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Institute of Mathematics CAS, Prague 2017

PARALLEL STRATEGIES FOR SOLVING THE FETI COARSE
PROBLEM IN THE PERMON TOOLBOX
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Abstract: PERMON (Parallel, Efficient, Robust, Modular, Object-oriented,
Numerical) is a newly emerging collection of software libraries, uniquely com-
bining Quadratic Programming (QP) algorithms and Domain Decomposition
Methods (DDM). Among the main applications are contact problems of me-
chanics. This paper gives an overview of PERMON and selected ingredients
improving scalability, demonstrated by numerical experiments.
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1. Introduction

PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numeri-
cal) [10], [12] is a newly emerging collection of software libraries, uniquely combining
quadratic programming (QP) and Domain Decomposition Methods (DDM). There
are two core modules in PERMON: PermonQP and PermonFLLOP. They are built
on top of PETSc [3], [2], mainly its linear algebra part. They extend PETSc with
new specific functionality, algorithms for large scale sparse QP problems and DDM
of the Finite Element Tearing and Interconnecting (FETI) type. The same coding
style is used so that users familiar with PETSc can utilize them with minimal effort.
Among the main applications are contact problems of mechanics.

PermonQP provides a base for solution of quadratic programming (QP) problems.
It includes data structures, transforms, algorithms, and supporting functions for QP.
PermonQP is available for free under the FreeBSD open source license.

PermonFLLOP (FETI Light Layer on Top of PETSc) is an extension of Per-
monQP that adds support for DDM of the FETI type. PermonFLLOP is currently
under preparation for publishing.
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2. PermonQP

PermonQP, a general purpose QP solver, allows solving QPs with a symmetric
positive semidefinite Hessian and any combination of linear equality and inequality
constraints including unconstrained QP. It provides a basic framework for QP so-
lution (data structures, transformations, and supporting functions), a wrapper of
PETSc KSP linear solvers for unconstrained and equality-constrained QP, a wrap-
per of PETSc TAO optimization solvers [13] offering several additional algorithms
for unconstrained and box-constrained QP, a variant of the augmented Lagrangian
method called Semi-Monotonic Augmented Lagrangian with Bound and Equality
(SMALBE), and several specific solvers for bound constrained minimization. General
linear inequality constraints can be converted to bound constraints using dualization.

3. PermonFLLOP

PermonFLLOP (FETI Light Layer on Top of PETSc) is an extension of the Per-
monQP package, implementing the algebraic part of DDMs of the FETI type [7], [6],
[5], [4]. Let us show how PermonFLLOP is implemented from the user’s perspective.
The domain has to be volume-meshed and decomposed using a partitioning software
such as METIS [1]. Then virtually arbitrary Finite Element Method (FEM) im-
plementation can be used to generate the subdomain stiffness matrices Ks and the
subdomain load vectors f s as sequential data for each subdomain Ωs, s = 1, . . . , NS

independently. However, the local-to-global mapping l2g, mapping each subdomain’s
degrees of freedom to the global degrees of freedom, has to be produced in this phase.

Let us denote the number of processor cores used for the compuation by Nc. We
assume here each processor core owns only one subdomain, NS = Nc. PermonFLLOP
has nevertheless a new experimental feature of allowing more than one subdomain
per core, NS > Nc, i.e. an array of Ks and f s is passed per subdomain.

The “gluing” signed Boolean matrixBg is constructed based on l2g as described in
[14]. The FEM software can skip the processing of the Dirichlet conditions and rather
hand it over to PermonFLLOP, resulting in greater flexibility. PermonFLLOP allows
to enforce Dirichlet boundary conditions either by the constraint matrix Bd (Total
Finite Element Tearing and Interconnecting (TFETI) approach), or by a classical
technique of embedding them directly into Ks and f s (FETI-1 approach). It is also
possible to mix these two approaches.

The inequality constraint matrix BI describes linearized non-penetration con-
ditions [5] on the contact zones. It is empty for linear (permanent contact only)
problems. The global constraint right-hand side vector c possesses an analogous
structure. Currently, PermonFLLOP requires BI and cI from the caller.

The subdomain nullspace matrix Rs is assembled using one of the following op-
tions. The first option is to use a numerical approach [8], and the second one is to
generate Rs as rigid body modes from the mesh nodal coordinates [4]. The latter is
typical for TFETI and is considered here.

155



Within PermonFLLOP, the local objects Ks, Rs and f s constitute the global
distributed objects

K = diag(K1, . . . , KNS),

R = diag(R1, . . . , RNS),

f = [(f1)T , . . . , (fNS)T ]T ,

where diag means a block-diagonal matrix consisting of the diagonal blocks in the
parentheses.

In the PermonFLLOP’s function FllopSolve, PermonFLLOP passes the global
primal dataK, f , BE = [BT

g B
T
d ]

T , BI andR to PermonQP (Section 2), calls a specific
series of QP transforms provided by PermonQP, resulting in the bound and equality
constrained QP which is then solved with the QPSSolve function.

