
PANM 18

Jan Přikryl; Miroslav Vaniš
Comparing numerical integration schemes for a car-following model with real-world data

In: Jan Chleboun and Pavel Kůs and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.):
Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Janov nad Nisou, June 19-24, 2016.
Institute of Mathematics CAS, Prague, 2017. pp. 89–96.

Persistent URL: http://dml.cz/dmlcz/703002

Terms of use:
© Institute of Mathematics CAS, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/703002
http://dml.cz

Programs and Algorithms of Numerical Mathematics 18
J. Chleboun, P. Kůs, P. Přikryl, K. Segeth, J. Š́ıstek, T. Vejchodský (Eds.)

Institute of Mathematics CAS, Prague 2017

COMPARING NUMERICAL INTEGRATION SCHEMES
FOR A CAR-FOLLOWING MODEL WITH REAL-WORLD DATA

Jan Přikryl, Miroslav Vanǐs

Czech Technical University in Prague, Faculty of Transportation Sciences
Konviktská 16, CZ-110 00 Praha, Czech Republic

prikryl@fd.cvut.cz, vanismir@fd.cvut.cz

Abstract: A key element of microscopic traffic flow simulation is the so-
called car-following model, describing the way in which a typical driver inter-
acts with other vehicles on the road. This model is typically continuous and
traffic micro-simulator updates its vehicle positions by a numerical integration
scheme. While increasing the order of the scheme should lead to more accurate
results, most micro-simulators employ the simplest Euler rule. In our contri-
bution, inspired by [1], we will provide some additional details that have to be
addressed when implementing higher-order numerical integration schemes for
CFMs and we will show that the theoretical gain of higher-order methods is
unfortunately masked out by the stochastic nature of real-world traffic flow.

Keywords: numerical integration, Runge-Kutta, Euler, trapezoid, ballistic
update, car-following model, intelligent driver model, traffic flow

MSC: 65L06, 65L07, 68Q17

1. Introduction

In time-continuous car-following models (CFMs) employed by some microscopic
traffic flow simulators, the acceleration of individual vehicles is described by a func-
tion of the driver’s characteristic behavior and the surrounding traffic. This formu-
lation leads to a coupled set of ODEs which is identical to that of physical particles
following Newtonian dynamics with the physical forces replaced by fictious “social
forces”. While many CFMs have been formulated directly in discrete time in the form
of difference equations, or fully discretely as cellular automata, and can be there-
fore evaluated directly, time-continuous CFMs must be evaluated using a numerical
integration scheme in all but the most trivial analytically solvable cases [3].

The interaction between different vehicles on the road is best described by a pro-
cess where vehicles react primarily on the driving behaviour of their leaders, i.e.
vehicles that drive in front of the modelled vehicles [5]. If formulated in continuous

DOI: 10.21136/panm.2016.11

89

http://dx.doi.org/10.21136/panm.2016.11

form, this class of CFMs is often represented by a coupled system of ODEs modelling
movement of a single vehicle,

dy

dt
= f(y, t), (1)

where y = [x, v]T is the state vector of a vehicle, composed of position x and speed v,
and the vector function f represents the specific CFM. A wide class of follow-the-
leader CFMs that are used in microscopic simulators can be defined using a vehicle
acceleration function amic as

dxi
dt

= vi,

dvi
dt

= amic(si, vi, vi−1),

(2)

where i = 1, . . . , n is the index of actual vehicle from the fixed n number of vehicles,
xi denotes the position of the front bumper of vehicle i, vi its speed and si bumper to
bumper gap between the current vehicle and its leader (for the first vehicle we have
s1 = ∞, otherwise si = xi−1 − xi − `i−1, where `i is the length of the i-th vehicle).
By convention, we assume that for the i-th vehicle, the vehicle i− 1 is the leader.

1.1. Intelligent driver model

In their recent article [1], Treiber and Kanagaraj compare different numerical inte-
gration schemes for intelligent driver model (IDM) [2]. The IDM is a time-continuous
car-following model for the simulation of freeway and urban traffic, developed in part
by the first author of [1]. The model assumes that drivers maintain certain minimal
time and space gap from their leading vehicle, and at the same time try to keep
their preferred speed and acceleration and deceleration profile. The model does not
work with an explicitly given reaction time of the driver, and typically it is assumed
that the driver reaction time is constant and equal to the step size of the underlying
numerical integration scheme.

