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Abstract

Using the interplay among three simple exchange games, one may give a sat-
isfactory representation of a conservative economic system where total wealth and
number of agents do not change in time. With these games it is possible to investi-
gate the emergence of statistical equilibrium in a simple pure-exchange environment.
The exchange dynamics is composed of three mechanisms: a decentralized interaction,
which mimics the pair-wise exchange of wealth between two economic agents, a failure
mechanism, which takes into account occasional failures of agents and includes wealth
redistribution favoring richer agents, and a centralized mechanism, which describes
the result of a redistributive effort. According to the interplay between these three
mechanisms, their relative strength, as well as the details of redistribution, different
outcomes are possible.

...But Mr. Lebeziatnikov who keeps up with modern ideas explained
the other day that compassion is forbidden nowadays by science itself,
and that that’s what is done now in England, where there is political
economy...

Crime and Punishment, Chapter 1, Fyodor Dostoevsky

1. Introductory considerations

In economics, distributional problems emerge in contexts of economic growth and
allocation of resources, among others. Distributions of relevant economic variables
are important for policy making purposes, however, there is a general policy problem
that was emphasized by Federico Caffè [1]:
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...when, in economic reasoning, the social wealth distribution is assumed
‘given’, this means that the existing distribution is accepted, without
evaluating whether it is good or bad, acceptable or unacceptable... this
must be explicitly done further clarifying that the conclusions are condi-
tioned on the acceptability of the distributional set-up.

In the past, we have studied simple exchange mechanisms (games) based on exact
probabilistic dynamics and leading to statistical equilibrium distributions [3, 4, 5, 7].
Our aim is to give a satisfactory representation of an economy and investigate the
statistical equilibrium by means of interplay between these mechanisms. One of them
describes centralized activities in terms of taxation and redistribution of wealth and
it produces exponential tails. In order to include a process that gives power-law
tails we involve a mechanism consisting of occasional failures of agents together
with redistribution of their wealth. This mechanism is discussed in [3], Chapter 10,
and it leads to the Yule distribution, which was originally proposed by Yule to
account for the data on biological species [10]. It was the idea of Simon to use it in
order to describe a class of distributions that appears in a wide range of empirical
data, including economic phenomena [8]. The last but crucial mechanism represents
pairwise exchange of wealth between agents and its interplay ensures that the system
does not break down due to the failures of agents.

Since it is difficult to study the interplay of the three games analytically, we want
to develop a statistical procedure based on statistical inference from the data to ob-
tain relevant distributional properties of economic variables. In particular, we focus
on the wealth distribution. However, here the emphasis will be on modelling and
studying the aggregate wealth distribution in a conservative system where the num-
ber of agents and the total wealth do not change in time. For a simple trading rule in
an active market, where number of agents and money is not conserved, Kusmartsev
found that the wealth distribution has a general Bose-Einstein form, whose param-
eters depend on wealth exchange parameter, i.e. activity of agents [6]. Regarding
conservation of wealth in the system, as pointed out in [9], ordinary agents in an
economy can only exchange money with each other, so there is a local conservation
of wealth. However, a government or a central bank can cause a change of wealth,
but as long as it does not cause hyperinflation, the system can be close to statistical
equilibrium, with slowly changing parameters.

1.1. Descriptions for the state of the system

The basic random variables for the description of the games are introduced in [3].
A general framework for agent-based models consists of the allocation of n objects
among g agents (categories). Categories represent economic agents and objects may
represent money or wealth. In this paper objects will be called coins.

The most complete description of the states is in terms of individual (coin) con-
figurations X. An individual description X = (X1 = x1, X2 = x2, . . . , Xn = xn),
where xi ∈ {1, . . . , g}, is a list telling us, for each coin to which agent it belongs.
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The total number of configurations for n coins distributed among g agents is gn.
A statistical description Y = (Y1 = n1, Y2 = n2, . . . , Yg = ng) is a list giving us the
number of coins for each agent, with the constraint

∑g
1 ni = n. The total number

of these agent descriptions for g agents sharing n coins is
(
n+g−1

n

)
. A partition de-

scription Z = (Z0 = z0, Z1 = z1, . . . , Zn = zn) is the number of agents with zero
coins, one coin, etc., with the constraints for Z

∑n
0 zi = g,

∑n
0 izi = n. This is the

less complete description, commonly referred to as wealth distribution and it will be
mostly used throughout this paper. Figure 1 shows a state of a system and illustrates
the meaning of the various descriptions.

