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Abstract: In the contribution growths of the neoplasms (benign and malig-
nant tumors and cysts), located in a system of loaded bones, will be simulated.
The main goal of the contribution is to present the useful methods and effi-
cient algorithms for their solutions. Because the geometry of the system of
loaded and possible fractured bones with enlarged neoplasms changes in time,
the corresponding mathematical models of tumor’s and cyst’s evolutions lead
to the coupled free boundary problems and the dynamic contact problems
with or without friction. The discussed parts of these models will be based on
the theory of dynamic contact problems without or with Tresca or Coulomb
frictions in the visco-elastic rheology. The numerical solution of the problem
with Coulomb friction is based on the semi-implicit scheme in time and the
finite element method in space, where the Coulomb law of friction at every
time level will be approximated by its value from the previous time level. The
algorithm for the corresponding model of friction will be based on the discrete
mortar formulation of the saddle point problem and the primal-dual active set
algorithm. The algorithm for the Coulomb friction model will be based on
the fixpoint algorithm, that will be an extension of the PDAS algorithm for
the Tresca friction. In this algorithm the friction bound is iteratively modified
using the normal component of the Lagrange multiplier. Thus the friction
bound and the active and inactive sets are updated in every step of the it-
erative algorithm and at every time step corresponding to the semi-implicit
scheme.

Keywords: dynamic contact problems, mathematical models of neoplasms
- tumors and cysts, Coulomb and Tresca frictions, variational formulation,
semi-implicit scheme, FEM, mortar aproximation, PDAS algorithm.
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1. Introduction

In biology and medical sciences mathematical models play an important role.
The role of mathematical models are then to explain a set of biomedical experiments
and analyses. During the last four decades, various neoplasms (cysts, benign and
malign tumors) models have been developed, analyzed and discussed.

By neoplasm is meant a mass of tissue that forms when cells divide uncontrol-
lably, that is, by an overproduction of cells. Neoplasms are benign tumors, malignant
tumors or cancers and cysts. Cancers are of several types due to their origin, that is,
due to the tissue from which they arise and the type of cells involved. A cancer of
white blood cells is called leukemia, cancers arising in muscles and connective tissue
are called sarcoma, and a cancer originated from epithelial cells is called carcinoma.
A bone tumors are represented by abnormal growth of cells within the bone that are
of (i) noncancerous types, and we speak about benign bone tumors, or (ii) can-
cerous types, and we speak about malignant bone tumors. In some cases the
cancer cells invade into the blood or the lymphatic vessels and then are transported
into another locations, where they create secondary tumors. This process is known
as the metastasis process. Malign tumors rise relatively very quickly approxi-
mately 1mm/day. In all types of neoplasms a solid tumors can be detected when it
reaches a size of several millimeters. Bone tumors are of primary types, originating
within the bone tissues, or of secondary types, that result from the spread cancer
cells from the primary tumors located in other tissues in the human body and we
speak about metastasis. Growing tumors replace healthy tissue with abnormal be-
nign or malignant tissues. Benign tumors are not life-threatening, expecting such
benign tumors that are changed into malignant tumors. Benign bone tumors as well
as cysts do not metastasize, that is, they do not spread to other tissues but remain
situated in the bone or in the other tissue. Since bones are composed of hard min-
eralized tissues, they are more resistant to destruction than other soft tissues, but
in some cases the loaded long bones, vertebra or jaw-bones with tumors and cysts
can fracture. The classifications of neoplasms are published by the World Health
Organization - WHO.

Cancers arise from one single tumor cell. The transformation from the normal
cells into tumor cells are multistage processes, where the evolution of cells are regu-
lated and controlled by genes constrained in their nucleus. A special feature in tumor
growth is proliferation. Proliferating cells are causes of the tumor volume which vary-
ing in time. A tumor contains different populations of cells, such as (i) proliferating
cells, i.e., cells that undergo abnormally fast mitosis; (ii) necrotic cells, i.e., cells that
died due to a luck of nutrion; (iii) quiescent cells, i.e., cells that are alived but their
rate of mitosis is balanced by the rate of natural death. By mitosis it is meant the
process of cell division which results in the production of two daughter cells from an
initial parent cell and that are identical with the parent cell.

Another type of neoplasms are cysts that are filled by fluid and that are formed
either in bones or in soft tissues, respectively. Cysts are pathological cavity lined
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by the own epithelium and in the cyst lumen filled by fluid or semi-fluid contents,
that are not created by the accumulation of pus materials and generally are formed
by a connective tissue walls. In this study we will limit ourselves to the odontogenic
cysts only. Odontogenic cysts are cysts of the jaw-bone that are lined by an
odontogenic epithelium (that is, avascular epithelial tissues). Odontogenic cysts are
relatively slow growing and represent in early states of evolution no great problem
and treat to human life. The main types are the radicular cysts, that grow relatively
slowly and the keratocysts, that grow more rapidly.

2. Formulation of the problem

2.1. Formulation of the contact problem

Let the system of bones with neoplasms occupy a region Ω ∈ RN , N = 2, 3,
(Fig.1a,b,c), the geometry of which can be determined from the CT or MRI scans,
respectively, and approximated by the visco-elasticity with short memory (Kelvin-
Voigt type rheology).

Let I = (0, tp), tp > 0, be a time interval. Let Ω ⊂ RN , N = 2, 3, be
a region occupied by a system of bodies (bones) of arbitrary shapes Ωι such that
Ω = ∪r

ι=1(Ω
ι ∪ Γι

cv). Let Ωι have Lipschitz boundaries ∂Ωι and let us assume that
∂Ω = Γτ ∪ Γu ∪ Γc, where the disjoint parts Γτ , Γu, Γc are open subsets. Moreover,
let Γτ =

1Γτ ∪ 2Γτ , Γu = 1Γu ∪ 2Γu and Γc = ∪s,mΓ
sm
c , Γsm

c = ∂Ωs ∩ ∂Ωm, s 6= m,
s,m ∈ {1, . . . , r}, Γsm

c represent the contact boundaries between the components of
joints as well as between two opposite faces of cracks, Γcv = ∪sΓ

s
cv, Γ

s
cv ⊂ ∂Ωs

1 ∩∂Ω
s
2,

represent virtual interfaces between regions Ωs
1 and Ωs

2. It is evident that these
boundaries are determined as results of the used neoplasm’s growth models. Let
Ω(t) = Ω× I denote the time-space domain and let Γτ (t) = Γτ × I, Γu(t) = Γu × I,
Γc(t) = Γc × I denote the parts of its boundary ∂Ω(t) = ∂Ω × I. In the study
we will assume that the contact boundaries Γsm

c are between contact boundaries of
joints (i.e., hip joints, knee joints, spine, temporomandibular joints, etc.) as well as
contact boundaries between the opposite boundaries in the fractures of bones and/or
of vertebra. In the case of e.g. vertebra fracture, the domain denoted as Ωs will be
divided into two parts denoted by Ωs

1 and Ωs
2 (see Figs 1a-c).

Furthermore, let n denote the outer normal vector of the boundary, un = uini,
ut = u − unn, τn = τijnjni, τ t = τ − τnn be normal and tangential components of
displacement and stress vectors u = (ui), τ = (τi), τi = τijnj , i, j = 1, . . . , N .
Let F, P be the body and surface forces, ρ the density. The respective time
derivatives are denoted by “′”. Let us denote by u′ = (u′k) the velocity vector.
To formulate the contact and friction conditions, let us introduce at each point
of Γs

c the vectors tsi , i = N − 1, spanning in the corresponding tangential plane.
Let {ns, tsi}, i = 1, 2, be an orthogonal basis in RN for each point of Γs

c. To for-
mulate the non-penetration condition we use a predefined relation between the
points of the possible contact zones Γc. Therefore, we introduce a smooth map-
ping R : Γs

c → Γm
c such that R(Γs

c) ⊂ Γm
c , and assume that the mapping R is
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(a)

(b)

(c)

Figure 1: Mathematical models of the long bone and spine with tumors and the jaw-
bone with cyst: crack initiation and ensuing crack propagation and crack opening
are modelled on the basis of dynamic PDAS method for a crack problem with non-
penetration: (a) the detail of knee joint with the tumor; (b) the detail of spine with
the tumor; (c) the detail of jaw-bone with the cyst.

well defined and maps any x ∈ Γs
c to the intersection of the normal on Γs

c at x
with Γm

c . Then [u]sm := us(x, t) − um(R(x, t)), [un]
sm := [u]sm · ns is the jump

in normal direction, [ut]
sm = (us(x, t) − um(R(x, t))) − [u]sm · ns is the jump in

the tangential direction and τ sn = (ns)Tτ s(x, t)ns = (ns)Tτm(R(x, t))ns is the
boundary stress in normal direction on the possible contact part, and moreover,
(tsi )

Tτ s(x, t)tsi = (tsi )
Tτm(R(x, t))tsi , i = N − 1, is satisfied.

