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DETERMINISTIC AND STOCHASTIC MODELS OF DYNAMICS
OF CHEMICAL SYSTEMS∗

Tomáš Vejchodský, Radek Erban

1. Introduction

The deterministic and stochastic models are two principal approaches for model-
ing of the dynamics of the chemical reactions. The deterministic models are usually
based on differential equations for concentrations (or amounts of molecules) of par-
ticular chemical species whereas the stochastic simulation algorithms (SSA) use the
pseudorandom number generators. Of course, different realizations of the SSA dif-
fer from each other, but a mean value over many realizations is a well reproducible
quantity which describes the average behavior of the system.

In this paper, we examine an example motivated by chemical processes in living
cells. In this example, we observe qualitatively different behaviors of the determinis-
tic and stochastic models. Namely, the solution of the deterministic model converges
to a stationary state while the stochastic solution exhibits an oscillatory character.
This discrepancy is caused by the fact that the deterministic model is inexact if the
number of molecules of a chemical species is too small. In this case, the more accu-
rate stochastic model should be used. However, the disadvantage of the stochastic
approach lies in its high computational cost. We show that certain quantities ob-
tained from the SSA can be computed as solutions of deterministic partial differential
equations which is much less computationally intensive.

2. Chemical system with SNIPER bifurcation

The chemical processes in cells often exhibit saddle-node infinite period (SNIPER)
bifurcation, see for example the model of the cell cycle regulation [3]. The following
simple system of seven chemical reactions exhibits the same behavior. We consider
two chemical species X and Y in a well-mixed reactor of volume V which are subject
to the following reactions

∅ k1d−→ Y
k2d−→ X

k3d−→ ∅ 2X
k4d−→←−
k5d

3X (1)

X + Y
k6d−→ X + 2Y 2X + Y

k7d−→ 2X. (2)

∗This work has been supported by grants No. 102/07/0496 of the Czech Science Foundation,
No. IAA100760702 of the Grant Agency of the Academy of Sciences and by the institutional research
plan No. AV0Z10190503 of the Academy of Sciences of the Czech Republic.
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Fig. 1: Nullclines of the ODE system (3) for k1d = 12 (left) and k1d = 13 (right). The
other parameter values are given by (4). The steady states are denoted by dots. Illustrative
trajectories which start close to the steady states are plotted as thin black lines. The stable
direction of the saddle is indicated by the dashed line.

Here k1d, . . . , k7d are the so-called rate constants which describe the speed of the
reactions. The symbol ∅ denotes the chemical species of no interest. Hence, for
example the first reaction is the production of Y from the source with the rate
constant k1d.

Let X = X(t) and Y = Y (t) stand for the number of molecules of the two
chemical species. If the numbers X and Y are sufficiently high then the dynamics of
the system (1)–(2) can be described by the mean-field ODE model

dx̃

dt
= k2d ỹ − k5d x̃

3
+ k4d x̃

2 − k3d x̃,
dỹ

dt
= −k7d x̃

2
ỹ + k6d x̃ ỹ − k2d ỹ + k1d, (3)

where x̃ = X/V and ỹ = Y/V stand for the concentrations of X and Y , respectively.
We choose the values of the rate constants as

k1d = 12 [sec−1mm−3], k2d = 1 [sec−1], k3d = 33 [sec−1], k4d = 11 [sec−1mm3],

k5d = 1 [sec−1mm6], k6d = 0.6 [sec−1mm3], k7d = 0.13 [sec−1mm6]. (4)

In this case the nullclines dx̃/dt = 0 and dỹ/dt = 0 intersect at three steady states
denoted by SN (stable node), Saddle, and UF (unstable focus), see Figure 1 (left),
where also illustrative trajectories are shown. We observe that the system converges
to the steady state at the SN. However, if we change the bifurcation parameter k1d

to have the value 13, we observe the behavior shown in Figure 1 (right). The system
possesses a periodic solution.