1 2 3 4 5 6 7 8 9 10

1 52 3

4

7

6

Figure 1: A state of a system with ten agents and seven coins. The individual
description of the state is x1 = 8, x2 = 3, x3 = 5, . . . , x7 = 8. The statistical
description is y1 = y2 = y4 = y6 = y7 = y9 = 0, y3 = y10 = 1, y5 = 2, y8 = 3 and
the wealth distribution in this case is z0 = 6, z1 = 2, z2 = 1, z3 = 1, z4 = z5 = z6 =
z7 = 0.

2. Simple exchange games

2.1. Random coin exchange (Bennati-Drăgulescu-Yakovenko)

Bennati-Drăgulescu-Yakovenko (BDY) model was introduced in Bennati’s
work (1988, 1993) and rediscovered in [2]. Later it was studied in [7]. It is a discrete
model, where number of agents and wealth measured by coins are conserved. The
BDY game is played as follows. In the system of g agents sharing n coins, at each time
step, two agents are randomly selected. The selection is such that each pair of agents
has equal probability to be chosen. One of the agents (randomly chosen) becomes
the loser and gives one coin to the other, who becomes the winner. Indebtedness
is not possible, i.e. if the loser has zero coins, the move is not taken into account
and a new pair of players is selected. In order to avoid null moves, the game can be
formulated in the following way – a loser is chosen randomly from the agents who
have at least one coin and the winner is chosen among all agents, randomly as well.
In case the loser and the winner coincide, there will be no change in the state of the
system.

The appropriate description of the system is the statistical description, in terms
of agents. Let assume that at a given time t, the agents are described by the state
Yt = (n1, ..., ng) : = n and at the next step by the Yt+1 = (n1, ..., ni − 1, ...,
nj + 1, .., ng) := nj

i , that corresponds to a loss of the agent i and a win of the agent j.
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The transition between these states follows a homogenous Markov dynamics with
transition probability:

P(nj
i |n) =

1− δni,0

g − z0(n)

1

g
, (1)

where δni,0 is the usual Kronecker’s delta equal to 1 for ni = 0 and zero otherwise.
The first part is the probability of selecting a loser (agent i) from all agents with at
least one coin and the second part (1/g) is the probability that the agent j is the
winner. The sequence Y0,Y1, . . . is a finite Markov chain with irreducible set of
states and no periodicity. Therefore, an invariant probability distribution exists and
it coincides with the equilibrium distribution. Its form is the following:

π(n) = C · (g − z0(n)), C =

[
g∑

k=1

(
g

k

)(
n− 1

n− k

)]−1
(2)

and it can be derived by means of detailed balance given that the chain is reversible.
The exact solution of this problem is not as simple as it appears in [2]. One can
see that the invariant probability distribution for this model depends on number of
agents with zero coins (z0); more precisely it is proportional to the number of agents
with at least one coin in their pocket, and hence, it is not uniform.

At the beginning of each simulation in this paper n/g coins are given to the
each agent, i.e. the initial wealth distribution is a Dirac delta, δ(n/g − i) for i =
0, 1, . . . ,. Results of simulations present expected wealth distributions, given in terms
of partition vector Z = (Z0, Z1, . . . , Zn), namely time means of relative frequencies
of agents with i coins, that approximate E(Zi)/g.

