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Abstract: The paper is concerned with the approximation and interpolation
employing polyharmonic splines in multivariate problems. The properties of
approximants and interpolants based on these radial basis functions are shown.
The methods of such data fitting are applied in practice to treat the problems
of, e.g., geographic information systems, signal processing, etc. A simple 1D
computational example is presented.
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1. Introduction

Continuous approximation of functions given by the values sampled at discrete
nodes is a problem first solved in numerical analysis several centuries ago. It is of
practical importance in many branches of engineering and science. Recently, data
fitting is vastly used also with the data obtained by measurements in 2D or 3D for
geographic information systems, computer aided geometric design, signal process-
ing, etc.

For approximation, we use polyharmonic splines simply as radial basis functions
with an additional property: they solve the corresponding polyharmonic equation.
Moreover, we use them as they are the basis functions resulting from minimization
of the L2 norm of the corresponding derivatives of the interpolant or approximant,
i.e., they make the resulting curve or surface smooth in some sense. The best known
example is the cubic spline in 1D.

Last but not least, we use them since the corresponding approximation formula
based on them can be obtained as a solution of a polyharmonic partial differential
equation. If the polyharmonic equation is of order m, the resulting formula provides
the minimum L2 norm of the mth derivatives of the approximant or interpolant.
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In the paper, we show some relations among the approaches mentioned as far
as both the interpolation and approximation are concerned. The simplest approach
is just the plain use of polyharmonic splines (Section 2). Some further notation is
introduced in Sections 3 and 4.

The more sophisticated treatment employs the smooth approximation (Sections 5
and 6) with a simple computational example in Sec. 6. Construction of the inter-
polation formula with the help of solving a boundary value problem is treated in
Section 7.

2. Polyharmonic splines

Let us start with some definitions and notation, cf. [6]. Let n be a positive integer,
x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), and r(x, y) = ‖x−y‖E be the Euclidean
norm of x− y. The functions

rk, k = 1, 3, . . . , and rk ln r, k = 2, 4, . . . , (1)

are called polyharmonic splines of (algebraic) degree k. If k is even, we define the
value of the spline for x = y by the limit as r → 0, i.e., by 0. Let ∆ =

∑n
s=1 ∂

2/∂x2
s

be the Laplace (harmonic) operator. The equation

∆mϑ(x1, . . . , xn) = 0

is then called the polyharmonic equation of order m.
Fix the vector y ∈ Rn. The polyharmonic spline rk (rk ln r) solves the polyhar-

monic equation with
m = 1

2
(k + n) (2)

in Rn \ {x = y} for n odd. Further, the polyharmonic spline rk ln r solves the
polyharmonic equation of order (2) in Rn \ {x = y} for n even, cf. [6].

In other notation,

∆mrk = δ(x− y) and ∆mrk ln r = δ(x− y) in Rn (3)

for n odd and n even, respectively, where δ is the Dirac generalized function. It is
easy to see that if a function solves the equation with the operator ∆m, it solves the
equation with the operator ∆m+1, too.

3. Data interpolation and approximation

Let fj = f(Xj), j = 1, . . . , N , be N values of a complex function f of n real
variables (continuous in Ω) measured (sampled) at N mutually distinct given nodes
X1, . . . , XN ∈ Ω, where Ω is either a bounded n-cube in Rn or Ω = Rn. The
continuous interpolant z is constructed in Ω to fulfill the interpolation conditions

z(Xj) = fj, j = 1, . . . , N. (4)
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Various additional conditions can be considered, e.g. minimization of some func-
tionals applied to z or a priori fulfillment of some condition (e.g. the polyharmonic
equation). The problem does not have a unique solution.

The solution of the problem of data approximation (data fitting) is a continuous
approximant ẑ. No interpolation conditions (4) are prescribed. Instead of fulfilling
them we minimize the least squares functional

N∑
j=1

wj(ẑ(Xj)− fj)(ẑ(Xj)− fj)∗, (5)

where wj, j = 1, . . . , N, are positive weights and ∗ denotes the complex conjugate.
Possible additional conditions for the approximant ẑ can be the same as for the
interpolant. If we speak about the approximation, we usually take into account the
interpolation, too.

4. Basis function interpolation

Denote by α = (α1, . . . , αn) a multiindex in Zn. The multiindex is called nonneg-
ative if αs ≥ 0 for all s = 1, . . . , n. For a nonnegative multiindex α we introduce its
length as |α| =

∑n
s=1 αs.

