dx +

ṽ v

M
= 0

for every ṽ and formally also λ̃jiai = 0 for every λ̃. In this way we come to q + r
differential equations

µ′i +
ji

Ai

+ λai = 0 (8)

with a parameter λ for all both substitutional and interstitial components and to
one integral equation

v =
Ω

M

∫ h

0
ciµ

′
i dx (9)
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for the interface velocity. It is not difficult to remove λ from (8): multiplying (8)
by Ai and summing results with non-zero ai, we have

δkkAkλ = −Akµ
′
k − δkkjk = −Akµ

′
k

and consequently

λ = −Akµ
′
k

δllAl

where l is a sum index with the same properties as k. This enables us to evaluate
all fluxes as

ji = −Ai

(
µ′i − ai

Akµ
′
k

δllAl

)
; (10)

let us notice that we have
δkkjk = δiiaiji = 0

and consequently the system of q + r equations (8) can be reduced to the system of
q − 1 + r equations.

For practical calculations we need to express ji by means of (10), (7) and (3); it
is useful to introduce the decomposition

µf
i (c

?) = µf
0i + RT ln ci + ϕf

i (c
?) (11)

where µf
0i are constants for a given temperature T and ϕf

i are certain functions of c?

(usually not dominant, but non-negligible and formally complicated). Inserting this
decomposition together with (10) into (8), after rather long calculations, performed
in [15], p. 75, we are able to evaluate

NΩj = −Bc′ −Kc (12)

where B, K (functions of c) and N (dependent on x only) are square matrices of order
q−1+r, B full one, K and N diagonal ones, of the following material characteristics:

Bmn = δmn +
cm (ζq − ζn)

η
+

ϕmn − ϕmn

RT
, Kmm =

µm

RT
, Nmm =

1

ζmD
;

here m or n refer (instead of i) to a sum index from {1, . . . , r−1, q+1, . . . , q+r} and
moreover ζi = Di/D for some (non-zero) reference value D of the tracer diffusion
coefficient, η = ζici and

ϕmn = ϕ̂mn − aman
ζlcl

η
ϕ̂ln , µm = µ̂m − am

ζlcl

η
µ̂l

with µ̂m = wf ′
(
µf

0m + ϕf
m

)
and ϕ̂mn = wf∂ϕf

m/∂cn. For any variable u let us

introduce the simplified notation u¦ = u(0), uL = u(xL) and uR = u(xR). Then,
integrating (1) from 0 to x, omitting cq and jq, we receive

Ċ − v(c− c¦) + Ω(j − j¦) = 0 . (13)
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In particular, subtracting (13) with x = xR and x = xL,

ĊR − v(cR − c¦)− Ωj¦ = 0 , ĊL − v(cL − c¦)− Ωj¦ = 0 , (14)

we have only a formal modification of (2)

ĊR − ĊL − v(cR − cL) = 0 , (15)

but inserting (12) into (13), we obtain a new result

−NĊ + Bc′ + (K + vN)c = vNc¦ −NΩj¦ . (16)

3. Mathematical formulation and computational algorithms

We suppose that all values of molar fractions c are prescribed for t = 0. For their
initial time derivatives we usually have no better information than ċ = 0, thus also
Ċ = 0 and j¦ = 0 from (14). Let us also notice that C can be computed as integrals
of c−ca instead of c, using arbitrary reference constant admissible molar fractions ca.
Our problem is to find c from (16) with v inserted from (9). For a priori known B, K
and v and also xL, to solve (16) numerically (to construct a sequence of approximate
solutions, whose limit could be expected to coincide with the solution of (16)) means
to discretize (16) in time; this can be done by means of the Euler implicit scheme

Bc′ + (K + vN)c−N
C

τ
= vNc¦ −NΩj¦ −N

C×

τ
(17)

where τ denotes the time step and all variables are evaluated in time t, except
C× = C(t − τ). (The application of more advanced schemes of discretization in
time instead of (17) is possible, but leads to rather complicated forms of following
equations.) To obtain a system of linear algebraic equations, we have to apply
the discretization in 〈xL, xR〉, too. In practice only some estimates of all material
characteristics B and K, of the interface velocity v and of the boundary position xL

(then clearly xR = xL + H) are available, usually those from the previous time step,
thus (17) forms a basis for an iteration procedure where v can be recalculated from (9)
using the Simpson rule; also the evaluation of C needs some numerical integration.