Figure 2 shows the expected wealth distribution in the system with dynam-
ics given by the BDY game. Time means of relative frequencies of agents with
0, 1, . . . , 500 coins obtained from simulations are compared with theoretical expected
wealth distribution given by exact formulas and with exponential distribution, which
is the distribution in the limit of large density and large number of agents (n�g�1).
A detailed derivation of the expected wealth distribution can be found in [7] and in
general, it is not exponential – it becomes exponential only in the appropriate limit.
Therefore, conclusions from [2] on exponential wealth distribution are not fully cor-
rect if one considers equation (2).

2.2. Taxation and redistribution

The second exchange game mimics taxation and redistribution in a simplified
way. The taxation-redistribution model was introduced in [4]. There are still n coins
to be allocated among g agents and n and g are conserved in time.

The simplest form of this game consists in taking a coin from one agent and
redistributing it to another agent. Taxation is represented by a step where a coin is
taken from an agent and temporarily removed from the population, so the state of
the system is

ni := (n1, ..., ni − 1, ..., ng).
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Figure 2: Time mean of relative frequencies of g = 10 agents sharing n = 500 coins
obtained from simulation of the BDY game (stars) compared with theoretical values
for expected wealth distribution (dashed line) and with distribution in the limit of
large systems, Exp(g/n) (line), shown in linear (up) and logarithmic scale (down).
The values of the random variables Zt were sampled and averaged over 105 of Monte
Carlo steps, after an equilibration of 104 steps.

By redistribution, one means a step where a coin is given back to an agent, i.e.

nj := (n1, ..., nj + 1, ..., ng).

If the system is in the state Yt = (n1, ..., ng) := n, at the next step of this game,
possible values of Yt+1 will be Yt+1 = (n1, ..., ni − 1, ..., nj + 1, .., ng) := nj

i , corre-
sponding to a loss of the ith agent due to taxation and a gain of the jth agent due
to redistribution. The transition probability between these states is:

P(nj
i |n) =

ni

n

αj + nj − δi,j
θ + n− 1

, (3)

where (α1, ..., αg) are weights for redistribution and θ =
∑

j αj. Taxation consists
of random selection of a coin, in opposition to the BDY move where the selection
refers to agents. If a coin is randomly selected out of n coins, the probability of
selecting a coin belonging to the agent i is ni/n, where ni is the number of coins of
the agent i. Hence, the agents are taxed proportionally to their wealth. Then, this
coin is redistributed to the agents following the rule that the jth agent will receive
a coin with probability proportional to αj + nj, where nj is the number of coins of
the agent j and αj is a suitable weight. The redistribution policy is determined by
the values of αj. Positive values make rich agents richer, and the effect is larger the
smaller is αj, αj →∞ determines a redistribution where all agents are equivalent, so
the redistribution mechanism becomes random, whereas negative values of αj tend
to favor poor agents.
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Equation (3) defines the transition probability matrix of an irreducible Markov
chain which is also aperiodic. Hence, there exists an invariant probability distribu-
tion, which coincides with the equilibrium distribution. In this case it is the Pólya
distribution:

π(n) =
n!

θ[n]

g∏
i=1

α
[ni]
i

ni!
(4)

and it can be derived by means of detailed balance given that the chain is reversible.
x[n] is the Pochhammer symbol representing the rising (or upper) factorial defined
by x[n] = x(x+ 1)...(x+ n− 1).

Let us suppose that αj = α for all j. Depending on the choice of α, one can
obtain different equilibrium situations. Marginalizing equation (4) for a single agent
(all the agents follow the same probability distribution) in the continuous limit of
large systems, for α positive, the taxation and redistribution model is approximately
described by the gamma distribution (see [3], Chapter 5), whose form factor is just
the initial redistribution weight. If α is negative, then the limiting distribution is the
hypergeometric distribution and in the case α → ∞ it is the Poisson distribution.
Note that in the case of equidistributed agents, one has that E(Zi) = gP(Y1 = i);
in other words, the knowledge of the marginal occupation distribution immediately
gives the expected wealth distribution.