The SN and the Saddle lie on the invariant cycle, which is a union of these two
steady states and two heteroclinic trajectories connecting these steady states. While
increasing the value of k1d, the SN and the Saddle collaps into a single steady state
which disappears if we increase the value of k1d over a critical value Kd

.
= 12.2. This

is known as the SNIPER bifurcation.
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Fig. 2: Trajectories of the deterministic and stochastic models for k1d = 12.

In Figure 2 we may compare the trajectories of the deterministic model (3) and
the stochastic model for the parameter values given by (4). Notice the convergence
of the deterministic solution to the steady sate and the oscillatory behavior of the
stochastic solution. On the other hand if we change the bifurcation parameter to
k1d = 13 then both deterministic and stochastic models oscillate.

3. Gillespie stochastic simulation algorithm

The stochastic trajectories in Figures 2 were obtained by the Gillespie SSA [2].
To describe this algorithm we define the following propensity functions

α1(x, y) = k1, α2(x, y) = k2y, α3(x, y) = k3x, α4(x, y) = k4x(x− 1),

α5(x, y) = k5x(x− 1)(x− 2), α6(x, y) = k6xy, α7(x, y) = k7x(x− 1)y, (5)

where k1 = k1dV, k2 = k2d, k3 = k3d, k4 = k4d/V, k5 = k5d/V
2, k6 = k6d/V, k7 =

k7d/V
2 are the scaled rate constants. The Gillespie SSA follows these steps.

1. Generate two random numbers r1, r2 uniformly distributed in (0, 1).

2. Compute the cumulative propensity function α0(t) =
7∑

i=1

αi(X(t), Y (t)).

3. Compute the time interval to the next reaction τ =
1

α0(t)
ln

(
1

r1

)
.

4. At time t + τ the j-th reaction takes place. Determine j by

1

α0(t)

j−1∑
i=1

αi(X(t), Y (t)) ≤ r2 <
1

α0(t)

j∑
i=1

αi(X(t), Y (t)).

5. Update the numbers of reactants and products according to the j-th reaction.

6. Put t := t + τ and go to 1.
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Fig. 3: The mean period of oscillations of the deterministic (dashed line, see [1] for details)
and stochastic (points) models as a function of k1d for V = 40 (left) and as a function of V
for the bifurcation value k1d = Kd

.= 12.2 (right). Two estimates computed by formula (12)
with different γ are indicated by gray lines.

4. Period of oscillations

An important characteristic of the chemical system (1)–(2) is the mean period of
its oscillations. This period is shown in Figure 3 for both deterministic and stochastic
models. The periods for the stochastic model are computed as an average over 10 000
realizations which is computationally intensive. Here, we show that these values can
be obtained by solving and analyzing the chemical Fokker-Planck equation.

The stationary chemical Fokker-Planck equation for the stationary distribution Ps,
see [1] for more details, can be formulated in the following way

− div(A∇Ps + Psb) = 0, (6)

where A = −
(

dx dxy/2
dxy/2 dy

)
, b =

(
vx − ∂dx

∂x
− 1

2

∂dxy

∂y
, vy − ∂dy

∂y
− 1

2

∂dxy

∂x

)
,

and vx = α2 − α3 + α4 − α5, vy = α1 − α2 + α6 − α7, dx = [α2 + α3 + α4 + α5]/2,
dy = [α1 + α2 + α6 + α7]/2, dxy = −α2.

The stationary distribution Ps = Ps(x, y) is normalized to satisfy

∫ ∞

0

∫ ∞

0

Ps(x, y) dxdy = 1, Ps(x, y) ≥ 0, (x, y) ∈ [0,∞)× [0,∞). (7)

Here, Ps(x, y) is the probability that X(t) → x and Y (t) → y as t → ∞. To
find numerically the stationary distribution Ps for system (1)–(2) with parameter
values (4) we truncate the infinite domain (0,∞)×(0,∞) to S = (0, 500)×(0, 2000),
denote by n is the unit outward normal vector to ∂S and prescribe the boundary
conditions

(A∇Ps + Psb) · n = 0 on ∂S. (8)
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Fig. 4: The stationary distribution Ps,h (left) and the mean exit time τh (right).