From the momentum conservation law the equation of motion is of the form

ρ
∂2uιi
∂t2

=
∂τ ιij
∂xj

+ F ι
i , i, j = 1, . . . , N, ι = 1, . . . , r, (x, t) ∈ Ωι(t) = Ωι × I , (1)
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where

τ ιij =τ
ι
ij(u

ι,u′ι) = c
(0)ι
ijkl(x)ekl(u

ι) + c
(1)ι
ijkl(x)ekl(u

′ι) =

=eτ ιij(u
ι) + ντ ιij(u

′ι), i, j, k, l = 1, . . . , N , ι = 1, . . . , r, (2)

where c
(n)ι
ijkl(x), n = 0, 1, are anisotropic elastic and viscous coefficients and eij(u)

are components of the small strain tensor, N is the space dimension. For the ten-
sors c

(n)ι
ijkl(x), n = 0, 1, we assume that they satisfy the symmetric and Lipschitz

conditions, that is,

c
(n)ι
ijkl ∈ L∞(Ωι), n = 0, 1, ι = 1, . . . , r, c

(n)ι
ijkl = c

(n)ι
jikl = c

(n)ι
klij = c

(n)ι
ijlk , (3)

c
(n)ι
ijkleijekl ≥ c

(n)ι
0 eijeij ∀eij , eij = eji and a.e. x ∈ Ωι, c

(n)ι
0 > 0, ι = 1, . . . , r,

c
(n)ι
ijkl = λ(n)ιδijδij + µ(n)ι (δikδjl + δilδjk) , n = 0, 1, for the isotropic bone materials,

where a repeated index implies summation from 1 to N .
On the contact boundaries between neighbouring bones and the neighbouring

faces in the case of bone fractures the following non-penetration conditions and the
Coulomb friction conditions

[un]
sm ≤ dsm, τ sn = τmn ≡ τ smn ≤ 0,

([un]
sm − dsm) τ smn = 0,

[u′
t]
sm = 0 ⇒ |τ sm

t | ≤ F sm
c |τ smn (u)| ,

[u′
t]
sm 6= 0 ⇒ τ sm

t = −F sm
c |τ smn (u)| [u′

t]
sm

|[u′

t]
sm| ,















(x, t) ∈ ∪e,mΓ
sm
c × I, (4)

are given and on the boundary ∂Ω(t) the following conditions

τijnj =Pi, i, j = 1, . . . , N, (x, t) ∈ Γτ (t) = ∪r
ι=1(Γτ ∩ ∂Ω

ι)× I , (5)

ui =u2i, i = 1, . . . , N, (x, t) ∈ Γu(t) = ∪r
ι=1(Γu ∩ ∂Ω

ι)× I , (6)

are prescribed and the initial conditions

uι(x, 0) = uι
0(x), u′ι(x, 0) = uι

1(x), x ∈ Ωι , (7)

are given, where τ sm
t ≡ τ s

t = −τm
t , F

sm
c = F sm

c (x,u′
t) is globally bounded, nonneg-

ative, and satisfies the Carathéodory conditions [4, 18, 20] and u0, u1 are the given
functions, u2 6= 0 on 1Γu or = 0 on 2Γu has a time derivative u′

2, and on ∪Γsm
c due

to the equilibrium of forces τij(u
s)ns

j = −τij(um)nm
j and where [v]sm = vs − vn is

a jump (difference) of quantities vs and vm and dsm is a gap, where

dsm(x) =
ϕs(x)− ϕm(x)
√

1 + |∇ϕs(x)|2
,

where ϕs, ϕm ∈ C1 are functions defined on an open subset Γsm
c of RN−1 parametrized

the two contact boundaries, e.g. of joints in the first case, and the two opposite faces
of the cracks in the second case. Thus the terms dsm ≥ 0 are the normalized gaps
between the contact boundaries of Ωs and Ωm (e.g. of the joints or faces in the case
of fractures) and between the two faces of the crack (i.e., Γs

c and Γm
c ).
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2.2. Formulation of coupled free boundary problems

Furthermore, we need to determine the evolution of neoplasms (tumors and cysts)
in time, and then to determine the areas that are occupied by these tumors and cysts
inside the system of bones, that create the investigated part of the human skeleton,
and moreover, to determine their material compositions, all during the studied time
period.

(A) The tumor growth case

The tumor’s study and their growths are studied e.g. in [2, 3, 5] and in many
others. Such models consist of a system of coupled partial differential equations
and a mass conservation law. The problems then lead to solve the free boundary
problems.

In the case of the tumor growth, we limit ourselves to avascular and vascular
cases only. Let uc(x, t) denote the concentration of cells, and let up(x, t), uq(x, t)
and uD(x, t) denote the cell densities for proliferating, quiescent and dead cells,
respectively, where x denotes a spatial coordinate and t time, t ∈ I, I ∈ [t0, tp],
t0 ≥ 0, tp > 0 (see [2, 3, 5]).

To determine the equation for the concentration uc(x, t), we must consider two
cases — the avascular stage and the vascular stage. Then, for an avascular evolution
of tumors we find

ε0
∂uc
∂t

= Dc∇
2uc − λuc, ε0 =

Tdiffusion
Tgrowth

, (8)

where Dc is a diffusion coefficient, about which is assumed to be constant, λ is the
nutrient consumption rate, ε0 is the ratio of the nutrient diffusion time scale to the
tumor growth time scale, Tdiffusion ∼ 1 minute, while Tgrowth ∼ 1 day, so that ε0 is
small. For a vascular evolution of tumors the Eq. (8) must be replaced by

ε0
∂uc
∂t

= Dc∇
2uc + Γ(ucB − uc)− λuc , (9)

where ucB is the nutrient concentration in the vasculature, Γ is the rate of the
blood-tissue transfer, so that Γ(ucB − uc) represents the nutrient concentration after
the process of angiogenesis. Tumor angiogenesis refers to the ability of a tumor to
stimulate new blood vessel formation.

In the case of vascularized tumors if we use the change of variables, that is, if we
put

uc −
ΓucB
Γ + λ

→ uc, Γ + λ→ λ , (10)

then Eq. (9) is transformed to Eq. (8), that is, uc in the avascular and vascular
tumors are described by the same equation (8).

We assume that proliferating cells become quiescent at a rate KQ(uc) that de-
pends on the concentration uc(x, t) of a generic nourishment having an influence on
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a tumor growth and that their death rate is KA(uc), that also depends on uc(x, t).
The quiescent cells become necrotic at a rateKD(uc) that depends also on the concen-
tration uc(x, t). The quiescent cells become proliferating at a rate KP (uc) that also
depends on the concentration of nutrient uc(x, t). The density of proliferating cells
is increasing due to proliferation at a rate KB(uc) that also depending on uc(x, t).
Finally, the dead cells are removed from the tumor, as they decompose, at a con-
stant rate KR. Since cells proliferate and dead cells are removed from the tumor,
there exists a continuous motion of cells within the tumor, which is represented by
a velocity v. Denoting by ωn(t) a region occupied by a tumor at time t and ∂ωn(t)
its boundary, then the conservation of mass laws for the densities of the proliferating
cells up(x, t), the quiescent cells uq(x, t) and the dead cells uD(x, t) are as follows:

∂up
∂t

+ div(upv) = [KB(uc)−KQ(uc)−KA(uc)]up +KP (uc)uq , (11)

∂uq
∂t

+ div(uqv) =KQ(uc)up − [KP (uc) +KD(uc)]uq , (12)

∂uD
∂t

+ div(uDv) =KA(uc)up +KD(uc)uq −KRuD . (13)

Assuming that the tumor tissue is modelled by a porous medium and the moving
cells by a fluid flow, then the velocity v of fluid flow is related to the fluid pressure σ
by the Darcy law, thus

v = −β∇σ, where β > 0 . (14)

Moreover, assuming that all cells are physically identical in volume and mass, there-
fore, their density is constant inside the tumor, that is,

up + uq + uD = N = const.