The IDM acceleration function is given by

amic(si, vi, vi−1) = a

(
1−

(
vi
v0

)δ
−
(
s∗(vi, vi−1)

si

)2
)

(3)

with

s∗(vi, vi−1) = s0 + vi T +
vi(vi − vi−1)

2
√
ab

, (4)

where the model parameters are a, b – maximum safe acceleration and decelera-
tion, v0 – preferred speed, δ – acceleration exponent (typically equal to 4), and
s0, T – minimum space and time gap to the leader vehicle.

90

2. Numerical methods

Similarly to the authors of [1] we will investigate four different integration schemes.
The first three are well-known numerical methods for integrating ODEs, namely

• explicit Euler method, defined as

k1 = f(y, t),

y(t+ h) = y + hk1,
(5)

• explicit trapezoidal rule (Heun’s method)

k1 = f(y, t), k2 = f(y + hk1, t+ h),

y(t+ h) = y +
h

2
(k1 + k2),

(6)

• and the standard fourth-order Runge-Kutta method (RK4)

k1 = f(y, t), k2 = f

(
y +

h

2
k1, t+

h

2

)
,

k3 = f

(
y +

h

2
k2, t+

h

2

)
, k4 = f(y + hk3, t+ h),

y(t+ h) = y +
h

6
(k1 + 2k2 + 2k3 + k4).

(7)

Besides the three standard approaches outlined above, the authors of [1] use an al-
ternative first-order integration scheme called ballistic update, which can be used only
in special cases where Eq. (1) represents Newtonian dynamic acceleration equations.
The rule can be interpreted as a mixed first-order, second-order update consisting of
an Euler update for the speeds, and a trapezoidal update for the positions,

y(t+ h) =

(
x(t+ h)
v(t+ h)

)
=

(
x
v

)
+ h

(
v

a(x,v)

)
+

1

2
h2

(
a(x,v)

0

)
, (8)

where the last term makes the difference between ballistic and Euler method. The
acceleration is computed only once per the time step, so the order of the method
stays the same as in the Euler method. The trapezoidal rule needs to calculate the
acceleration two times and the fourth order Runge-Kutta four times. For CFMs, cal-
culating the acceleration function is an essential part of their numerical complexity.

3. Comparing the numerical integration methods

In order to compare the performance of integration schemes introduced in Sec-
tion 2 we need to have a reference solution of the studied problem. For all the
schemes, both decreasing the time step and increasing the method order should
lead to more accurate results at the price of higher computational demands. We
will therefore evaluate the difference to the reference solution as a function of the
computational effort that was spent at obtaining the tested solution.

91

3.1. Reference solution

The reference solution of a simulation involving IDM cannot be obtained an-
alytically, except for trivial cases without vehicle interaction. We will follow the
argumentation of the original paper and generate a reference solution for simulation
scenarios using RK4 and time step href = 10−4 s. The global discretisation error will
be evaluated for speeds of a single vehicle as an average of local absolute errors,

ε =
∥∥vnum

i − vref
i

∥∥ =
1

m

m∑
j=1

|vnum
i (jh)− vref

i (jh)|, (9)

where vnum
i (jh) is the speed of the i-th vehicle at time t = jh and vref

i (jh) is the
reference solution for the same vehicle at the same time step.

3.2. Numerical complexity

The computational demands of a given integration scheme can be expressed in
terms of numerical complexity as

C =
p

h
, (10)

where p denotes the number of evaluations of the acceleration function for one step of
the integration scheme (for Euler method and ballistic update p = 1, for trapezoidal
rule p = 2, for RK4 we have p = 4) and h is the time step.

4. Implementation details

Reference [1] contains almost complete information needed to re-implement the
original experiments of the authors. We will now briefly overview the important
parts, adding one detail that has been omitted from the original paper.