From the mathematical point of view, the called QP transforms (QPT) implement
the following modifications. The original primal problem

min
1

2
uTKu− fTu s.t. BIu ≤ 0 and BEu = 0, (1)

is transformed into the dual one by QPTDualize

min
1

2
λ

TFλ − λ
Td s.t. λI ≥ 0 and Gλ = e, (2)

We use the standard notation

F = BK†BT , G = RTBT , d = BK†f , e = RT f ,

with matrix R, whose columns span the null space of K and represent rigid body
or zero energy modes of subdomains, and K† denoting a generalized inverse of K,
i.e. a matrix satisfying KK†K = K. The constraint matrix B = [BT

I B
T
E ]

T can be
constructed so that it has full rank, and then the Hessian F is positive definite with
a relatively favourably distributed spectrum for application of the conjugate gradient
method (CG).

The solution u can be evaluated by formula

u = K†(f −BT
λ) +Rα. (3)

Here,
α = −(RT B̃T B̃R)−1RT B̃T B̃K†(f −BT

λ)

denotes the vector of amplitudes, determining the contribution Rα of the null
space R to the solution u. The matrix B̃ is defined as B̃ = [ B̃T

I
BT

E ]
T with B̃I

formed by rows of BI that correspond to the active constraints.
The problem of minimization on the subset of the affine space is transformed into

the problem on subset of vector space by means of arbitrary λ̃ which satisfies Gλ̃ = e
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while the solution is looked for in the form λ = λ̂ + λ̃. The problem obtained by
QPTHomogenizeEq then reads

min
1

2
λ̂

TFλ̂− λ̂
T (d− Fλ̃) s.t. λ̂I ≥ −λ̃I and Gλ̂ = 0. (4)

Further improvement is based on the observation, that the augmented Lagrangian
for problem (4) can be decomposed by orthogonal projectors

Q = GT (GGT )−1G and P = I−Q

on the kernel of G and on the image space of GT : ImP = KerG, ImQ = ImGT .
Evaluating (GGT )−1, i.e. solving the linear system

GGTx = y, (5)

is called the coarse problem (CP). The modified formulation of the problem (4),
obtained by QPTEnforceEqByProjector, then takes the form

min
1

2
λ̂

TPFPλ̂− λ̂
TPd s.t. λ̂I ≥ −λ̃I and Gλ̂ = 0. (6)

More details can be found in [12].

4. Coarse problem

FETI methods blend iterative and direct solvers. The main loop solving the dual
problem is implemented by an iterative solver, e.g. CG. In each iteration, auxiliary
problems related to the application of an unassembled system operator are solved:
(1) K† application and (2) CP solution.

Parallelization is achieved mainly by distributing diagonal blocks of K over pro-
cessors, each block reflecting a subdomain. We strive to maximize the number of
subdomains to reduce the sizes of the subdomain stiffness matrices, accelerating their
factorization and K† actions. Furthermore, thanks to the FETI operator condition
number estimate [6], decomposition into more subdomains maintaining a fixed dis-
cretization parameter h leads to reduction of the condition number of K and thus
the number of iterations.

A drawback is the increasing null space dimension which decelerates the CP so-
lution – it is a kind of a communicating vessels effect. The natural coarse space
matrix G is computed so that each core owns the sparse sequential matrices Rs

and Bs, and computes the local horizontal block Gs = (Rs)T (Bs)T without any
communication, G = [(G1)T , . . . , (GNS)T ]T . The multiplication GGT = G ∗ GT ,
factorization of GGT , and the CP solutions (5) should be done in parallel, other-
wise they form a computational and memory bottleneck. The sparsity pattern of G
and GGT for the cube decomposed into 27 subdomains is illustrated in Fig. 1 and
Fig. 2, respectively.
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Figure 1: The sparsity pattern of G for a problem of the elastic cube with 27 sub-
domains an 23 elements per subdomain.

Figure 2: The sparsity pattern of GGT for the same problem as in Fig. 1.

We have suggested and compared several strategies for parallel CP solu-
tion [11], [9]. The explicit orthonormalization approach starts to fail when the
nullspace is large (thousands). Hence, we have abandoned this approach. Let us
describe in more detail the strategies tested in this work.

Strategy 1 (S1) Obtain a solution of CP by solving the system (5) iteratively
(by CG or pipelined CG (PipeCG)) or by a direct method (by parallel direct
solver (SuperLU DIST)). For a direct solution, GGT is factorized in the pre-
processing phase: GGT = LGG

T

(LGG
T

)T . During the solution phase, each
application of (GGT )−1 consists of the forward and backward substitution us-
ing a parallel direct solver: x = (GGT )−1y is solved by a two-step procedure
as (1) LGG

T

w = y, (2) (LGG
T

)Tx = w.

Strategy 2 (S2) An iterative or a parallel direct solver is employed for the com-
putation of the explicit inverse of GGT . During the preprocessing phase,
(GGT )−1 is computed iteratively or by a direct method. In the solution phase,
its application consists in the parallel dense matrix-vector product (GGT )−1y
in both cases.

