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Pactorigzation of mappings (products of proximally

fine spaoces)
Miroslav HufSek, Praha

By a space I always mean a aniform space (no separa-
tion axiom).

A space is called proximnlly,tino if it is the finest
member of a ﬁet of all spaces having the same proximity (e»
equivalently, if any proximally continuous mapping on it ie
uniformly continuous). It was shown in [E] and {VV] that
any proximally continuous mépping defined on a metrizable |
space is uniformly continuous; consequently, metrizable spa-
ces are proximally fine (this was expliocitly stated in (R3]
and [81). More generally, [R3], any space with a linearly
ordered base is proximally fine, The full subcategory of
proximally fine spaces is coreflective in Unif ([P,],(P,]
by transfinite induotion, (H) by a categorial method) and
the coreflection does not preserve proximity, [K] (moreo-
ier. there is no nontrivial coreflection in Unif preser-
ving proximity -~ see Remark 2 at the end of this paper),

| The broblem when a product of proximally fine spaces
is proximally fine was treated in [Pll,[Pal,[PBI and [I).
In a talk in Spring 1973 during his stay in Prague A.W.
Hager showed me a nice proof of the réeult that any produoct
of separable metrisable spaces is proximallj fine. The
proof went as followss If f 4is & proximally continuous
mapping defined on & product of separable metrizable spa-

ces and ranging in a metrizable space, then by Mazur's
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factorization theorem [Ma], f factorizes via a projection

onto a countable subproduct; but the eountable subproduct

| is metrizable, hénce proximally fine, hence the factoriged
mapping is uniformly continuqus and f , as the composition
with the projeoction, is also unifermly ocontinuous,

The factorization theorem used in the preceding proof
was topological in its nature and it was necessary to sup-
pose the factora to be separable (if metrizable), The pur-
pose of this paper is to show that there is another facto-
rization theorem with proximally-uniform character (purely
uniform result is known, [V]) by means of which I can pro-
ve that any product of metrizable spaces is proximally fi-
ne, Then I shall prove two more factorization theorems of
the same character and make use of thom'to prove that any
product of spaces with linearly ordered bases is proximal-
ly fine and that any product of a proximally fine space
with a product of proximally coarse (i.e. precompact) and
proximally fine spaces is proximally fine. At the end I
shall show that there is a countable topological space X
with a unique accumulation point such that the produet of
the fine uniformity of X with the countable uniformly
discrete spacovis not proximally fine.

By a uniform character (or pseudocharacter) of a spa-
ce < Y, V) we mean the least cardinal « such that
there isa V' c¥ with cod V=« " and such that ¥’
is a tasefor V¥ (or NV’ =4y , resp.). It 1s clear that
the concept of the uniform pseudocharacter has a sense on-

ly for Hausdorff spaces; the definition can be stated for
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all spaces ( N7’ = N7 ) but we need the Hausdorff proper-

ty to be included in it.

It X cTITX,; s f: X— Y , we shall say that ¥ de-
pends on Jc 1 (or, if covl J<oc , On less tham oc
coordinates) or that f factoriszes via fu, /X 1L fX =
= f‘,y, whenever me = Y . That means, there exists
a ¢:m,[X)—> Y guch that ¢ = @ ofr,,x , no con-
tinuity is required for Q o Ir 5 /% is a quotient
(uniform quotient, proximal quotient), which is the case
e.g. when X = 'I;I'X.; s then 9_ is continuous (uniformly
continuous, proximally continuous) provided ¢ is. G, Vi-
dossich proved in [V] that if § 1is uniformly continuous
then always there exists a factorization f =g o MJ)X
with g uniformly continuous and J with cardinality of
at moé_t the uniform character of Y (but not any such
factorization is uniformly continuous), i.e., the factori-
gation does not depend on properties of the product, whioh
is a big contradistinotion with topological spaces. Ve
want to show here that the proximal case lies in between:
it X = 'ET X1 » then the factorization depends only on
properties of Y but if X & TIT Xy it may depend alse
on properties of X . The main difference is the faect that
in the first case there is the leést set Jcl on whioh
f depends and this sét ban be easily desoribed -~ this wae
probably first stated by A. Mik¥enko [Mi]; shis fact does
not hold generally if X 1ie a proper subset of the pro-
duct (but it holde e.g. if X has a dense set open in the
product).
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The next lemma is the main assertion in factoring