Instead of taxation and redistribution of only one coin at each time step, we
will consider block taxation in which m ≤ n coins are randomly taken from agents
and then redistributed according to the same probability, i.e. proportionally to the
actual wealth of agents and the chosen weight for redistribution. Block taxation can
be written in the following way

n′ = n−m + m′, (5)

where n = (n1, . . . , ng) is the initial agent description, m = (m1, . . . ,mg) is the tax-
ation vector and m′ = (m′1, . . . ,m

′
g) is the redistribution vector, with the constraints∑g

i=1mi = m and
∑g

j=1m
′
j = m. This leads to the same equilibrium distribution,

given by the equation (4).

Figure 3 presents the expected wealth distribution in the system with dynamics
governed by the taxation and redistribution game. It shows time mean of relative fre-
quencies of agents with 0, 1, . . . , 500 coins obtained from simulations, compared with
theoretical values for the expected wealth distribution and with gamma distribution
which is the distribution in the continuous limit of large systems.

2.3. Zipf-Simon-Yule

The third important game is the Zipf-Simon-Yule one, initially described in [5]. In
order to consider a system that is conservative, in terms of total wealth and number
of agents, as in previous two games, we will modify the given Zipf-Simon-Yule model.
This game includes a failure probability, which is independent of agents’ wealth. An
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Figure 3: Expected wealth distribution in a system of g=10 agents and n=500 coins
for the 250-block taxation and redistribution game with redistribution weight α = 10.
Time mean of relative frequencies of agents with i coins obtained from simulation
(stars) are compared with theoretical expected wealth distribution (dashed line) and
with distribution in the limit of large systems, Gamma(α, n/αg) (line), in linear (up)
and logarithmic scale (down). Values from simulation were sampled and averaged
over 105 Monte Carlo steps, after an equilibration of 104 steps.

agent with coins is randomly selected and all his coins are removed. Therefore, the
probability of failure for the ith agent is:

P(n(i)|n) =
1

g − z0(n)
1{ni>0}, (6)

where n(i) = (n1, . . . , 0, . . . , ng) is an agent description vector with a zero element on
the ith position. The wealth of the failed agent is then redistributed to the agents
with probability proportional to their actual wealth, but the last coin is given back to
the failed agent. This move can be regarded as a sort of “compassionate capitalism”.
This is a trick to avoid absorbing states; without this move a failed agent should be
cancelled out forever, and after g moves the process would stop. If we assume that
the ith agent had m coins that are removed, then the probabilities for redistributing
each of those m coins are the following:

P(X1 = j|n(i)) =
nj

n−m ,
...

P(Xs+1 = j|n(i), j1, . . . , js) =
n
′
j

n−m+s
,

...
P(Xm = j|n(i), j1, . . . , jm−1) = δj,i .

(7)
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Figure 4: Expected wealth distribution in a system of g=100 agents sharing n=500
coins, shown in linear (up) and logarithmic scale (down). Stars represent the time
mean of relative frequencies of agents with i coins obtained from simulation of the
ZSY game, sampled and averaged over 104 Monte Carlo steps, after an equilibration
of 104 steps. Circles represent the Yule distribution with parameter ρ ≈ 1.

The sequence Y0,Y1, . . . ,Yn, . . . is a finite Markov chain with an irreducible set
of states and no periodicity. Therefore, the invariant and equilibrium distribution
exists, but it is not easy to find, because the chain is irreversible, and one cannot
apply detailed balance.

The described mechanism alone produces power-law tails. Figure 4 presents the
expected wealth distribution obtained from simulation of this game and fitted with
a Yule distribution, which is the discrete counterpart of the Pareto distribution and
has the following form

P(U = i) = ρB(i, ρ+ 1) for i ∈ N, ρ ∈ R+ ,

where U denotes a random variable and B is the Beta function.

3. “Super-moves”

In the case of the first two models (BDY and TAR), computer simulations are not
really necessary because the equilibrium distributions can be analytically derived. On
the contrary, they are necessary in the case of the Zipf-Simon-Yule model. However
they are necessary if one thinks of a system where two or three games are played
sequentially.