4.1. Initial and boundary conditions

For the original (synthetic) simulation scenarios the following conditions hold:
At time 0 s all vehicles are stopped, vi(0) = 0, and their positions are x1(0) = 0,
∀i > 1 : xi(0) = xi−1(0)− `i−1 − si. Furthermore, a boundary condition for the first
vehicle acceleration is given – Treiber and Kanagaraj assume free-flow conditions for
the first vehicle,

a1(v1, t) = afree(v1) = amic(∞, v1, v1). (11)

These conditions lead to an autonomous ODE.

For the real world scenario we have vehicles that are entering the simulation at
externally prescribed time instants τi, and hence we have vi(τi) = v0,i and xi(τi) = 0.
Special care has to be taken to keep the gap between the entered vehicle and its
leader large enough.

92

5. Heuristics for stopping vehicles

The discussed integration schemes assume smooth f . Due to finite update times,
all equations will lead to negative speeds in cases where the vehicle stops between the
updates. The authors of [1] suggested the following heuristics to estimate the stop-
ping position directly: when the computed speed after the final step of integration
scheme is negative, the position of the stopped vehicle is determined by a variant of
the ballistic rule instead of the originally calculated position:

xi(t+ h̃) = xi(t)−
v2
i (t)

2amic
i (t)

. (12)

Here, h̃ could be h or h/2 (for the RK4 method). In addition, the speed of the
vehicle is reset to zero.

5.1. Position of the leader

Except for the Euler method and the ballistic update, the integration of IDM for
the current vehicle requires the knowledge of the leader vehicle state ylead(t+h) (for
the computation of k2 of trapezoidal rule and k4 of RK4) and, for RK4, also the
leader vehicle state at the intermediate point ylead(t+ h/2), which has to be used to
correctly compute values of k2 and k3. While the former value can be easily obtained
by performing the integration step on an ordered sequence of vehicles, thus updating
the state of the leader vehicle before updating the state of its follower, the original
paper does not mention how the state ylead(t+ h/2) is computed.

We have tested simple linear approximation, trapezoidal rule, and different com-
binations of intermediate RK4 states. Our results, presented in Section 2, indicate
that in [1] the state at the intermediate point is computed as

ylead

(
t+

h

2

)
= ylead(t) +

h

2
(k2 + k3) . (13)

5.2. Parallelisation

Note that while the Euler and the ballistic updates may be executed on arbitrary
vehicle regardless of the updated state of its leader, the ordering condition for trape-
zoidal and RK4 update effectively prevents vehicle-level parallelisation. However,
vehicles within independent lanes may be still updated in parallel.

6. Results

To verify the results presented in [1] and to compare these results with real-world
measured data, a simple custom micro-simulator has been created in Python pro-
gramming language, using standard extension libraries NumPy, SciPy and Matplotlib.
The simulator is able to simulate a single lane road equipped with vehicle counting
detectors and provide floating car data (speed, position, acceleration, and gap-to-
-leader) for all simulated vehicles.

93

10-1 100 101 102 103 104

Numerical complexity [(veh·s)−1]

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

G
lo

b
a
l
sp

e
e
d
 e

rr
o
r

[m
/s

]

EulerODEIntegrator
BallisticODEIntegrator
TrapezoidODEIntegrator
RungeKutta4ODEIntegrator

Global speed error vs. complexity for vehicle 10

Figure 1: Global discretisation error of the 10-th vehicle speed as a function of the
numerical complexity for the four update schemes. As with the original paper [1],
the simulation interval has been limited to [0, 60] seconds.

6.1. Original scenario

In order to verify the implemented integration schemes, we first replicated the
original synthetic start-stop scenario of Treiber and Kanagaraj. We started with
20 identical vehicles queuing at the red light. At time t = 0, traffic light turned
green and the queued cars started moving for 670 metres, where the next signalized
intersection was located and the cars needed to stop again. We ran the simulation
of this scenario for all four numerical integration schemes mentioned in Section 2 for
16 different integration steps ranging from 2.4 s to 0.002 s. If implemented correctly,
we would expect to observe results similar to that of [1], with RK4 being the most
precise of the tested methods in terms of the L1 global error metric (9). This is
indeed true in case that the intermediate point in RK4 scheme is computed using
Eq. (13), see Fig. 1.

