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Abstract: The Lyapunov exponents (LE) provide a simple numerical mea-
sure of the sensitive dependence of the dynamical system on initial conditions.
The positive LE in dissipative systems is often regarded as an indicator of the
occurrence of deterministic chaos. However, the values of LE can also help to
assess stability of particular solution branches of dynamical systems. The con-
tribution brings a short review of two methods for estimation of the largest LE
from discrete data series. Two methods are analysed and their freely available
Matlab implementations are tested using two sets of discrete data: the sampled
series of the Lorenz system and the experimental record of the movement of
a heavy ball in a spherical cavity. It appears that the most important factor
in LE estimation from discrete data series is quality of the available record.
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1. Introduction

Vibration or general movement analysis of non-linear structures, signal analysis of
electrical circuits, etc., represent a challenging task in various branches of engineering.
This regards the both cases of mathematical and experimental models or an analysis
of results from measurements in situ. In case of a complex behaviour of a structure
or a non-linear mathematical model, the measured response or computed data series
can exhibit a wide range of response types, from stationary and periodic to diverging
or chaotic behaviour. The stability in the sense of sensitivity to small perturbations,
however, is the key property of each type of the system response.

Even if the topic was addressed by numerous papers in the past it seems that
the practical usage of recommended methods usually raise additional questions. In-
deed, the theoretical results are mostly substantiated by a limiting relation whose
assumptions are hardly fulfilled in the practice.
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It also seems that the concept of Lyapunov exponents (LE) is still the most usable
and most robust stability measure, despite of numerous new methods and modifica-
tions. It often becomes apparent that the new methods designed for stability assess-
ment are closely related to LE, either representing a special case or generalization of
the usual approach, see, e.g., [4].

Implementation and performance of several algorithms regarding continuous sys-
tems is reviewed in [7]. A very promising approach for continuous systems is pre-
sented by Dieci et al. in [2], where a possible extension to certain discrete cases is
briefly mentioned. This contribution, however, extends the previous work [3] and
reviews two classical approaches convenient for cases with discrete data series.

2. Lyapunov exponents

Let us consider the n dimensional non-linear differential initial value problem

x′(x0, t) = f(x, t) , x(x0, 0) = x0, (1)

where ′ means derivation with respect to t. The right-hand side f is supposed to
be a smooth function and the bounded solution x(x0, t) continuously dependent on
the initial value x0 and t > 0. Let δ0 = δ(0) be a small perturbation to the initial
condition x0. Behaviour of the perturbed trajectory follows from the values of the
right-hand side f for the perturbed argument

f(x + δ) ≈ f(x) + Jf (x)δ, (2)

where Jf denotes the Jacobian of the right-hand side f . Then evolution of the
distance between original and perturbed trajectories,

δ(t) = x(x0, t) − x(x0 + δ(0), t) (3)

can be described by the linearized equation

δ′(t) = Jf (x(x0, t), t) δ(t). (4)

Evolution of size of the perturbation δ is governed by the relation

||δ(t)|| = eλ1t||δ(0)|| (5)

and λ1 is denoted to be the largest LE. The relation (5) is usually supposed to serve
as a formula for calculation of λ1:

λ1 = lim
t→∞

1

t
ln ||δ(t)||. (6)

Certain similarity of the LE estimation and computation of eigenvalues of the
Jacobian is apparent from (4), (5). This similarity is preserved if several or all LE
are taken into account. The general setting works with so-called Lyapunov spectral
intervals, for details see [2] and literature cited there. In so called regular systems
the spectral intervals degenerate to simple values of LE. This property is usually
assumed for simplification and also this work will follow this practice.
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Definition 1. Let A(t) = Jf (x(x0, t), t) be the Jacobian of the system (1) along the
trajectory x(x0, t), Y(t) is the n × n matrix and λi, i = 1, . . . , n are numbers such
that

Y′(t) = A(t)Y(t) , Y(0) = Y0 , Y0 ∈ Rn×n regular, (7)

λi = lim sup
t→∞

1

t
ln ||Y(t)ei|| (8)

where ei is the i-th vector of the standard basis. Such λi which minimize
∑n

i=1 λi for
all possible initial conditions Y0 are called Lyapunov exponents.

Regularity of the underlying system is an important property, which enables
validity of the standard computational rule (6).

3. Estimates of Lyapunov exponents

The commonly used estimates of LE fall into two main categories. The first
uses a heuristic approach based on equation (6) which measures the divergence of
close orbits. Although use of this approach is not limited to the cases where only
the discrete data are available, these methods are used mostly in such cases. The
second group, on the other hand, is based on relation (1) and exploits knowledge of
the Jacobian. Thus, it is naturally aimed at analysis of continuous systems. This
division is natural and dates back to first papers on the topic, cf. the paper due to
Wolf et al. [9].