For simplicity, we can put β = 1 and N = 1.
Adding Eqs (11), (8) with (10), we find

div v = KB(uc)up −KRuD ,

and substituting uD = 1− up − uq, then we obtain the following problem describing
the growth of the tumor:

Problem (PT ): Find uc, up, uq, σ satisfying the following system of equations

ε0
∂uc
∂t

= Dc∇
2uc − λuc in ωn(t), t > 0 , (15)

∂up
∂t

−∇σ · ∇up = f(uc, up, uq) in ωn(t), t > 0 , (16)

∂uq
∂t

−∇σ · ∇uq = g(uc, up, uq) in ωn(t), t > 0, (17)

∆σ = −h(uc, up, uq) in ωn(t), t > 0 , (18)
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where

f(uc, up, uq) = [KB(uc)−KQ(uc)−KA(uc)] up +KP (uc)uq − h(uc, up, uq)up,

g(uc, up, uq) =KQ(uc)up − [Kp(uc) +KD(uc)] uq − h(uc, up, uq)uq ,

h(uc, up, uq) = [KB(uc) +KR] up +KRuq −KR ,

with the boundary conditions on ∂ωn(t)

uc = uc1 on ∂ωn(t), t > 0, (19)

σ = γκ,
∂σ

∂n
= −vn on ∂ωn(t), t > 0, (20)

and with the initial conditions

uc(x, t0) = uc0(x) in ωn(t0), uc0(x) ≥ 0, (21)

up(x, t0) = up0(x) in ωn(t0), up0(x) ≥ 0, (22)

uq(x, t0) = uq0(x) in ωn(t0), uq0(x) ≥ 0, (23)

where up0(x) + uq0(x) ≤ 1, and where uc1 is a constant concentration of nutrients,
vn is the velocity of the free boundary, κ is the mean curvature, γ is the surface
tension coefficient and uc0, up0, uq0 are given functions.

Under the assumption that the initial data are smooth and the initial and bound-
ary data are consistent with the Eq. (15) at ∂ωn(t0), we have the following result [3]:

Theorem 1 Let the initial data be sufficiently smooth, the physical data be constant
and the consistency conditions be satisfied, then there exists a unique smooth solution
to Problem (PT ) for t ∈ I = [0, tp].

(B) The case of the cystic growths

Our mathematical model of cystic growth is based on the diffusive mechanisms,
cell birth and death, the idea of osmosis, the balance between osmotic and hydrostatic
pressure forces within the cyst structure and its neighboring tissue. By the osmosis
we understand the diffusive process of permeability between two different liquids
which are mutually separated by a porous membrane.

Let us assume that the cyst occupies the region, we denote it by ωc (e.g. it can
be a sphere of radius R or of an arbitrary shape) with a thin epithelial rim of cells
covering its surface. The lumen of the cyst is assumed to be filled by dead cellular
material, consisting partly of osmotic material concentration C+, with total mass S,
generating an osmotic pressure P+

0 . Inside the cyst is observed the hydrostatic pres-
sure, we denote it as P+

h . The neighborhood of the cyst is created by a material,
consisting of a fixed osmotic material of concentration C−, generating an osmotic
pressure P−

0 . The hydrostatic pressure here is P−
h . According to the size of the

cavity the thickness of the capsule and the epithelial layer can be neglected. The
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growth of radicular cysts is of about a few millimeters per year, while in the kera-
tocyst’s case their growths are several times higher. The osmotic pressure difference
∆P0 = P+

0 − P−
0 relates to the difference in osmolality ∆m, that is,

∆P0 = ∆mRgT ∼ 28.3 Nm−2 , (24)

where ∆m is the molar concentration of “osmotic active” molecular per litre
(∼ 0.011 Osml ≡ 0.011 mol), Rg = 8.31 J/mol.K is the ideal gas constant, T is the
absolute temperature. For the hydrostatic pressure difference between the interior
of the cyst and the neighborhood balances the osmotic pressure difference between
the cyst interior and its neighborhood at the cyst rim, i.e.,

P+
h − P−

h = P+
0 − P−

0 = α(C+ − C−), α = RgT , (25)

where the van Hoff equation was used, where α is the proportional coefficient Rg is
the ideal gas constant, T is the temperature [21].

Since the cyst grows, cells migrate towards the interior of cavity, where they die
and since the degraded material driving the osmosis does not penetrate the epithelial
layer (i.e., membrane) it then start to be a part of osmotic material. The osmotic
material is cummulated in the cavity of the cyst and only fluid can pass the semi-
permeable epithelial membrane. Let “s” be the total amount of degraded material
inside the cyst. Then the rate of change of mass of osmotic material in the core in
time, i.e., of “ṡ = ds

dt
”, is proportional to the surface area of the covering epithelium,

we denote it as Sc, then we have

ds

dt
= βSc , (26)

where β is a supply rate of the osmotic material and it can change according to the
type of cyst.

The hydrostatic pressure jump across the epithelial membrane balances the
stresses in the semi-permeable membrane and the stresses on the cyst from the
neighboring bone tissue. Thus

P+
h − P−

h = f(r, ṙ) + fb(r, ṙ) , (27)

where f is the physical stresses, depending on the material properties of the cyst
and the neighboring bone tissue, which in general is a function of a position vector r
of the surface point, and ṙ = dr

dt
is the time derivative of r, and fb corresponds to the

biological stresses. The natures of these stresses in situ are not known currently,
therefore, the term fb(r, ṙ) can be omitted, i.e., fb(r, ṙ) = 0.

Ward et al. [23] expect that the material of surrounding tissue is mixture of
elastic and non-elastic (viscous) materials and that it can be modelled by a linear
viscoelastic fluid of Maxwell type with a stiffness E and a viscosity ν. The total
strain is the sum of the elastic and viscous strains and the total strain rate is the
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sum of its elastic and viscous strain rate,i.e., ε = εe+εν , ε̇ = ε̇e+ ε̇ν , where ε̇ = dε
dt
.

Since ε̇e = ḟ

E
, and ε̇ν = f

ν
, then we obtain

ḟ + τ−1f = Eε̇ , (28)

where τ = ν
E
is the so-called relaxation time.

From (25) the osmotic pressure difference is equal to the hydrostatic pressure
difference, i.e., 1

α
(P+

0 − P−
0 ) = 1

α
(P+

h − P−
h ) = 1

α
f(r, ṙ), and therefore, the physical

stresses 1
α
f(r, ṙ) = C+ − C−. Hence, the concentration of degraded material

C+ = C− +
1

α
f(r, ṙ) , (29)

that is, it is a linear function of the stresses, since C− and α are assumed to be
constant.

The concentration of material inside the cyst, given as its total mass “s” divided
by the cavity volume vc, is

C+ =
s

vc
=

s

|ωc|
, (30)

where ωc represents the region occupied by the cyst, i.e., vc = |ωc|. When the
cyst grows in a bony tissue, the bone is resorbed and the cyst grows as there it
was no obstacle stopping it from expanding. Because C+ = s

vc(r)
, then substituting

s = C+vc(r) into (26), i.e., ds
dt

= βSc, and using (29), then after some modification,
we obtain

v̇c
α
f(r, ṙ)ṙ+ v̇cC

−ṙ+
vc
α
ḟ(r, ṙ) = βSc , (31)

representing expression relating the cyst size, its shape and the physical stresses
exerted by the stroma, where β is the core supply rate of osmotic material ([mol/m2.s])
and is different for the radicular cysts and the keratocysts for which is several times
higher than for radicular cysts.