We first show the basic notions used for interpolation. These terms are employed
for approximation, too. We can assume the interpolant in the form of a finite linear
combination

z(x) =
M∑
j=1

Qjψj(x)

with a positive integer M . The continuous complex-valued functions ψj(x) of x ∈ Ω
are called the basis functions. The sum, in general, can be infinite. The dependence
of the coefficients Qj on the measured values fj is usually implicit, realized by a linear
algebraic system.

Consider a continuous complex-valued Hermitian function R(x, y) = R∗(y, x)
of x, y ∈ Ω that is called the generating function. We can then put ψj(x) =
R(x,Xj), j = 1, . . . , N , and obtain the interpolant in the form

z(x) =
N∑
j=1

λjR(x,Xj).

Moreover, choose a nonnegative integer L. We put

ϕα(x) = xα1
1 · · ·xαn

n ,

where α is a nonnegative multiindex, |α| < L. These monomials are of degree |α|
and they are called the trend functions. Let T = T (n, L) be the actual number of
them, see [6].
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We add a linear combination of the trend functions to the interpolant and consider
it in the form

z(x) =
N∑
j=1

λjR(x,Xj) +
∑
|α|<L

aαϕα(x). (6)

In the formula, λj, j = 1, . . . , N , and aα, |α| < L, are the coefficients to be found
in order that z satisfies the interpolation conditions; the second sum in the formula
is empty for L = 0.

Theorem 1. Putting R(x, y) = rk(x, y) and R(x, y) = rk(x, y) ln r(x, y) for k odd
and k even, respectively, and choosing L = m according to (2), we obtain

∆Lz(x) =
N∑
j=1

λjδ(x−Xj) in Rn

for the interpolant (6).

Proof. The statement follows from (3) and from the maximum algebraic degree of
the trends ϕα(x).

An analogical statement holds for the approximant.
Let the basis function R(x, y) introduced in this section can be written as

R(x, y) = R̃(‖x− y‖E) for all x, y ∈ Rn,

i.e., it depends only on the Euclidean norm of the difference x− y. Then R(x, y) is
called a radial basis function (RBF).

The polyharmonic splines (1) are an example of such radial basis functions. The
idea of interpolation by radial basis functions is based on the assumption that the
data item fj measured at the node Xj influences the interpolant mostly in the vicinity
of Xj, i.e., that the value of the interpolant at a point x close to Xj depends in some
way on fj and on the distance r(x,Xj).

Many RBFs are often used for interpolation and approximation, see, e.g., [2].
Note that the trend functions ϕα are not radial.

5. Smooth interpolation and approximation

Talmi and Gilat [8] introduced the way of data processing called the smooth
interpolation and approximation. This approach has been further developed e.g.
in [4], [5], or [6]. We use the notation introduced in [6] for the inner product spaces
of complex-valued functions defined onΩ with the norm given as a linear combination
of L2 norms of the individual derivatives.

Let W̃ be a linear vector space of complex-valued functions g continuous to-
gether with their derivatives of all orders on Ω. Let α be a nonnegative multiindex
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and {Bα}|α|≥0 be a set of nonnegative numbers. Denote by L the smallest nonnega-
tive integer such that Bα > 0 for at least one α, |α| = L, while Bα = 0 for all |α| < L.

For g, h ∈ W̃ , we put

(g, h)L =
∑
|α|≥L

Bα

∫
Ω

∂|α|g(x)

∂xα1
1 . . . ∂xαn

n

(
∂|α|h(x)

∂xα1
1 . . . ∂xαn

n

)∗
dx

and ‖g‖2
L = (g, g)L, assuming that these expressions exist and are finite.

Let L = 0, then (g, h)0 has the properties of the inner product and ‖g‖0 is the

norm in the normed space W0 = W̃ .
Let L > 0 and PL−1 be the space of all trend functions of degree at most L− 1,

then we construct the quotient normed space WL = W̃/PL−1, complete it in the
norm ‖ · ‖L, and denote it again by WL.

Let {gκ}, where κ is a nonnegative multiindex, be the complete orthogonal basis
of the space WL, i.e., (gκ, gν)L = 0 for κ 6= ν. WL is the space where we minimize
functionals and measure the smoothness of the approximation as prescribed by the
choice of {Bα}|α|≥0.

Assume that the series

R(x, y) =
∑
κ

gκ(x)g∗κ(y)

‖gκ‖2
L

converges for all x, y ∈ Ω and the sum is continuous. R(x, y) can be the generating
function for the interpolants and approximants.

In case of interpolation we satisfy the interpolation conditions (4) and mini-
mize ‖z‖2

L. Putting Bα > 0 for some set of multiindices α, we can specify the
required smoothness of the corresponding derivatives of the approximant z.

