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Abstract: The aim of this work is to present numerical results of non-
Newtonian fluid flow in a model of bypass. Different angle of a connection
between narrowed channel and the bypass graft is considered. Several rheology
viscosity models were used for the non-Newtonian fluid, namely the modified
Cross model and the Carreau-Yasuda model. The results of non-Newtonian
fluid flow are compared to the results of Newtonian fluid. The fundamental
system of equations is the generalized system of Navier-Stokes equations for
incompressible laminar flow. Generalized Newtonian fluids flow in the bypass
is numerically simulated by using an open source CFD tool, OpenFOAM.
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1. Introduction

The diseases of arteries causes approximately 31 % of all global deaths. Car-
diovascular diseases belong to the category of the diseases that refer to the heart
and blood vessels, e.g. hyperthension, heart attack, artherosclerosis or stroke etc.
Cardiovascular diseases are mainly caused by a formation of sediments on the inner
wall of the vessel, which can restrict the blood flow rate. In the case of a narrowing
of a vessel, it is necessary to proceed with a medication. One way is to bridge the
narrowing place by the graft, such a bridge is called bypass. The quality of the blood
flow in the bypass can be influenced by geometry, e.g. by the angle of connection,
see [10].
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Further, the flow in the bypass can be affected by characteristics of blood. Blood
is a red coloured liquid in humans which is composed of blood cells (red blood cells
and white blood cells and platelets) suspended in a plasma. The density of the blood
is in the range between 1043 to 1066 kgm−3 depending on gender, health etc. The
blood cells comprise 45% of the blood fluid [2], [3]. Blood as fluid can be charac-
terized as a shear thinning fluid, see e.g the non-Newtonian models in [4], [5], [17].
Nevertheless various researchers study the blood as the Newtonian fluid [6], [7].

This paper used the geometry of the bypass with the different angle of connection
between the narrowing channel and the graft. Three rheological viscosity models are
used: the Newtonian model, the Carreau-Yasuda model and the modified Cross
model. The numerical results are shown.

2. Mathematical model

Let us consider the idealized case when the blood flow is laminar and the fluid
is incompressible with the constant density ρ and the shear dependent dynamic
viscosity µ = µ(γ̇) depending on the shear rate γ̇ (see [13]) defined by

γ̇ = 2

√

1

2
tr D2, (1)

where D = 1
2
(∇u + ∇u

T ), u is the velocity vector. For the Newtonian fluid the
viscosity model reads (for more details see [3], [16])

µ(γ̇) = µ
∞

, (2)

whereas for the generalized Newtonian fluid one of the following viscosity models can
be applied, see [8]:

• the modified Cross model

µ(γ̇) = µ
∞

+ (µ0 − µ
∞

)
[

1 + (λγ̇)b
]

−a
, (3)

• the Carreau-Yasuda model

µ(γ̇) = µ
∞

+ (µ0 − µ
∞

) [1 + (λγ̇)m](n−1)/m
, (4)

where µ0 and µ
∞

are the asymptotic viscosity values at zero and infinite shear rates.
The symbol λ denotes a relaxation time and a, b, m, n are parameters of the non-
Newtonian viscosity models, see Table 1 (see [5], [11], [14], [15]). In Fig. 1 the
relationship between the viscosity µ and the shear rate γ̇ for selected viscosity models
is presented.

Let us consider the blood flow in a bounded three dimensional computational
domain Ω ⊂ R3 with its boundary ∂Ω = ∂ΩI ∪ ∂ΩO ∪ ∂ΩW , where ∂ΩI , ∂ΩO and
∂ΩW denote the inlet, the outlet and the wall parts of the boundary ∂Ω, respectively.
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viscosity model parameters

Newtonian model µ
∞

= 3.5 × 10−3 Pa s

modified Cross model µ
∞

= 3.5 × 10−3 Pa s, µ0 = 160 × 10−3 Pa s,

λ = 8.2 s, a = 1.23, b = 0.64

Carreau-Yasuda model µ
∞

= 3.45 × 10−3 Pa s, µ0 = 56 × 10−3 Pa s,

λ = 1.902 s, m = 1.25, n = 0.22

Table 1: Characteristics of the presented viscosity models

Figure 1: The relationship between the dynamic viscosity µ and the shear rate γ̇ for
the chosen viscosity models

The fundamental system of equations describing the motion of blood in the arter-
ies is based on the system of balance laws of mass and momentum. The generalized
system of Navier-Stokes equations can be written in the form as

div u = 0, (5)

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇P + div (2µ(γ̇)D),

where P is the dynamic pressure, ρ is the constant density, u is the velocity vector,
µ(γ̇) denotes the dynamic viscosity of the generalized Newtonian fluid given by one of
the Eqs. (2)–(4) and D is the symmetric part of the velocity gradient, see [1], [9], [18].