Since we model the material which is a mixture of fluid, collagenous capsule, and
crystalline structures, than it can be described as Maxwell’s fluid. Due to (28) the
stresses satisfy

τ ḟ(r, ṙ) + f(r, ṙ) = νε̇ , (32)

as τ = ν
E
. The problem will be complete, if the initial condition for r and f will be

given. Thus, for t = 0
r(0) = r0, f(0) = f0 , (33)

where r0 and f0 are given.
Assuming that the cyst is of a spherical shape, then vc =

4
3
πR3 and Sc = 4πR2,

where R is a radius of the cyst. For more details see [23, 21, 19]. The problem can
be solved by numerical methods for ODEs.

The biological materials of both types of tumors and both types of cysts are
assumed to be near a fluids for which µ(0) = 0. When at t ∈ I the shape of the cyst
is known, it is possible to estimate a probable evolution of the cyst, and moreover,
to determine a probable time of a cyst origin, similarly as in the previous case.
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3. Stress-strain analysis of the loaded bone system with neoplasms

3.1. Mathematical model and its solution

The problem to be solved has the following classical formulation:

Problem (P): Let N = 2, 3, r ≥ 2. Find a displacement vector uι : Ω
ι
× I → RN

satisfying Eqs (1)–(3) and the contact conditions with the Coulomb friction (4),
the boundary conditions (5)–(6) and initial conditions (7), where we assume that
the geometry of ωn and ωc at t = 0 and the corresponding material coefficients
were determined and that all anisotropic elastic and viscous coefficients satisfy the
symmetric and Lipschitz conditions (3).

Since the problem with Coulomb friction formulated in displacements is up-to-
date an open problem, therefore, for the existence analysis the contact conditions of
nonpenetration (Signorini conditions) will be formulated in velocities, that is,

[u′n]
sm ≤ dsm, τ sn = τmn ≡ τ smn ≤ 0, ([u′n]

sm − dsm)τ smn = 0 . (34)

Let us introduce the spaces Lp,N(Ω), p ∈ [1,+∞), L∞(Ω), the Sobolev spaces

H1,N(Ω), H1,N
0 (Ω), H

1

2
,N(Γc), H

1

2
,N

00 (Γc) by the usual way, and let B(M) be the
space of bounded functions endowed with the sup norm, and moreover, the spaces
and sets

V0 =
{

v|v ∈ ⊓r
ι=1H

1,N(Ωι),v = 0 a.e. on Γu

}

,

V = u2 + V0, V = u′
2 + V0 = L2(I;V ), K = {v ∈ V |[vn]

sm ≤ dsm a.e. on Γsm
c } ,

K =
{

v|v ∈ L2(I;⊓s
ι=1H

1,N(Ωι)),v = u′
2 on Γu(t), [vn]

sm ≤ 0 a.e. on Γsm
c (t)

}

.

Let ρι ∈ C(Ω
ι
), ρι ≥ ρι0 > 0, cιijkl ∈ L∞(Ωι), Fι,F′ι ∈ L2(I;L2,N(Ωι)), P,P′ ∈

L2(I;L2,N(Γτ )), u0 ∈ K, u1 ∈ V , u′
2 ∈ L2

(

I;⊓r
ι=1H

1,N(Ωι)
)

, dsm ∈ H
1

2
,N(Γsm

c ),
dsm ≥ 0 a.e. on Γsm

c , F sm
c ∈ L∞(Γsm

c ), F sm
c ≥ 0 a.e. on Γsm

c . In a special case if

Γ
s

c = ∪r
ι=1 (∂Ω

ι ∩ Γs
c) \ Γ

s
u then instead of the space H

1

2
,N(Γsm

c ) we will use the space

H
1

2
,N

00 (Γsm
c ).

The variational formulation of Problem (P) will be obtained by the usual way.
Thus,

Problem (P)v: Find a displacement field u : I → V such that u(t) ∈ K for a.e.
t ∈ I, and

(u′′(t),v− u(t)) + a(0)(u(t),v − u(t)) + a(1)(u′(t),v − u(t)) + j(v)− j(u(t)) ≥

≥ (f(t),v − u(t)) ∀v ∈ K, t ∈ I , (35)

u(x, 0) = u0(x),u
′(x, 0) = u1(x) , (36)
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where the initial data u0, u1 are given functions as above, and where

(u′′,v) =
r

∑

ι=1

(u′′ι,vι) =

∫

Ω

ρu′′i vidx ,

a(n)(uι,vι) =

r
∑

ι=1

aι(uι,vι) =

∫

Ω

c
(n)
ijklekl(u

ι)eij(v
ι)dx, n = 0, 1 ,

(f ,v) =

r
∑

ι=1

(f ι,vι) =

∫

Ω

F · vdx+

∫

Γτ

P · vds ,

j(v) =

∫

∪s,mΓsm
c

F sm
c |τ smn (u,u′)| ([vt]

sm) ds,

and where the bilinear forms a(n)(u,v), n = 0, 1, are symmetric in u, v and sat-

isfy a(n)(u,u) ≥ c
(n)
0 ‖u‖21,N , c

(n)
0 = const > 0, a(n)(u,v) ≤ c

(n)
1 ‖u‖1,N‖v‖1,N ,

c
(n)
1 = const > 0, u,v ∈ V0, and moreover, where we assume that the initial
data u0, u1 are given functions (e.g. they can be determined as solutions of static
elastic contact problems).

To prove the existence of the solution of Problem (P)v the decomposition v−u =
v−u+u′−u′=w−u′ will be used. The proof of the existence of the solution is based
on the penalization and regularization techniques and is modification of that of [4].

3.2. Approximation of the problem by the Tresca model of friction

Let us assume that the Coulombian law of friction in every time level is approx-
imated by its value gsmc from the previous time level, i.e., gsmc ≡ F sm

c |τ smn (u,u′)|)
(t−∆t). Thus gsmc is a non-negative function and has a meaning of a given friction
limit (or a given friction bound, representing the magnitude of the limiting friction
traction at which slip originates), and where −gsmc has a meaning of a given frictional
force, and ∆t is a time element. Thus this problem is approximated by another prob-
lem in which in every time level we will solve the dynamic contact problem with the
given friction, called the Tresca model of friction.

The corresponding variational problem is the following:

Problem (P0)v: Find a displacement field u : I → V such that u(t) ∈ K for a.e.
t ∈ I, and

(u′′(t),v− u(t)) + a(0)(u(t),v − u(t)) + a(1)(u′(t),v − u(t)) + j(v)− j(u(t)) ≥

≥ (f(t),v − u(t)) ∀v ∈ K, t ∈ I , (37)

u(x, 0) = u0(x),u
′(x, 0) = u1(x) , (38)

where the initial data u0, u1 are given functions, and where (u′′,v), a(n)(u,v),
n = 0, 1, (f ,v) are defined above, and

j(v) =

∫

∪s,mΓsm
c

gsmc [vt]
smds,
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where the bilinear forms a(n)(u,v), n = 0, 1, are symmetric in u, v and satisfy

a(n)(u,u) ≥ c
(n)
0 ‖u‖21,N , c

(n)
0 = const > 0, a(n)(u,v) ≤ c

(n)
1 ‖u‖1,N‖v‖1,N , c

(n)
1 =

const > 0, u,v ∈ V0.

The proof of the existence of the solution is based on the penalization and regu-
larization techniques and is modification of that of [4], where the decomposition as
above will be used.

3.3. Numerical solution

Let Ω = ∪r
ι=1(Ω

ι ∪ Γι
cv) be approximated by Ωh = ∪r

ι=1(Ω
ι
h ∪ Γι

cvh) (a polygon in
2D and a polyhedron in 3D) with the boundary ∂Ωh = Γτh∪Γuh∪Γch. Let I = (0, tp),
tp > 0, let m > 0 be an integer, then ∆t = tp/m, ti = i∆t, i = 0, . . . , m. Let {Th,Ωh

}
be a regular family of finite element partitions Th of Ωh compatible to the boundary
subsets Γτh, Γuh and Γch. Let Vh ⊂ V be the finite element space of linear elements
corresponding to the partition Th, Kh = Vh∩K the set of continuous piecewise linear
functions that vanish at the nodes of Γuh and whose normal components are non-
positive at the nodes on ∪s,mΓ

sm
c ; Kh is a nonempty, closed, convex subset of Vh ⊂ V .