Theorem 2 (Interpolation). Let Xi 6= Xj and R = [R(Xi, Xj)], i, j = 1, . . . , N,
be an N × N square Hermitian matrix. If L > 0 then let Φ = [Φjα] = [ϕα(Xj)],
j = 1, . . . , N , |α| < L, be an N × T rectangular matrix of the full column rank,
i.e., rank Φ = T ≤ N . Then the problem of basis function interpolation has the
unique solution z(x) given by (6), where the coefficients λj, j = 1, . . . , N , and aα,
|α| < L, are the unique solution of a system of N + T linear algebraic equations,
see [6], equations (21), (22).

Proof. The theorem is proven for n = 1 in [5]. The generalization of the proof
for n > 1 is straightforward.

We have denoted the approximant by ẑ. In case of approximation we minimize
the least squares functional (5) together with ‖ẑ‖2

L added. Put

µj = ẑ(Xj), j = 1, . . . , N.
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Theorem 3 (Approximation). Let the assumptions of Theorem 2 hold. Let W =
diag(w1, . . . , wN) be an N × N diagonal matrix of positive weights wj. Then the
problem of basis function approximation has the unique solution

ẑ(x) =
N∑
j=1

(µj − fj)wjR(x,Xj) +
∑
|α|<L

âαϕα(x), (7)

where the coefficients µj, j = 1, . . . , N , and âα, |α| < L, are the unique solution
of a system of N + T linear algebraic equations, see [5], equations (23), (24) or [7],
equations (19), (20).

Proof. The theorem is proven for n = 1 on a bit stronger assumptions in [5]. The
generalization of the proof for n > 1 is given in [7].

Note that the number of operations necessary for the construction of each formula
depends primarily on the number N of nodes, not on the dimension n. Only the
structure of the set of trend functions and the number of them change with n.

6. Smooth approximation by polyharmonic splines

Put x·y =
∑n

s=1 xsys for x, y ∈ Rn and consider the system of periodic exponential
functions of pure imaginary argument (ρ is a multiindex)

gρ(x) = exp(−iρ · x), x ∈ Ω = [0, 2π]n, ρs = 0,±1,±2, . . . , s = 1, . . . , n.

Choose an integer U , U ≥ L, such that Bα = 0 for all |α| > U in WL. The above
system {gρ} is shown to be complete and orthogonal in WL in [6], Theorem 2. The
sum

R(x, y) =
∑
ρ

exp(−iρ · (x− y))

‖gρ‖2
L

is the Fourier series in x−y with the coefficients ‖gρ‖−2
L , where a simple computation

gives ‖gρ‖2
L = (2π)n

∑
L≤|α|≤U Bαρ

2α1
1 · · · ρ2αn

n . We use the effect of transition from

the Fourier series with the coefficients ‖gρ‖−2
L to the transform

R(x, y) = F
(

1

‖gρ‖2
L

)
(q) =

∫
Rn

exp(−iρ · q)
‖gρ‖2

L

dρ, q ∈ Rn,

i.e., the Fourier transform of the function ‖gρ‖−2
L of n continuous variables ρ1, . . . , ρn,

where we put q = x−y, x, y ∈ Rn, and eliminate the requirement of periodicity of f .
We are going to show the relation between Sec. 4, where we presented the

ways of approximation by polyharmonic splines, and this section. Put K(α) =
|α|!/(α1! · · ·αn!) for a nonnegative multiindex α = (α1, α2, . . . , αn). Fix L > 0 and
put Bα = 0 for all α, |α| 6= L, Bα = K(α) for |α| = L, then

‖gρ‖2
L = (2π)n

(
n∑
s=1

ρ2
s

)L

.
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In tables, we find easily F(‖gρ‖−2
L ) and prove that after a simple modification, the

transform F(‖gρ‖−2
L ) is equivalent to the polyharmonic spline of the algebraic de-

gree 2L−n as far as the approximation is concerned, i.e., we can use the continuous
generating functions

R(x, y) = r2L−n for n odd, R(x, y) = r2L−n ln r for n even, (8)

cf. [6]. From the construction of these RBFs we know that they minimize the L2

norm of the Lth derivatives guaranteeing thus particular smoothness properties of
the approximant (as well as interpolant).