3.1. Estimates exploiting Jacobian
Consider solution x̃x0 to the continuous dynamical system (1). The solution

continuously depends on the initial condition. Differentiating (1) with respect to x0

one gets the variational equation, see [6]:

P′(t) = A(x, t)P(t) , P(0) = I, (9)

where P(t) = ∂x0 (x̃′(t)) and A(x̃, t) = ∂x0f(x̃(t), t). The system (1) can be regarded
w.l.o.g. as autonomous, then A(x, t) is the Jacobian of f and evolution of an initial
perturbation δ0 of (3) satisfies

δ(t) = P(t)δ0.

The last relation closely corresponds to equations (4) and (7) and is a basis of a large
family of procedures aimed at estimation of LEs of a continuous system. Their com-
mon problem is the necessity to keep the matrix P(t) orthogonal. A promising
implementation is presented in [2]. In the accompanying documentation Dieci et al.
claim applicability to the cases with discrete data, provided that the data are con-
tinuously interpolated. Knowledge of the Jacobian along the trajectory or at least
its estimate is still necessary. However, validation of this interesting option is out of
scope of the present contribution.
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3.2. Estimates based on trajectory
The approach based on equation (6) uses only values of close trajectories to

measure evolution of a small perturbation. This approach is used mostly in the case
of discrete maps or when only some measured data are available. Basic properties
and weaknesses of the direct application of (6) are discussed in the short review
paper by the authors [3].

The implementation of a more advanced algorithm for the discrete data which
accompanies the paper due to Wolf et al. [9] gained high popularity. The code was
ported to Matlab and supplemented with highly instructional notes recently [10].
However, it has some limitations, namely it requires user interaction for selected
problems. The algorithm follows the nature of the problem: it is based on identifica-
tion of close points on the orbit whose temporal separation in the original time series
is at least one mean orbital period. Such points are considered as close (perturbed)
initial conditions and separation of corresponding orbital sections is measured. The
largest LE λ1 is computed from the growth of distance of both orbits. When the
separation becomes large, a new trajectory is chosen near the reference trajectory
considering close distance and direction. The separation direction approximates di-
rection of the first principal axis or first Lyapunov direction which correspond to
the Jacobian matrix at each point of interest along the flow. As a next step, the
algorithm allows for estimation of λ1 + λ2 from a growth of area elements, etc.

The more advanced procedure described by Rosenstein et al. [8] is similarly based
on identifying different yet similar sections in the experimental data series, which are
used subsequently to simulate separation of close orbits. The result of the procedure
is given as the dependence of averaged distance of two trajectories on increasing time
lag to initial “close” point. Theoretically, according to (5), the dependence in the
logarithmic scale should increase linearly up to the size of the attractor. The slope
of the linear ramp then represents an estimate of the largest LE. For any larger time
lag it should attain constant values. For details, see the original reference or the
short review [3].

The so called dimensional reconstruction is an important part of both algorithms
in case when the experimental data consist of time series from a single observable
and the underlying physical system is not known. It is usually implemented using
the method of delays where the reconstructed dimension m should be m > 2n and
n is dimension of the (assumed) physical system. For an N -point time series xi,
i = 1, . . . , N the i-th reconstructed observation (vector) is given as

xi = (xi, xi+∆, . . . , xi+(m−1)∆) (10)

where ∆ is the reconstruction delay. Rosenstein et al. [8] claim that their algorithm
often works well even when m is below 2n. Regarding the value of delay ∆, Rosenstein
proposes the value based on the autocorrelation function. They report the best value
of ∆ to equal the lag where the autocorrelation function drops to 1−1/e of its initial
value.
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Figure 1: Sample trajectories: (a) phase plot of y, z components of the Lorenz
system (σ = 16, % = 45.92, β = 4), (b) measured displacement data of the relative
motion of the ball in the cavity. In the both cases ∆t = 0.01s.

4. Numerical evaluation

The two mentioned algorithms were tested using the freely available implemen-
tations in Matlab: a) the Matlab adaptation of the original FORTRAN code for
the algorithm due to Wolf [10], and b) the loose implementation of the Rosenstein’s
algorithm by an anonymous contributor to the MathWorks site, [1].

Two sample discrete data sets were chosen, both representing continuous dy-
namical systems. The first one is the trajectory of the well-known Lorenz system
(σ = 16, % = 45.92, β = 4) for t ∈ 〈0, 100〉, sampling period ∆t = 0.01, with ini-
tial condition {x, y, z} = {0, 1, 0}, see Fig. 1a. First 1000 samples were discarded
to assure that the trajectory belongs to the attractor, resulting to record size of
(9000 × 3) samples. Only the x component was used to test the dimensional recon-
struction.

The second example represents the spatial movement of a heavy cast iron ball
freely rolling in a spherical cavity. The cavity was forced to move harmonically in
one direction with a fixed frequency and amplitude. The spatial movement then
arises for a critical frequency due to the non-linear character of the set-up, for de-
tails see [5] and references cited there. The recorded data consist of 3 072 samples
for longitudinal (x) and transversal (y) directions, sampled at 100 Hz, see Fig. 1b.
The underlying theoretical model is defined for 4 unknowns (displacements and ve-
locities), however, the velocities can be deduced from the measured positions with
reasonable accuracy.