Let u0h ∈ Kh, u1h ∈ Vh be approximations of u0 or u1. Let the end points Γτh∪Γuh,
Γuh ∪ Γch, Γτh ∪ Γch, coincide with the vertices of Thi. Since the frictional term is
assumed to be approximated by its value in the previous time level, the frictional
term is approximated by a given friction limit. Then in every time level we have the
following discrete problem:

Problem (P)h: Find a displacement field uh : I→Vh with uh(0) = u0h, u
′
h(0) = u1h,

such that for a.e. t ∈ I, uh(t) ∈ Kh

(u′′
h(t),vh − uh(t)) + a(0) (uh(t),vh − uh(t)) + a(1) (u′

h(t),vh − uh(t)) +

+ j(vh)− j (uh(t)) ≥ (fh(t),vh − uh(t)) ∀vh ∈ Kh, a.e. t ∈ I , (39)

where

(u′′
h,vh) =

r
∑

ι=1

(u′′ι
h ,v

ι
h) =

∫

Ωh

ρu′′hivhidx ,

a(n)(uh,vh) =
r

∑

ι=1

a(n)ι(uι
h,v

ι
h) =

∫

Ωh

c
(n)
ijklekl(uh)eij(vh)dx, n = 0, 1,

(fh,vh) =
r

∑

ι=1

(f ιh,v
ι
h) =

∫

Ωh

Fivhidx+

∫

Γτh

Pivhids,

j(vh) =

r
∑

ι=1

jι(vι
h) =

∫

∪s,mΓsm
ch

gsmch |[vht]
sm| ds ≡ 〈gsmch , |[vht]

sm|〉Γsm
ch
.

To prove the existence of discrete solution uh the technique similar of that as
in the continuous case, where the decomposition parallel as above, the penalty and
regularization techniques are used.
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3.4. Algorithm

The algorithm will be based on the semi-implicit scheme in time and the fi-
nite elements in space. Let m > 0 be an integer, then ∆t = tp/m, ti = i∆t,
i = 0, 1, . . . , m. Approximating the derivatives by the differences, i.e., u′′

h =
u
i+1

h
−2ui

h
+u

i−1

h

∆t2
, u′

h =
u
i+1

h
−u

i
h

∆t
, and setting ui

h = uh(ti), ∆ui
h = uh(ti) − uh(ti−1),

ui+1
h ≡ uh, g

sm
ch = gsmch (ti) = F sm

c (∆t−1[∆ui
th]

sm)
∣

∣

∣
τ smn

(

ui
h,

∆u
i
h

∆t

)
∣

∣

∣
, (F(ti+1),vh) =

∆t2 (fh(ti+1),vh) + (2ui
h − ui−1

h ,vh) + ∆ta
(1)
h (ui

h,vh), F(ti+1) ≡ fh, then after some
algebra in every time level t = ti+1 we have to solve the following problem:

Problem (PA)h: Find uh ∈ Kh, a.e. t = ti+1 ∈ I, such that

A(uh,vh − uh) + j(vh)− j(uh) ≥ (fh,vh − uh), ∀vh ∈ Kh, t = ti+1 ∈ I , (40)

where

A(uh,vh) = (uh,vh) + ∆t2a(0)(uh,vh) + ∆ta(1)(uh,vh) ,

j(vh) = ∆t2
∫

∪s,mΓsm
c

gsmch |[vht]
sm| ds,

where gsmch is the approximate given frictional limit. According to the above assump-

tions about the bilinear forms a
(n)
h (·, ·), n = 0, 1, and since ρ ≥ ρ0 > 0, then the

bilinear form A(uh,vh) is also symmetric in uh and vh and

A(uh,uh) ≥ a0‖uh‖
2
1,2, a0 = const. > 0,

|A(uh,vh)| ≤ a1‖uh‖1,2‖vh‖1,2, a1 = const. > 0, uh,vh ∈ Vh,

hold.

The discretization error will be a function of the time step ∆t and the mesh
size h and thus the truncation error of the time and spatial discretization must tend
to zero [1, 18, 20]. From the stability analysis for the critical time step size we have

∆t ≤ ∆tcrit = γ
h(n)

π

(

ρ(n)

E(n)

)

, (41)

where h(n) is the diameter of the corresponding (n)-th element, h(n) = c(n)Tn, Tn is
the smallest period of the finite discretization with n degrees of freedom, c(n) is a di-
latational wave velocity in the (n)-th material element, ρ(n) and E(n) are (average)
values of the density and the Young modulus on the (n)-th element and γ is a re-
duction factor determined from the numerical experiments. Moreover, the algorithm
is also consistent of order two, because the truncation error is of order ∆t2 in the
displacements. Hence, the algorithm is convergent.
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3.4.1. Mortar discretization

To give a saddle point formulation it is usually to introduce a Lagrange multiplier
space M = Mn × Mt, being the dual space of the trace space W = ⊓sH

1

2
,N(Γs

c)

(i.e., the trace space of V0 restricted to ∪sΓ
s
c) and its dual W ′ = ⊓sH

− 1

2
,N(Γs

c),
assuming that Ωι, ι = 1, . . . , r, are domains with sufficiently smooth boundaries ∂Ωι,
and the bilinear form b(·, ·) on the product space V0 × M . In the case if Γ

s

c =

∪r
ι=1 (∂Ω

ι ∩ Γs
c) \ Γ

s
u we must use H

1

2
,N

00 (Γs
c) instead of H

1

2
,N(Γs

c).
Let every polygonal domain Ωι

h, ι = 1, . . . , r, be covered by a triangulation Th,Ωι

in such a way that on the contact boundaries Γsm
ch the points of Γs

ch and Γm
ch are

not identical, therefore, the mesh sizes hs 6= hm and the global meshsize h is h =
maxΩh

{hs, hm}.
Let us introduce the discrete approximation of the Lagrange multiplier space

MhH =Mhn ×MHt, where

WhH (∪sΓ
s
ch) =Whn (∪sΓ

s
ch)×WHt (∪sΓ

s
ch) =

=
{

vs
h · n

s|∪sΓs
ch
,vh ∈ Vh

}

×
{

vs
h · t

s|∪sΓs
ch
,vh ∈ Vh

}

,

Mhn =
{

µhn ∈ Whn (∪sΓ
s
ch) ,

∫

Γs
c

µhnψhds ≥ 0,

∀ψh ∈ Whn, ψn ≥ 0 a.e. on every Γs
ch

}

,

MHt =
{

µHt ∈ WHt (∪sΓ
s
ch) ,

∫

Γs
ch

µHtψHds−

∫

Γs
ch

gsmch |ψH |ds ≤ 0,

∀ψH ∈ WHt (∪sΓ
s
ch)

}

,

Let

b(µhH,vh) = 〈µhn, [vh · n]
s − dsm〉∪Γs

ch
+

∫

∪sΓs
ch

gsmch µHt · [vht]
sds,

µhH ∈MhH , vh ∈ V0h ,

where [vh · n]sm = vshn(x, t) − vmhn(R
sm(x, t)), [vht]

sm = vs
ht(x, t) − vm

ht(R
sm(x, t)),

whereRsm :Γs
ch(t) 7→Γm

ch(t), at t∈I, is a bijective map satisfying Γm
ch(t)⊂Rsm(Γs

ch(t)),
t ∈ I, and where 〈·, ·〉Γs

ch
denotes the duality pairing between WhH and MhH .