In order to know what is the shape of the expected wealth distribution in the
equilibrium state in the long-term limit of an economy, we perform Markov chain
Monte Carlo simulations for various combinations of three games described in pre-
vious section.
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Figure 5: Expected wealth distribution in a system of 10 agents sharing 500 coins
for the mixture of the two games. (a) One step consists of l = 50 steps of BDY game
and one step of 250-block TAR game with redistribution weight α = 10. (b) One
step consists of one step of ZSY game and l = 10, l = 50, l = 100 steps of BDY game.
Time mean of relative frequencies of agents with i coins obtained from simulations
of two games are compared with distribution from pure BDY and TAR games (a)
and BDY and ZSY games (b). Values from simulation were sampled and averaged
over 104 Monte Carlo steps, after an equilibration of 104 steps.

Let us first consider an alternation of the BDY and TAR game. Suppose that the
BDY game is played l times and then one step of the TAR game is performed. The
first game shifts the initial expected wealth distribution towards an exponential, and
such a distribution becomes the initial one for the second game. Then, the second
game shifts the distribution towards a gamma and these steps can be iterated many
times. One can guess that the equilibrium distribution of the joint process will be
a mixture of the two pure ones, with weights proportional to the frequency of the two
processes. This conjecture is qualitatively corroborated in figure 5 for alternating the
BDY and TAR games (a) and also for alternating ZSY and BDY games (b), where
the resulting expected wealth distribution is compared with distributions from pure
games.

In order to mimic what happens in a real economy, we will use the following
combination of steps. On each “day” we run a move of BDY, at the end of each
“month=l days” we have a ZSY failure, at the end of each “year=k months” we run
a TAR, i.e. taxation and redistribution of the coins. After the failure of an agent,
modeled by the ZSY game, we have l iterations of coin exchanges between agents,
a process giving to the failed agent the opportunity to recover some wealth; in this
way the “compassionate capitalism” mechanism can be avoided. These random coin
exchanges give the background noise of the economy. Once per year taxation and
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Figure 6: Expected wealth distribution in the system for the mixture of the three
games described by the equation (8) with l = 100 and k = 10. Time mean of relative
frequencies of 10 agents sharing 500 coins sampled and averaged over 103 realizations
of 500 Monte Carlo steps and different redistribution parameter α = 1 (dots), α = 10
(circles) and α = 106 (stars).

redistribution of the coins appear as centralized mechanisms depending on weights
which characterize the redistribution policy. In summary, the “super-move” for the
mixture of the three games at time step t (the last “day” of each “year”) can be
presented as

Pt = (P(Y1,t = ·), . . . ,P(Yg,t = ·)) = Pt−1 · ((BDY l · ZSY )k · TAR), t = 1, 2, ... (8)

and (BDY l · ZSY )k · TAR is the stochastic matrix for an irreducible, aperiodic
Markov chain representing the described alternation of the three games.

Figure 6 shows the resulting expected wealth distribution in the system with
dynamics given by the equation (8). Details of the simulations can be found in the
caption.

4. Summary and outlook

In this paper we proposed a representation of a conservative economic system,
where total wealth and number of agents do not change, using the interplay among
three games, previously described separately. The exchange dynamics in the system
is composed of pair-wise interactions between economic agents, a mechanism for
occasional failures of agents including redistribution of their wealth and a centralized
mechanism, which presents redistribution policy. Depending on the relative strength
of these mechanisms, the nature of the interplay between them, the specification of
redistribution, various outcomes are possible.

The presented model is general enough to be applied to the description of both
aggregate wealth distribution, and to the distribution of firm sizes. It can be extended
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in several directions. One can take into account a heterogeneous population of agents
and investigate the presence of asymmetry in the initial endowments on the long run
dynamics of the model. This case becomes relevant when one wants to describe the
aggregate effect of a policy switch between different redistributive regimes. Another
extension could include saving propensity and analyze the resulting distributional
properties. Even random failures can be easily taken into account. Future work will
investigate the correspondence of the model with real data. There is only one proba-
bilistic parameter, namely α, the weight of the redistribution policy, to be estimated.
Other parameters, such as l and k are to be considered fully phenomenological.
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