The both data sets represent certain unfavourable properties. In the case of the
Lorenz system, the attractor consists from two lobes and the trajectories digress from
one to another. This behaviour prevents the Wolf’s method to work autonomously
and implies some interaction during evaluation, for details see [9]. Thus, Table 1
refers only value from the paper. The experimental data suffer from two different
weaknesses: the record is relatively short and trajectories are scattered. On the other
hand, the both underlying continuous systems are known to be chaotic; dominant LE
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algorithm Wolf Rosenstein
data dimension 1 1 (x) 1 (x) 3 (x, y, z)

reconstructed dimension 1 2 3 −‡

Lorenz system λ1 : 2.16? 1.82 1.71 2.135

data dimension 1 1 (x) 2 (x, y) 4 (x, ẋ, y, ẏ)

reconstructed dimension 1 4 4 −‡

experimental data λ1 : −† 9.9 18.06 0.89
notes: ?value from [9] † no convergence ‡dimensional reconstruction was not used

Table 1: Estimated values of Lyapunov exponents in bits.s−1

of the selected configuration of the continuous Lorenz system computed according
to [2] is 2.164 bits.s−1, detailed properties of the ball moving in the spherical cavity
are going to be published by the authors of this study in a near future.

The results obtained during evaluation of both algorithms are summarized in
Table 1. In agreement with the paper [9], the binary logarithm was used resulting in
values which can be interpreted as a loss of bits (accuracy) per second. The following
cases were tested: one or two-dimensional signal with dimensional reconstruction
and the fully dimensional data without reconstruction. Unfortunately, the algorithm
proposed by Wolf appeared not applicable due to character of selected test data.
Namely in the case of experimental data the procedure did not converged sufficiently.

The weak point of the Rosenstein’s approach is the final evaluation of the com-
puted dependence of separation of close trajectories on time, see description in [3].
The Matlab implementation [1] selects rigidly samples 15:78 for linear regression
and LE estimation. These values are most probably relict of a particular study and
has to be changed for other cases. The authors used a simple detection of the “cor-
ner sample” based on the horizontal direction of the upper plateau. The points on
the left of the corner sample are then used to estimate the LE. A number of al-
ternative approaches could be proposed; however, they mostly require some ad hoc
intervention. The problem can be seen in Figure 2 for cases dealt in this study.

The results obtained using the Rosenstein’s approach are consistent in the case
of the Lorenz system, see first data row in Table 1 and left column in Figure 2,
cases (a–c). The obtained values even for the one-dimensional test case and both
dimensional reconstructions (m = 2, 3) represent reasonably accurate estimates of the
dominant LE. When fully dimensional data are used, the obtained value is sufficiently
close to the desired value 2.164 bits.s−1. Plots (a–c) in Figure 2 show the exemplary
behaviour of the trajectory separation characterized by the linear ramp and flat
plateau.

Low quality of the experimental data reflects in the results presented in the second
data row of Table 1. High variance of the obtained values is probably inevitable. Also
plots (d–f) in Figure 2 illustrate unclear position of the “corner sample”. Namely in
the case (f), when full 4-dimensional data are used the two linear sections can be
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Figure 2: Separation of close trajectories in dependence on time lag n∆t computed
using the Rosenstein’s algorithm.
Lorenz system: (a) 1-dimensional data, m = 2, (b) 1-dimensional data, m = 3,
(c) 3-dimensional data, no dimensional reconstruction.
Experimental data: (d) 1-dimensional data, m = 4, (e) 2-dimensional data, m = 4,
(f) 4-dimensional data, no dimensional reconstruction.

identified, resulting in two completely different values of the LE estimate. Moreover,
it is clear in plots (d–e) that the dimensional reconstruction used in the respective
cases was not sufficient and lead to the unrealistic estimate of the attractor structure.
The effect of the underestimated dimension is addressed, e.g., in [3], [8] and exhibits
itself by a typical shape of curves similar to cases (d-e). When compared to results
obtained using data measured for other configurations of the ball, it appears that
the lower value of the LE λ1 is the more likely one.

5. Conclusions

Estimation of Lyapunov exponents is a common and important task in study of
dynamical systems. In the case of discrete data, namely those obtained experimen-
tally, the functionality of available approaches is limited and closely reflects quality
of the data. It appeared that the Rosenstein’s algorithm was able to identify positive
character of the dominant LE in the experimental data, however, a high variability
of its estimates obtained in different set ups significantly lowers credibility of the
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results. In the case of data originating from the Lorenz system, the Rosenstein’s al-
gorithm performed well without any interactive intervention in contrast to the case
of the algorithm due to Wolf. The resulting estimate of the dominant LE was fairly
accurate. As a consequence, it is necessary to make an appeal to experimenters to
record data histories long enough to sufficiently fill up the phase space.
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