Then we have the following problem:

Problem (P)h: In every time level find (λhH ,uh) ∈MhH × Vh satisfying

A(uh,vh) + b(λhH ,vh) = (fh,vh) ∀vh ∈ Vh = ⊓r
ι=1V

ι
h , t ∈ I,

b(µhH − λhH ,vh) ≤ 〈dsm, µhn − λhn〉∪Γs
ch

∀µhH ∈MhH , t ∈ I. (42)

For the existence and uniqueness it is necessary to ensure that {µhH ∈ MhH ,
b(µhH ,vh) = 0, ∀vh ∈ Vh} = {∅}.
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Proposition 1 Let −τn(u) ∈ Mhn. Then the problem (42) has a unique solution
(λhH ,uh) ∈MhH × Vh, a.e. t ∈ I. Moreover, we have

λshn = −τ sn(uh) and gscλ
s
Ht = −τ s

t (uh) ,

where uh is the solution of the discrete primal problem and gsc ≡ gsmch .

3.4.2. Matrix formulation and the PDAS method

As usual in the mortar approach the contact boundary Γsm
ch has two sides, the

“slave” side from the Ωs
h and the “master” side from the Ωm

h . The contact bound-
aries Γsm

ch are assumed to be a union of faces in the 3D case.

Let us assume that the space V is approximated by the discrete finite element
spaceVh of linear elements corresponding to the partitionTh and let Vh=V

s
h ×V

m
h ⊂ V

be introduced by such a way that the nodal basis functions on the mortar side will
be biorthogonal with respect to the piecewise linear basis on the slave side.1

In the mortar approach, the Lagrange multiplier space is approximated by its
(N−1)-dimensional mesh resulting from theN -dimensional triangulation on the slave
side. In this case the discontinuous piecewise linear nodal basis functions for the dual
Lagrange multiplier will be used. The discrete Lagrange multiplier space MhH can
be spanned as Ms

hH = span{ψiek, i = 1, . . . , nc, k = 1, . . . , N}, s ∈ {1, . . . , r}, where
ψi is the i-th scalar dual basis function, ek is the k-th unit vector, i.e., components
of the unit Cartesian basis, nc is the number of nodes on the slave side of Γ

s

ch, i.e.,
the number of freedom of the space MhH in each component.

LetW s
hH be the vector valued trace space of V0h restricted to ∪sΓ

s
ch. Then for each

vh =
∑

i γiϕi ∈ WhH the discrete scalar product vh ·ns
h =

∑

i(γi ·n
s
i )ϕi, where n

s
i de-

notes the outer normal of Ωs at the node i. Similarly, for each µh =
∑

iαiψi ∈MhH

the discrete product µh · n
s
h =

∑

i(αi · ns
i )ψi. Let us define

Ms+
hH :=

{

µhH ∈Ms
hH | 〈µhH ,vh〉 ≥ 0,vh ∈ W s+

h

}

,

where

W s+
h := {vh ∈ WhH(∪Γ

s
ch)|vh · n

s
h ≥ 0}

and

WhH =WhH(∪sΓ
s
ch) = Whn(∪sΓ

s
ch)×WHt(∪sΓ

s
ch) =

= {vh · n
s|∪Γs

ch
,vh ∈ Vh} × {vh · t

s|∪Γs
ch
,vh ∈ Vh}

1Let {ψi}mi=1
be a suitable dual basis and {ϕj}mj=1

be the standard piecewise linear basis on the

slave side, i.e., the basis of WhH(Γsm
sh ). We say that ψi and ϕj are biorthogonal if

∫

Γ
sm

ch

ϕjψi ds =

δij
∫

Γ
sm

ch

ϕj ds, 1 ≤ i, j ≤ m, δij is the Kronecker delta.
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It can be shown ([20]) that Ms+
hH can be written as

Ms+
hH :=

{

µhH =

m
∑

i=1

αiψi|αi ∈ R
N ,αi = αn

i n
s
i , α

n
i ∈ R, αn

i ≥ 0, i ≤ m

}

.

Finally,

M+
hH =

∏

s

Ms+
hH ,

b(µhH ,vh) = 〈µhH , [vh]
s〉∪Γs

ch
.

For completeness, the discrete convex subset Kh ⊂ Vh will be then defined as

Kh :=

{

vh ∈ Vh|b(µhH ,vh) ≤

∫

∪Γs
ch

dsmh (µhH · ns
h)ds, µhH ∈M+

hH

}

,

where dsmh is a suitable approximation of dsm on WhH .

Then the discrete mortar formulation of the saddle point problem for every time
level is defined as follows:

Problem (Psp)dm: In every time level find uh ∈ Vh, λhH ∈ M+
hH , a.e. t ∈ I,

λhH = (λhn,λHt), satisfying

A(uh,vh) + b(λhH ,vh) = (fh,vh) ∀vh ∈ Vh, t ∈ I , (43)

b(µhH − λhH ,vh) ≤ 〈dsm, (µhH − λhH) · nh〉∪Γs
ch

∀µhH ∈M+
hH , t ∈ I,

where

A(uh,vh) =(uh,vh) + ∆t2a(0)(uh,vh) + ∆ta(1)(uh,vh) ,

b(µhH ,vh) = 〈µhH , [vh]
s〉∪Γs

ch
∀vh ∈ Vh, µhH ∈MhH .

Let us decompose the set of all vertices of triangulation Th = ∪r
i=1T

i
h into three

disjoint parts N ,M,S, where S is a set of vertices on all T s
h ∩Γsm

ch , and M is a set of
vertices on all T m

h ∩Γsm
ch , and N is a set of all the other one. The strong formulation

of the non-penetration condition will be replaced by its weak discrete form
∫

∪Γsm
ch

[uh · n]
sψpds ≤

∫

∪Γsm
ch

dshψpds, p ∈ S , (44)

that coupled the vertices on the slave side and the master side. Using a transforma-
tion of the basis of the space Vh in such a way that the weak non-penetration condi-
tion (44) in the new basis only deals with the vertices on the slave side. Moreover, the
elimination of the Lagrange multiplicators ΛhH can be easy made (see [11, 18, 20]).
In this new basis the first equation of Problem (Psp)dm for every t ∈ I will be
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expressed in the matrix form, that with respect to the sets N ,M,S , after using
the modified basis bellow defined, after some modification ([18, 20]), we obtain the
modified system

ÂhÛh + B̂hΛ̂hH = F̂h , (45)

where Ûh is the displacement vector of nodal parameter with respect to the modified
basis Φ, and where the modified stiffness matrix is of the form

Âh = QAhQ
T =











ANN ANM + ANSM̂ ANS

AMN + M̂TASN
AMM + AMSM̂+

+M̂TASM + M̂TASSM̂
AMS + M̂TASS

ASN ASM + ASSM̂ ASS











and the vector F̂h is of the form

F̂h = QFh = (FN , FM + M̂
T
FS , FS)

T ,

B̂h = Q.(0,−M
T , 0)T = (O,O,D)T , and M̂T = D−1M, M = (M[p, q]), where

M[p, q] =
∫

∪Γsm
ch

ϕpψqds I3, p,∈ S, q ∈ M, and D = (D[p, q]), D[p, q] = δpqI3 ·
∫

∩Γsm
ch

ϕpψq ds, p = q ∈ S, and where the used modified basis is of the form

Φ = (ΦN ,ΦM,ΦS) = Qϕ =





IN O O

O IN M̂T

O O IN









ϕN

ϕM

ϕS



 .

If the displacement Ûh is known, then the Lagrange multiplier can be computed
directly from (45) and then

Λ̂hH = D
−1(F̂h − ÂhÛh)S. (46)

The algebraic representation of the weak nonpenetration condition is associated
with the transformed basis Φ is of the form ([10],[12])

Ûhn,p ≡ (ns
p)

T
D[p, p]Ûhp ≤ dsmp ∀p ∈ S , (47)

where dsmp =
∫

∪sΓs
c
dsmh ψpds, p ∈ S, and the coefficients at Ûhq, q ∈ M, are nullified.