Let us consider a sufficiently large fixed interval I, containing 〈xL, xR〉, decom-
posed to a finite number σ of subintervals 〈xs−1, xs〉, using σ+1 nodes x0, x1, . . . , xσ.
Then we can write (17) in the form

B
s cs

∆s

+
(
K

s
+ vN

s
) cs

2
−N

s ∆sc
s

2τ
(18)

= B
s cs−1

∆s

−
(
K

s
+ vN

s
) cs−1

2
+ vN

s
c¦ −N

s
Ωj¦ −N

s 2(C×s − Cs−1)−∆sc
s−1

2τ

where an integer s refers to the s-th node in I (values at xL and xR, in general not
identical with any xs, are interpolated), ∆s = xs−xs−1 and overlined s-indexed sym-
bols refer to averaged values on 〈xs−1, xs〉. Let us notice that c¦ coincides always with
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some element of the set {c0, c1, . . . , cσ}. Our aim is to study the long-time behaviour
of a system, thus it is useful to take sufficiently small ∆s in comparison with τ . We
would like to solve c0, c1, . . . , cs, . . . effectively, step by step, but this is impossible
because of unknown values c¦ and j¦ (the system of linear algebraic equation is not
triangular). However, we shall show that this difficulty can be overcome: the main
idea will be demonstrated on (17), its formal implementation into (18) will be left
to the reader. Let c¦e be some estimate of c¦ (from the preceding iteration, if not
available yet then from the previous time step). Let us consider c¦m = ξI

mc¦em and

j¦m = ξII
mvc¦em for some positive real 2(q − 1 + r) factors ξI

m and ξII
m. We are allowed

to seek for molar fractions c in the form c = c¦ + c̃ where c̃m = c̃O
m + ξI

mc̃I
m + ξII

m c̃II
m.

Then (17) degenerates to

Bc̃′ + Kc̃ + vNc̃−N
C̃

τ
= FO + ξIF

I + ξIIF
II

with C̃ integrated from c̃ (for comparison: C is integrated from c− ca) and with

FO = N
C× − cax

τ
, F I =

(
N

x

τ
−K

)
c¦e , F II = −NΩvc¦e .

Thus we are able to solve all c̃O, c̃I and c̃II separately (which is very simple) and just
at the end to calculate ξI and ξII (q − 1 + r)-times from the system of two linear
algebraic equations

[
C̃LI

m /τ − vc̃LI
m + c¦emxL/τ C̃LII

m /τ − vc̃LII
m

C̃RI
m /τ − vc̃RI

m + c¦emxR/τ C̃RII
m /τ − vc̃RII

m

]
·
[

ξI
m

ξII
m

]
=

[
−C̃LO

m /τ + vc̃LO
m + CL×

m /τ + ca
mxL/τ

−C̃RO
m /τ + vc̃RO

m + CR×
m /τ + ca

mxR/τ

]
.

The above sketched algorithm have been tested with the support of standard
MATLAB environment. No special packages were needed, except the toolbox sym-
bolic, referring to the core of MAPLE. Typically the material description for one
calculation, generated for a fixed temperature of phase transformation, contain thou-
sands of instructions; the most complicated are the expressions for chemical poten-
tials in particular phases, especially their nonlinear parts, occurring as the last ad-
ditive terms in the decomposition (11). Open questions are both in the theory of
existence of solutions c and v and in the convergence of all algorithms. Some modi-
fications of such algorithms, namely the application of higher-order Hermite splines
(in the approximation of both unknown molar fractions and material characteris-
tics) and of the spectral analysis in the phases α and γ, far from the interface, where
nearly exponential distributions of molar fractions can be expected, are discussed
in [15], p. 79.

The rather complicated non-local integro-differential character of the problem
does not admit the application of some transparent homogenization technique. More-
over, the identification of material characteristics, included in B, K and N , is very
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complicated; consequently it is not clear how to formulate and study the inverse prob-
lems (formulation of all chemical potentials and diffusion factors, generating B, K
and N , and setting the interface mobility M , the interface thickness h, etc., from ex-
perimental results for c(x, t) at some set of fixed guaranteed temperatures) correctly.
Most material characteristics can be classified as a semi-empirical ones, based both
on some physical considerations and on the extensive experimental study, unfortu-
nately not covering all mole fractions of particular components between 0 and 1.
Moreover no physical barrier is incorporated into our system of equations to pre-
vent negative or other non-realistic mole fractions; very different quantitative values
of some characteristics, namely of the interface mobility M , can be found in the
literature, too.

4. Numerical example

The numerical example, presented in this paper, makes use of the same source
of quantitative material data as [14] from the Montanuniversität Leoben (Austria)
and from the Institute of Physics of Materials of the Czech Academy of Sciences in
Brno. We have the purely substitutional three-component Fe-Cr-Ni system; in our
notation q = 3 and r = 0, moreover Fe will be dominant.

The tracer diffusion coefficients can be interpolated using the formula

lnDk = wf lnDf
k ,

thus it is sufficient to set nine values Df
k . In general we have

Df
k = D

f

k0 exp

(
−Ef

RT

)
, M = M0 exp

(
− E?