The CP dimension is not large enough to justify the use of the whole global com-
municator. Instead, we propose a proper partial parallelization of this CP solution.
We divide all processes of the global PETSC COMM WORLD communicator into the
subcommunicators using PETSc built-in “pseudopreconditioner” PCREDUNDANT;
the number of these subcommunicators is Nr (number of cores doing redundant
work); this means the number of cores in each subcommunicator is ≈ Nc/Nr.

In Strategy 2, the explicit inverse is assembled in the following way. Each of Nr

subcommunicators is assigned a contiguous portion of Nn/Nr columns of the identity
matrix taken as the right-hand side, where Nn is the dimension of the nullspace of K,
i.e. the number of columns of the matrix R. The result of the forward/backward
substitutions is the corresponding portion of Nn/Nr columns of the resulting explicit
inverse (GGT )−1, stored as a Nn×(Nn/Nr) dense matrix distributed vertically across
the subcommunicator. Taking advantage of the symmetry of (GGT )−1, each sub-
communicator’s block is transposed in parallel and the blocks are then merged one
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Figure 3: Scheme of (GGT )−1 implementation using Strategy 2. Different colours
represent different communicators.

below the other in the proper order forming the complete (GGT )−1 matrix, divided
into horizontal blocks distributed across the global communicator. Note that this
merge means only logical reassignment from the subcommunicator to the global com-
municator with no actual data movements. A scheme of this strategy is depicted in
Fig. 3.

5. Numerical experiments

The numerical experiments were performed at ARCHER, the latest UK National
Supercomputing Service. It is based on a Cray XC30 supercomputer with 4920 nodes,
118,080 cores and 1.56 Petaflops of theoretical peak performance. All compute nodes
are connected together in the Dragonfly topology by the Aries interconnect. Each
compute node contains two 2.7 GHz, 12-core Ivy Bridge processors.

Firstly, we have performed a comparison of the CP strategies. For the CP so-
lution the SuperLU DIST solver performs better than the MUMPS solver. The
GGtinv phase of the S1 is much cheaper in comparison with S2. On the other hand,
S1 has much more expensive CP actions compared with S2. For a high number of
expected CP actions, the second strategy starts to payoff because the high cost of
preprocessing phase is offset by the cheapness of the CP action. The choice of an
appropriate strategy therefore depends on the number of expected CP actions. This
can be interesting for ill conditioned elasto-static problems but even more interest-
ing for contact problems where the number of iterations is always higher. Finally,
the greatest effect will be seen for all problems that are solved using outer iteration
on top of FETI such as shape optimization, transient problems, or elasto-plasticity.
Graphs in Fig. 4 show performance of both strategies on 8,000 subdomains (the CP
size 48,000).
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Figure 4: CP performance for the cube benchmark with 8,000 subdomains. GGT

size is 48,000. Top left: CP setup time. Top right: CP solution time. Bottom left:
Time of CP setup + 100 CP actions. Bottom right: Time of CP setup + 1000 CP
actions actions.

Secondly, we have demonstrated PERMON capabilities using weak scalability
tests with the S1 strategy. As a model 3D linear elasticity problem, we consider an
elastic cube with the bottom face fixed generated by our PermonCube benchmark
generation package. For the linear case (see Fig. 5), the top face is loaded with a
vertical surface force fz = 465 [N/mm2] directed upwards. For the nonlinear case
(see Fig. 7), the top face is loaded with a vertical surface force fz = −465 [N/mm2]
directed downwards, and the right one is partially in contact with a rigid obstacle. In
both cases, Young modulus is E = 2 · 105 [MPa], and Poisson ratio is µ = 0.33. The
graphs in Fig. 6 and Fig. 8 demonstrate both numerical and weak parallel scalability
up to 701 millions of unknowns and 10,648 subdomains with one subdomain per one
computational core. The contact problem was solved using SMALBE and Modified
Proportioning and Reduced Gradient Projection (MPRGP) with our new adaptive
expansion steplength which significantly improved this scalability and reduced not
only the number of expansion steps but also the number of CG steps.

6. Conclusion

The PERMON team was successful to push the scalability limits for both linear
and nonlinear benchmarks using ARCHER up to 702 millions of unknowns and
10,648 subdomains (cores). The implemented matrix formats and efficient parallel
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Figure 5: Linearly elastic cube problem.

Figure 6: Scalability results for the linearly elastic cube problem.

Figure 7: Contact problem – a linearly elastic cube with an obstacle.
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Figure 8: Scalability results for the contact problem.

direct solvers were employed. Furthermore, two strategies for CP solution were
studied: (1) factorization + forward/backward substitutions, (2) factorization +
explicit inverse assembly + dense matrix-vector products. It was demonstrated that
the optimal strategy depends on the number of subdomains and the expected number
of CP actions. The latter depends on the class of the solved problem.
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