Thus, in every time level, we will solve the following problem

ÂhÛh + B̂hΛhH = F̂h, (48)

Ûhn,p ≤ dsmp ,Λhn,p ≥ 0, (Ûhn,p − dsmp )Λhn,p = 0, ∀p ∈ S, t ∈ I,

where the second line represents the Karush-Kuhn-Tucker conditions of a constrained
optimization problem for inequality constraints, with the discrete Tresca friction
conditions and with the discrete friction conditions

∣

∣Λs
Ht,p(p)

∣

∣ ≤gsp (= F sm
c

∣

∣Λs
hn,p

∣

∣),
∣

∣Λs
Ht,p(p)

∣

∣ <gsp (= F sm
c

∣

∣Λs
hn,p

∣

∣) ⇒ uht,p = 0,
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∣

∣Λs
Ht,p(p)

∣

∣ =gsp (= F sm
c

∣

∣Λs
hn,p

∣

∣) ⇒ ∃ϑ ≥ 0

such that Λs
Ht,p = −ϑuht,p, for all p ∈ S, (49)

where for the Tresca friction model F sm
c |Λs

hn,p| ≡ gsp ∈ H− 1

2 (Γs
c), g

s
p ≥ 0, gsp =

∫

Γs
ch

gschϕpds, and where

Λhn,p = nsT
p D[p, p]ΛhH(p), ΛhH(p) ∈ R

N ,

ΛHt,p = ΛhH(p)− (ΛhH(p) · n
s
p)n

s
p = (ΛhH(p) · t

s
p)t

s
p .

For gsp = 0 the condition (49) leads to homogeneous Neumann boundary conditions
in tangential direction.

PDAS algorithm for the 3D case with friction of Tresca type. In the 3D
model with the Tresca friction if the displacements uh are known, the Lagrange
multiplier ΛhH = (Λhn,ΛHt) can be computed directly from (49a), that is,

ΛhH = D
−1(F̂h − ÂhÛ)S , (50)

where the subscript S denotes that we use only the entries of the vector corresponding
to the nodes p ∈ S. For the normal and tangential components of the multiplier ΛhH

and of the relative decomposition uh for a node point p ∈ S, we have

Ûhn,p = Û
T
p np ∈ R, ÛHt,p = (ÛT

p t1p, Û
T
p t2p)

T ∈ R
2,

Λs
hn,p = (ns

p)
T
D[p, p]ΛhH(p) ∈ R, ΛhH(p) ∈ R

3,

Λs
Ht,p = ΛhH(p)− (ΛhH(p) · n

s
p)n

s
p =

(

ΛhH(p) · t
s
p

)

tsp =

=
(

ΛT
hH(p)D[p, p]t

s
1,p, Λ

T
hH(p)D[p, p]t

s
2,p

)T
∈ R

2 .

Let gsp > 0, then the condition (49) is equivalent to Ct

(

Ût,p,Λ
s
Ht,p

)

= 0 for all p ∈ S,

where

Ct

(

Ûht,p,Λ
s
Ht,p

)

=max
(

gsch,p, |Λ
s
Ht,p + c2Ûht,p|

)

Λs
Ht,p − gsp

(

Λs
Ht,p + c2Ûht,p

)

, c2>0 ,

(51)
which will be a starting point of the algorithm, that will be based on a Newton-type
algorithm for the solution of Ct(Ûht,p,Λ

s
Ht,p) = 0. As it was shown in [7] the max-

function and the Euclidean norm are semi-smooth, and therefore, a semi-smooth

Newton method can be used. If the Euclidean norm
∣

∣

∣
Λs

Ht,p + c2Ûht,p

∣

∣

∣
= 0, then

max
(

gsch,p, |Λ
s
Ht,p + c2Ûht,p|

)

= gsch,p and the Euclidean norm vanishes. Hence, the

derivative of the Euclidean norm only occurs for points that are differentiable in the
classical sense. The analysis of the generalized derivative of Ct(Ûht,p,Λ

s
Ht,p) (see [12])
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shows that the nodes of S are separated into the active set AHt,k and the inactive
set IHt,k, where

AHt,k : =
{

p ∈ S; |Λs,k−1
Ht,p + c2Û

k−1
ht,p | − gsch,p > 0

}

, (52)

IHt,k : =
{

p ∈ S; |Λs,k−1
Ht,p + c2Û

k−1
ht,p | − gsch,p ≤ 0

}

. (53)

Since B̂h = (O,O,D)T , we decompose the matrix D into

D =

[

DIk O

O DAk

]

, since S = Ak ∪ Ik.

This decomposition of nodes of S into the active AHt,k and inactive IHt,k sets is
provided by the characteristic function in the generalized derivative of Ct(·, ·). The
case if gch,p = 0 is in details analyzed in [12].

Summing all results for the frictionless contact problem and for the Tresca friction
case, then Problem (P) can be rewritten as

ÂhÛh + B̂hΛhH = F̂h,

Cn

(

Ûhn,p,Λhn,p

)

= 0 , (54)

Ct(Ûht,pΛHt,p) = 0

for all vertices p ∈ S and t ∈ I.
The PDAS algorithm for the contact problem with friction in the Tresca sense is

as follows:

Algorithm (T ):

STEP 1: Initiate the active sets Ahn,1, AHt,1 and the inactive sets Ihn,1, IHt,1 such
that Sn = Ahn1 ∪ Ihn1, St = AHt1 ∪ IHt1, Ahn1 ∩ Ihn1 = ∅, AHt1 ∩ IHt1 = ∅ and
introduce the initial value (Û0,Λ0

hH), c1, c2 ∈ (103, 104) and set k = 1, c1 > 0, c2 > 0,
m ∈ N.

STEP 2: Define the active and inactive sets

Ahn,k : =
{

p ∈ S;Λs,k−1
hn,p + c1

(

Û
k−1,m
n,p − dsmp

)

> 0
}

,

Ihn,k : =
{

p ∈ S;Λs,k−1
hn,p + c1

(

Û
k−1,m
n,p − dsmp

)

≤ 0
}

,

AHt,k : =
{

p ∈ S;
∣

∣

∣
Λs,k−1

Ht,p + c2Û
k−1,m
t,p

∣

∣

∣
− gsch,p > 0

}

,

IHt,k : =
{

p ∈ S;
∣

∣

∣
Λs,k−1

Ht,p + c2Û
k−1,m
t,p

∣

∣

∣
− gsch,p ≥ 0

}

,

STEP 3: For i = 1, . . . , m, compute the generalized derivative in the sense of
a semi-smooth Newton method, i.e.,

Û
k,i
hH = G

(

Û
k,i−1
hH ,Ahn,k, Ihn,k,AHt,k, IHt,k, Û

k−1,m
hH ,Λk−1

hH

)

,
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where by the symbol G we denote the generalized derivative in the sense of a semi-
smooth Newton method.

STEP 4: If
∣

∣

∣
Û

k,m
hH − Û

k,0
hH

∣

∣

∣
/
∣

∣

∣
Û

k,m
hH

∣

∣

∣
< ε then STOP.

STEP 5: Compute the Lagrange multiplier due to (51), that is,

ΛhH,k = D
−1

(

F̂hS − ÂhSÛ
k,m
hH

)

.

STEP 6: Set Ûk+1,0
hH = Û

k,m
hH , k = k + 1 and goto STEP 2.

PDAS algorithm for the 3D case with Coulomb friction. The algorithms
can be based on the fixpoint algorithm or on the full Newton method ([12]). We
limit ourselves to the fixpoint algorithm only.

The Fixpoint Algorithm (FP) is the extension of the above PDAS algorithm
for the Tresca friction, in which the friction bound gsch,p = F sm

c |Λs
n,p| is iteratively

modified using the normal component of the Lagrange multiplier. Thus, we have
the following algorithm, that the friction bound and the active and inactive sets are
updated in every step.

Algorithm (FP):

STEP 1: Initiate the initial value
(

Û0,0,Λ0
hH

)

, c1, c2 ∈ (103, 104) and set k = 1,

k0 ∈ N, m ∈ N.

STEP 2: If modk0(k − 1) = 0, set kc = k − 1 and update the friction bound by
gs,kcch,p = F sm

c max{0,Λs,kc
n,p }, p ∈ S.