Example 1. We put n = 1 and approximate the function

f(x) = −(3(x+ 1)2 + ln((x+ 0.5)2/100 + 10−5)

+ ln((x− 0.75)2/100 + 10−5) + 1)

on Ω = [−1, 1] by the three smooth approximants corresponding to L = 1, 2, 3.
To minimize the L2 norm of the Lth derivative of the approximant, put BL = 1
and Bk = 0 otherwise. Then R(x, y) = r2L−1 and the trend functions are monomials
of degree less than L. The approximant satisfies the polyharmonic equation with
m = L. The spline of algebraic degree 1 is piecewise linear, that of degree 3 is the
minimum curvature cubic spline, and that of degree 5 is the quintic spline. In Fig. 1,
N = 9 and wj = 30, j = 1, . . . , 9.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

true
degree=1
degree=3
degree=5

Figure 1: Approximants of Example 1, 2L− 1 = 1, 3, 5, N = 9, wj = 30
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7. Interpolant and approximant as a solution of a PDE

If there is a linear differential operator D such that

DR(x−Xj) = δ(x−Xj), j = 1, . . . , N,

Dϕα(x) = 0, |α| < L,

R being the generating RBF, ϕα the trends, and x ∈ Ω, then

Dz(x) =
N∑
j=1

λjδ(x−Xj) in Ω. (9)

Conversely, we are now going to find an operator D and to solve the equation (9) to
get the interpolant z, see [3].

On the assumptions of Theorem 1, we can put D = ∆m, where m = 1
2
(2L −

n + n) = L according to (2), as the algebraic degree of the generating functions (8)
is 2L − n. The interpolant is constructed from the solution of the polyharmonic
equation with the proper boundary conditions added on the boundary ∂Ω of a suit-
able domain Ω. We can add a linear combination of the trend functions ϕα to the
interpolant as they are monomials of degree at most L− 1 with Dϕα = 0. The con-
dition we have to fulfill in the next step is to find the coefficients λj, j = 1, . . . , N ,
and aα, |α| < L, i.e., to solve the linear algebraic system of Theorem 2.

To set the proper boundary conditions on the continuous boundary of the bound-
ed domain Ω, we can make Ω sufficiently large, in order that the nodes Xj are
not close to ∂Ω, and complete the equation (9) with the homogeneous Dirichlet
boundary conditions. The partial differential equation can be then solved analytically
or numerically.

If we look for an approximant ẑ of the form (7) the procedure is similar, but we
solve the linear algebraic system of Theorem 3.

Example 2. Let us present a very simple example of the construction of an inter-
polant by solving differential equations. Let n = 1, N = 3, and let us be given
the three nodes and three sampled values, X1 = −1, X2 = 0, X3 = 1, and
f1 = 1, f2 = 2, f3 = 3. We are going to construct the interpolant with L = 1.
The standard solution of the interpolation problem is, according to Theorem 1, the
interpolant (6) with R(x, y) = t(x, y), where m = 1 according to (2). We look for
a piecewise linear function t solving, for a fixed y, the ordinary differential equations

∆t(x,Xj) = t′′(x,Xj) = δ(x−Xj) in Ω for j = 1, 2, 3,

where we choose Ω = [−2, 2]. Let us impose the boundary conditions t(−2, Xj) = 0,
t(2, Xj) = 0 for all j. By the linear finite element method we obtain the exact
solutions, i.e., piecewise linear functions t(x,Xj) satisfying the boundary conditions.
Moreover, the first derivative of t(x,Xj) is the Haeviside unit step function with the
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step located at Xj and the second (generalized) derivative of t(x,Xj) is the Dirac
function δ(x−Xj), cf., e.g., [1].

We now have the three individual piecewise linear basis functions t(x,Xj), see the
bottom of Fig. 2. We consider a single trend function ϕ of degree less than L = 1,
i.e., a constant a. We assemble the system of four linear algebraic equations for four
unknowns λ1, λ2, λ3, and a according to Theorem 2. Solving this positive definite
system we get the coefficients defining the interpolant (6) sought. The interpolant
for x ∈ [−1, 1] is drawn in the top part of the figure. In fact, the computation has
been done on [−2, 2] but the interpolant is defined only on [−1, 1].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

Figure 2: Piecewise linear interpolant of Example 2

8. Conclusion

We have met polyharmonic splines three times in this contribution.
They are radial functions to be used for interpolation/approximation. We have

shown that the interpolant/approximant that employs them solves the corresponding
polyharmonic equation.

We have proven that they can be used for smooth interpolation/approximation
in the sense of [8] as they minimize the L2 norm of the chosen derivatives of the
interpolant/approximant and thus make the resulting curve or surface smooth in a
definite sense.

We have also shown that the interpolant/approximant can be obtained by the
(exact or numerical) solution of a boundary value problem for a partial differential
equation, e.g., the polyharmonic equation.
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