System of equations (5) is equipped with an initial condition u(x, 0) = u0(x) and
with the boundary conditions specified at ∂Ω. At the inlet, a Dirichlet boundary
condition for the velocity vector is used. At the outlet part, the pressure value is
prescribed and the no-slip boundary condition for the velocity vector is used on the
wall.
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Figure 2: Unstructured hexahedral computational mesh (left) and the sketch of the
computational domain (right)

3. Numerical results

The generalized Newtonian fluid flow in the bypass tube is numerically simulated
by using the open source CFD tool, OpenFOAM, where the SIMPLE algorithm is
used for the numerical solution [12].

The computational domain Ω as a model of the bypass geometry is shown in
Fig. 2. It is described by the parameters R, L, Rs, LR. R denotes the radius of the
main channel, R = 0.0031m and LR denotes the length of the channel with bypass,
LR = 28.5 R. The radius of the narrow part of the channel is Rs, (Rs = 0.5 R). The
sketch of the computational domain is presented in Fig. 2 (right). The geometry of
the bypass channel is described by the parameters L, x1, x2, x3, x4, x5, x1 given as
L = 6 R, x1 = 5 R, x2 = x1 + 4.5 R, x3 = x2 + R, x4 = x3 + 2 R, x5 = x4 + 6 R

and x6 = x5 + 10 R. The angle of the connection between the narrowed channel and
the bypass were considered in the range from 20 to 70 degrees. The computational
domain is discretized using an unstructed mesh composed of hexahedral cells, see
Fig. 2 (left).

The fluid is described by the constant density ρ = 1050 kgm−3 and the viscosity
model specified by the parameters summarized in Table 1. At the inlet a fully
developed flow is assumed. In the case of the Newtonian fluid, the parabolic velocity
profile with the maximum velocity value U0, U0 = 0.0615m s−1, is defined at the
inlet. A constant pressure value is prescribed at the outlet.

Figs. 3 and 4 show the axial velocity distribution in 3D (left) and the velocity
isolines in the cross sections of the bypass and of the stenosed vessel (right) for the
considered viscosity models. The results are shown for the two angles of connection
(Fig. 3 shows 30 degrees and Fig. 4 shows 60 degrees).

Fig. 5 represents the velocity distribution along the axis of the main channel for
the tested viscosity models and in dependence on the angle of the connection. It can
be observed that for a smaller angle the numerical results are very similar for the
Newtonian and the Carreau-Yasuda viscosity models, whereas for the modified Cross
model the differences are obvious for any angle. In the case of Newtonian viscosity
model the peak of the velocity distribution has the same value for all tested angles.
Some differences between the non-Newtonian viscosity models appear with higher
angles, namely the values of the maximal velocity are different. In the case of the
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(a) Newtonian model

(b) modified Cross model

(c) Carreau-Yasuda model

Figure 3: Axial velocity distribution in the center-plane area (left) and velocity
isolines in the selected cross section (right) for the angle of 30 degrees

modified Cross model the peak of the velocity distribution along the axis is higher
than for the other viscosity models.

4. Conclusion

In this paper the numerical results for generalized Newtonian fluids flow in the
bypass geometry were presented. The tests were performed on a model of bypass
geometry, where the different angles of the connection between the narrowed chan-
nel and the bypass graft were considered. Several viscosity models were used as
the Newtonian model, the modified Cross model and the Carreau-Yasuda model.
Numerical results were obtained using the SIMPLE algorithm included in the Open-
FOAM and the generalized Newtonian fluid model was used. Two selected viscosity
models were implemented into the OpenFOAM, namely the modified Cross model
and the Carreau-Yasuda model.

The results show that for the considered angle of connection (40–50 degrees) the
differences between Newtonian and non-Newtonian models are not significant. And
thus the use of Newtonian model is reasonable there. On the other hand for other
angles (less than 40 deg or higher than 50 deg) the influence of the non-Newtonian
character of the fluid becomes more important and thus needs to be taken into
account.
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(a) Newtonian model

(b) modified Cross model

(c) Carreau-Yasuda model

Figure 4: Axial velocity distribution in the center-plane area (left) and velocity
isolines in the selected cross section (right) for the angle of 60 degrees
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