STEP 3: Define the active sets Ahn,k, AHt,k and the inactive sets Ihn,k, IHt,k by

Ahn,k : =
{

p ∈ S;Λs,k−1
hn,p + c1

(

Û
k−1,m
n,p − dsmp

)

> 0
}

,

Ihn,k : =
{

p ∈ S;Λs,k−1
hn,p + c1

(

Û
k−1,m
n,p − dsmp

)

≤ 0
}

,

AHt,k : =
{

p ∈ S;
∣

∣

∣
Λs,k−1

Ht,p + c2Û
k−1,m
t,p

∣

∣

∣
− gs,kcch,p > 0

}

,

IHt,k : =
{

p ∈ S;
∣

∣

∣
Λs,k−1

Ht,p + c2Û
k−1,m
t,p

∣

∣

∣
− gs,kcch,p ≤ 0

}

.

STEP 4: For i = 1, . . . , m, compute the generalized derivative in the sense of
a semi-smooth Newton method

Û
k,i
hH = G

(

Û
k,i−1
hH ,Ahn,k, Ihn,k,AHt,k, IHt,k, Û

k−1,m
hH ,Λk−1

hH

)

,

where the symbol G has the same meaning as above.
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STEP 5: Compute the Lagrange multiplier due to (51) as

Λk
hH = D

−1
(

F̂hS − ÂhSÛ
k,m
hH

)

.

STEP 6: If
∥

∥

∥
Û

k,m
hH − Û

kc,m
hH

∥

∥

∥
/
∥

∥

∥
Û

k,m
hH

∥

∥

∥
< ε then STOP.

STEP 7: Set Ûk+1,0
hH = Û

k,m
hH and k = k + 1 and goto STEP 2.

If m = ∞, we obtain the exact version of the algorithm, in the previous case we
speak about inexact algorithm. The algorithm is convergent for small coefficient of
friction (see [6]).

3.5. Fracture of bones with neoplasms

With a persistent growth of the neoplasms, the possibility of fracture rises can
be expected. Firstly, in locations with highest stresses the crack initiations can be
occurred (Fig. 1a,b,c), and with continuous loading the cracks start to opening and
propagate up-to the moment when the bone is fractured. In the real situations it is
very difficult to determine the location of a crack, its initiation, its further opening
and propagation and to determine the direction of its future propagation.

The geometry of the investigated system of bones with neoplasms is determined
from the CT or MRI scan data. The locations of the acting contraction forces
and their directions will be determined from the anatomy knowledges and their
magnitudes (in N) will be determined from the cross-sectional area of the muscles
(in mm2), the averaged activation ratio, and a certain constant (in N/mm2). On
the bases of these CT or MRI data the finite element mesh will be generated. The
contact boundaries will be approximated by such a way that the contact boundary
is discretized from the both sides corresponding to the neighboring subdomains Ωs

and Ωm, from the slave side and the master side, and then the unilateral contact
conditions will be satisfied in all vertices of T s

h ∩ Γsm
ch from the slave side and in all

vertices of T m
h ∩ Γsm

ch from the master side.
To determine the areas of possible fracture zones, we firstly determine the areas

with maximal principle stresses, and therefore, the places where cracks are initiated.
Thus we need to check, at each time step, when the crack is started to propagate
and in which direction. In the first case the crack propagation criteria will be used,
while in the second one the crack kinking criteria will be used. When a crack further
propagate, the accuracy at the crack tip will be of great importance for determination
of a possible fracture. Many numerical tools were developed to improve the accuracy
at the crack tip. Since the stress field is singular in the vicinity of the crack tip,
a concentric mesh around the crack tip can be coupled with singular elements, which
can be used to model the stress field singularity. An other approach is based on the
strain energy release rate, where a construction of ring elements in the neighborhood
of the crack tip (Fig. 2a,b), is also used. Finally mesh refinement around the crack
tip is necessary to keep a better precision in the vicinity of the crack. Since the
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Figure 2: Location of the crack and the mesh around the crack tip: a) crack initiation;
b) crack opening.

crack propagates, the crack tip moves along and the areas in the vicinity of crack
are changed; thus, a new mesh is created and refined only in areas at the front of
the propagated crack.

A location of a crack and its initiation and further opening are given in Fig. 2a,b.
Many numerical algorithms have been applied to improve the accuracy at the crack
tip and to determine a crack propagation direction. With a great advantage the
automatic remeshing procedure at the crack tip, with a thickening of the mesh at
the crack tip and using singular elements to model the singular stress-strain fields,
can be used. To determine a crack propagation direction we compute eigenvalues and
eigenvectors of the stress tensor in all determined mesh points nearest to the crack
tip, i.e., we determine the principal stresses and their directions. The final direction
of the crack propagation will be obtained as a weighted average of each direction
with respect to the distance between the mesh point and the crack tip. Moreover,
stress intensity factors, that is, strength singularity at the crack tip, can be used
for determination of a crack propagation. Very useful algorithms are based on the
dynamic contact problems with friction. Therefore, the PDAS algorithms discussed
above can also be used for numerical studies of opening of cracks and fractures in
loaded bones with neoplasms. Numerically, simpler versions of the free boundary
problems can be firstly studied for the symmetric neoplasms.

4. Conclusion

At present about tumor’s studies exist more than two millions research papers,
predominantly of the oncological studies from the medical point of views, and only
relatively small part of these papers are devoted to mathematical problems of oncol-
ogy. Majority of these mathematical papers are devoted to studies on the response of
a vascular tumor to chemotherapeudic treetments and effects of drug resistance, to
studies on a tumor-induced angiogenesis, on a tumor-immune system dynamics and
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minority of these papers are devoted to mathematical modelling of tumor’s growth.
These research works are connected with Profs A. Friedman, S. Cui, H. Byrne,
L. Preziosi, M.A. Chaplain, S. J. Chapman, T. Roose, A.R.A. Andersson and many
others. They analyzed the problems mathematically and under some assumptions on
the physical parameters of the models, they prove the existence and the uniqueness of
the solution of some free boundary problems. The studied models are predominantly
assumed to be spherically symmetric.

The author, together with his co-workers, studied the problems concerning with
the biomechanical problems of artificial replacements of human’s joints, and more-
over, e.g. a fractured lumbar spine, where the fracture passes practically horizontally
through the vertebra, where the internal stabilized device was applied. Such a frac-
ture is observed between the vertebra Th12 and L3, and is known as the Chance’s
fracture. The aim of this study was to obtain some knowledge about the situa-
tion and the behavior of fractured parts of the vertebra on their common contact
boundary (because minor movements stimulate healing of the fracture), where the
mathematical model was based on the contact problem in non-linear elasticity, where
the non-linear elastic coefficients are strain dependent (see e.g. Nedoma et al. (2011)
and the author’s references presented here).

The PDAS method was firstly presented in the papers of Hintermüller et al. (2002),
(2004), (2005) and in Wohlmuth and Krause (2003), Hüeber and Wohlmuth (2005),
Hlaváček (2006) and many others, where the static contact problems with or without
given friction were studied. Later Hüeber et al. (2008) applied the PDAS algorithm
for 3D static contact problems with Coulomb friction, where they present two al-
gorithms based on the fixpoint algorithm and on the full Newton method. Hüeber
et al. (2005) studied the dynamic contact problem, where the Newmark algorithm
with the PDAS algorithm was used. The author studied the quasi-static and dynamic
problems with or without friction close of the nineties in connection with geodynamic
problems, based on linear or non-linear elastic, thermo-(visco-)elastic and thermo-
visco-plastic Bingham rheologies (Nedoma (1998a), (2005), (2006), (2010), (2012)
and later in biomechanics (Nedoma (1998b), (2004), (2006), (2012) and Nedoma
et al. (2011) and the author’s references presented here. The PDAS algorithm pre-
sented in the paper is a continuations of results obtained in previous author’s pa-
pers connected with the quasi-static and dynamic contact problems with or without
friction in thermo-(visco-)elasticity. The presented PDAS algorithm as well as the
PDAS algorithms of the previous mentioned papers are based on the author’s idea
and represent the own author’s results. The novelty of these algorithms is that
they practically pursue the techniques of proofs of dynamic problem with or without
Coulomb (or Tresca) friction. From the medical point of view the aim of this paper
is to give an optimal algorithm for application in connection with further oncological
studies and in application concerned with a computer-aided orthopedic surgery. The
presented method can be used also in geodynamic problems as well as in problems
of technology.
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