RT

)
.

The applied constants are for Cr (corresponding to k = 1) Dα
10 = 0.00032 m2 s−2,

Dβ
10 = 0.00022 m2 s−2, Dγ

10 = 0.00035 m2 s−2, for Ni (k = 2) Dα
20 = 0.000048 m2 s−2,

Dβ
20 = 0.000022 m2 s−2, Dγ

20 = 0.000035 m2 s−2, for Fe (k = 3) Dα
30 = 0.00016 m2 s−2,

Dβ
30 = 0.00011 m2 s−2, Dγ

30 = 0.00007 m2 s−2, and for all components Eα = 240000
Jmol−1, Eβ = 155000 Jmol−1, Eγ = 286000 J mol−1, E? = 140000 Jmol−1; it
remains to set only M0 = 0.00041 m2 s kg−1.

Three figures show the time-variable distributions of c1 and c2. The interface
thickness is h = 5 · 10−10 m, the sample length H = 10−4 m. From the originally
constant mole fractions c1 = 0.001 and c2 = 0.019 (consequently c3 = 0.980) in all
phases due to the phase transformation driven by changes in chemical potentials, the
time development from t = 0 to t = 70000 s leads to qualitative new distributions.
All figures make use of the same computational results at various scales: Fig. 1 shows
Cr and Ni (strongly nonlinear) mole fractions inside the interface, Fig. 2 documents
different behaviour of Cr and Ni components near the interface, Fig. 3 demonstrates
quasi-constant distributions with seemingly sharp interface, whose physically trans-
parent macroscopic description is not available. The numbers of particular curves
from {1, . . . , 7} (quite omitted in Fig. 1, somewhere hardly recognizable even for
larger scales) refer to t ∈ {10000, . . . , 70000} s.

214



−2 −1 0 1 2 3 4 5 6 7

x 10
−10

1

2

3

4

5

6

x 10
−3 Cr distribution

x[m]

m
ol

e 
fr

ac
tio

n[
−

] i
n 

tim
e 

<
0,

7.
10

4 s>

−2 −1 0 1 2 3 4 5 6 7

x 10
−10

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

Ni distribution

x[m]

m
ol

e 
fr

ac
tio

n[
−

] i
n 

tim
e 

<
0,

7.
10

4 s>

Fig. 1: Nano-scale distribution of Cr and Ni inside the interface.
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Fig. 2: Meso-scale distribution of Cr and Ni near the interface.
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Fig. 3: Larger-scale observable distribution of Cr and Ni.
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5. Conclusions and generalizations

In our numerical example we have seen the typical non-stationary behaviour
of one special Fe-rich Fe-Cr-Ni substitutional system, described by (16) and (9),
with respect to the physical limitations (a finite closed system, interface of con-
stant thickness, substitutional components). However, the created software has been
tested for more classes of problems of practical importance. In [14] the stationary
solver was applied to the Fe-rich Fe-Cr-Ni substitutional system with various types
of chemical potentials and values of material characteristics, which may be rather
uncertain in practice, namely in case of the interface mobility and thickness; further
numerical simulations has been done also for the similar system with the interstitial
C-component and for the binary Al-Mg system yet. For every fixed interface thick-
ness h the numerical simulations show that the interface velocity v decreases with
the increasing temperature T ; finally the phase transformation stops at certain crit-
ical temperature. This critical temperature increases with the increasing interface
thickness h; the limit case h → 0 returns the (less realistic) results for an idealized
sharp interface. The simulation of the massive γ → α transformation shows that the
existence of the solute drag in the interface influences the contact conditions at the
interface allowing the massive transformation to occur also in the two-phase region.
By choosing α and γ as identical phases and by imposing fluxes to the interface (grain
boundary), diffusion induced grain boundary motion was simulated. The interface
and grain boundary Gibbs energy were calculated; their realistic values support the
responsibility of the model.

Both theoretical and experimental works yield that the diffusion in multi-com-
ponent alloys can be characterized by three attributes: a) the vacancy mechanism
for “slowly” diffusing substitutional components, b) the existence of certain sources
or sinks of vacancies, c) the “quick” motion of atoms of interstitial components. In
our description only the attributes a) and c) have been incorporated properly; the
attribute b) should be involved using the detailed analysis [11], referring to [3]. An-
other important research direction is to admit more complicated thermal processes.
This forces (from the point of view of the Onsager relation) coupling of various
fluxes, namely the particle flux due to a temperature gradient (Soret effect) and the
transport of heat due to a concentration gradient (Dufour effect); more information
is contained in [12]. Still another direction of possible generalizations leads to two-
or three-dimensional simulations. Up to now, such computations suffer from the
lack of reasonable material data; nevertheless, an introductory discussion is included
in [15], p. 85.
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