The finite element solution Ps,h to problem (6)–(8) is derived in a standard way and
it is determined by the requirements Ps,h ∈ Wh and

∫

S

(A∇Ps,h + Ps,hb
) · ∇ϕh dxdy = 0 ∀ϕh ∈ Wh,

where Wh is a suitable finite dimensional subspace of the Sobolev space H1(S). In
our case Wh consists of continuous and piecewise linear functions over a triangulation
of S. The finite element solution Ps,h is provided in Figure 4 (left). Alternatively, the
stationary distribution can be obtained by computationally very intensive long time
stochastic simulations. However, the numerical solution of (6)–(8) is much faster and
equally accurate as the stochastic simulations.

Let us point out that equation (6) with boundary condition (8) possesses a trivial
solution Ps = 0 but we are interested in a nontrivial one. We obtain the nontrivial
approximation Ps,h by a standard software for computation of eigenvectors corre-
sponding to the zero eigenvalue of a sparse matrix. The resulting solution is then
normalized to satisfy (7) with the integrals taken over S.

The stationary distribution, see Figure 4 (left), shows that the system spends
most of the time in the strip X < 200. Observing Figure 2 we may say that an
oscillation occurs if X > 200. The stationary distribution Ps is almost zero for
x > 200 and therefore, it is very unlikely to find the system in a state with
X > 200. Thus, we neglect the time the system spends in the halfplane X > 200
and approximate the mean period of oscillations as the average time to leave the
domain X < 200 provided the system just entered it.

To this end, we define the subdomain S̃ = (0, 200)× (0, 2000) of S and formulate
the adjoint equation to (6) with suitable boundary conditions

− div(A∇τ) + b · ∇τ = −1 in S̃, (9)

τ = 0 on the line x = 200, (10)

(A∇τ) · n = 0 on lines y = 0, y = 2000, x = 0. (11)

224



The quantity τ = τ(x, y) is known [1] to model the average time to leave S̃ provided
the system is in the state X(t) = x and Y (t) = y. The finite element approximation

τh ∈ W̃h of τ is uniquely determined by the identity

∫
eS

(A∇τh

) · ∇ϕh dxdy +

∫
eS
b · ∇τh ϕh dxdy =

∫
eS
−1 · ϕh dxdy ∀ϕh ∈ W̃h,

where W̃h is a space of continuous and piecewise linear functions over a triangulation
of S̃. The finite element solution τh of (9)–(11) is presented in Figure 4 (right).

The actual period of oscillations T is estimated as a weighted average of the exit
times over a suitably chosen set (line segment) γ

T (γ) =

∫

γ

τ(x, y) Ps(x, y) dγ

/∫

γ

Ps(x, y) dγ. (12)

A natural choice of the line segment is γ = {(x, y) : x = xf , 0 ≤ y ≤ yf}, where
(xf , yf ) is the unstable focus of the system dx/dt = vx and dy/dt = vy, cf. (3).
However, if the line segment γ is slightly shifted to x = 0.87xf then formula (12)
provides more accurate results, as we can observe in Figure 3. The left panel shows
the period of oscillations as a function of k1d and the right one as a function of V .

5. Conclusions

To conclude, we stress that the period of oscillation can be computed by (12)
using the solution of the Fokker-Planck equation (6) and of the τ -equation (9) with
no need of long time stochastic simulations. Figure 3 shows the accuracy of this
approach.

The presented technique is not limited to simple system (1)–(2). It can be applied
for example to systems with more than two chemical species which are of great in-
terest especially in the cell cycle modeling. This however requires numerical solution
of high dimensional Fokker-Planck and τ -equations.
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