6.2. Real world data

In order to test the results on real world data, the same data set from the southern
leg of the Prague Ring (SOKP) as in Ref. [4] has been used. From the database of
weekday measurements, two working days have been selected. One day of detector
measurements for passenger vehicles from SOKP gantry at km 20.1 has been used
to calibrate IDM parameters. Then, another working day has been used as an input

94

20

10

0

10

20

V
e
h
ic

le
 c

o
u
n
t

[-
]

Euler Ballistic

0 200 400 600 800 10001200
Simulated time [s]

20

10

0

10

20

V
e
h
ic

le
 c

o
u
n
t

[-
]

Trapezoid

0 200 400 600 800 100012001400
Simulated time [s]

RK4

Detector data difference at km 18.7

Figure 2: Global error of the vehicle count for the four update schemes with respect
to real measurements.

to vehicle generator and the simulation result has been compared to data measured
at km 18.7. The fixed step h = 0.5 s (that roughly corresponds to average driver
reaction time) has been used for all four integration schemes. As we can see in Fig. 2,
results for the different integration schemes are almost identical. When we compute
different error metrics, the similarity of the results becomes even more obvious – see
Tab. 1.

We believe these results confirm the fact the even a well-accepted model as the
IDM is only an approximation of the reality (which is to greater or lesser extent
true for all mathematical models). The traffic flow is inherently a phenomenon with
a very strong stochastic component, and as such it is very difficult to model – even
if we would be able to replicate the properties of every vehicle with a minimal error,
it is impossible to predict the behaviour of a human driving the vehicle.

7. Conclusions

Generally, when integrating ODEs, the fourth-order Runge–Kutta (RK4) method
is the de-facto standard and other methods are rarely used. However, this is not the
case for integrating CFMs in traffic simulations – here, Euler’s method is still the
most widespread one [1]. One of the reasons is given by the authors of [1]: for typical
traffic-related situations, RK4 cannot reach its theoretical consistency order p = 4
as the smoothness conditions for the integrated function are rarely satisfied.

95

Method MSE max |∆| # hits

Euler 20.88 20 259
Ballistic 19.73 19 258

Trapezoid 20.19 22 262
RK4 20.67 21 261

Table 1: Comparison on real world data. MSE stands for mean squared error,
max |∆| is the maximum difference from the reference value, and # hits column
contains the count of occurrences where the simulation results were within ±1 vehicle
from the reference.

Inspired by this observation, which was made using synthetic experiments, we
have used the same group of integration schemes to simulate real traffic between
two measurement points on a highway. Our result show that due to the stochastic
nature of traffic, the performance of all integration schemes is almost identical, sug-
gesting that using Euler’s method (or ballistic update) can be justified by its low
computational demands.

The reader could correctly object that selecting only a single step size, namely
h = 0.5 s, for comparison, may be unfair to higher order methods as their benefits
would become more pronounced for larger h. Unfortunately, in CFM context, h also
often reflects the average reaction time of a driver and its choice is therefore limited
to values between circa 0.5 and 1 second.

The Python source code of our experiments is available from the GitHub of the
fist author at http://github.com/jprk/panm18.

References

[1] Treiber, M. and Kanagaraj V.: Comparing numerical integration schemes for
time-continuous car-following models. Phys. A 419 (2015), 183–195.

[2] Treiber, M., Hennecke, A., and Helbing, D.: Congested traffic states in empirical
observations and microscopic simulations. Phys. Rev. E 62 (2000), 1805-–1824.

[3] Treiber, M. and Kesting, A.: Traffic flow dynamics: data, models and simulation.
Springer, Berlin, 2013.

[4] Horňák, I. and Přikryl, J.: Experimental comparison of traffic flow models on
traffic data. Programs and Algorithms of Numerical Mathematics 17 (2015), 86–
91.

[5] Gazis, D. C., Herman, R., and Rothery, R. W.: Nonlinear follow-the-leader mod-
els of traffic flow. Oper. Res. 9 (1961), 545–567.

96

http://github.com/jprk/panm18