proximally continuous mappings defined on the whole pro-
duct,
LEMMA ). Let X; (4 e I) and Y Dbe spaces,X a subspa-
oe of 'I;I’ X2 and f‘ X— Y be proximally continuous,
Then for any symmetric uniform neighborhood UL of the
disgonal 4, the set I, = {4 € 1| there are x;,y; € X
such that (fxg,fy;) € WL, 4y o Xi= g (ya. ] 1s finite.
Proof. Suppose there is a U - such that Jy ~ is in-
finite. Pind a symmetric uniform neighborhood W of 1y
such that W*c U, Then there is an infinite J c u
such that <+‘x‘;,f‘q3> é¢W forall 1,4€) , ‘[EJ.tvvJ.
Iftweput A=dxyli€dd, Bedg,lied}, then f[A),
f(B) are distant 4n ¥ but A, B are proximal in X ,
which is impbuiblo.'» Indeed, it suffices to prove that for
any finite K 4in I and any uniform neighborhoods V@ of
4,% ; % €K , there are x € A, 4 e B such that
g X, ey del tor all s € K - this is clear since
there 18 4 6 J-K and wemay put X = X3, Y= Y; °
PROPOSITION . _Le't Xs (i1€l), Y be spaces and f :
:TIT Xy—>Y be a proximally continuous mapping. If the uni-

form pseudooharscter of Y 4is less than an infinite cardi-
nal o » then £ depends on less than oc coordinates.
Proof. Let ¥ Dbe a set of symmetric uniform neigh-
borhoods of 4,, with cod V= , NVU= 4,,’ and put
IJ=VU{d, (VeV} , where Jy are the sets from Lemma

1, Then, as one cen easily prove (see (Mi]), £ depends on

J and cadd < ¢ .
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As a direct consequence we get the following result

which will be improved in Theorem 2,
PROPOSITION 2. A product of proximally fine spaces is pro-
ximally fine iff any countable subproduct is proximally

fine.
Proof of the sufficiency. Let X: (¢ ¢ 1) be proxim-

ally fine spaces and f be a proximally continuous mapp-
ing defined on TIT X; and ranging in a metrizable space
Y .« Then I;TX,‘-, is proximally fine iff any such f is
aniformly oontinuous. By Proposition 1 there is a countadb-
le JcI- and a mapping q:‘l}’X;——bY such that f =
=@ 01'_01:., . Sinoe 1, 15 a uniform, henoce also proximal,
quotient, the mapping ¢ 1is proximally continuoue; but
by the assumption 'g’_X,-, is proximally fine, therefore
9  is uniformly continuous. Consequently, ¥ is uniformly
continuous,

THEOREM 1, Any product of pseudometrigzable spaces is pro-
ximally fine, '

The following Corollaries are connected with J. Vi-
limovsky; the first one answers one of his probleme posed
in the seminar and the second one was suggested by him af-
ter knowing Theorem 1, '
COROLLARY ], Any space can be embedded into a proximally
fine space. |
COROLLARY 2, Any injective space is proximally fine.

| Proof. Embeddings of injective spaces are coretrac-
tions. | |

To proceed further I need another faoctorisation
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lemma which will be useful for mappings defined on subspa-

ces of products.

LEMMA 2, Let X be a subspace of a product ?I‘;‘ XF ; o

be an infinite cardinal and ¥ be a proximally continuous
mapping on X into a space Y o Then for any symmetric n-

niform neighborhood L of 4y, there is an m < o« such

that {fx,fy ) « L provided %, 4 e X and foe X = frcy
for all f < 7 -

Proof. Suppose not. For any 17 < o¢ there are Xy
Yyn€ X with flug %oy = AVt Yy LOX all f<m and
(_-Px,,l,f‘/yf,,t> & L., ItV is a symmetric uniform neighbor-
hood of 4, and V¥c LL , then there is a cofinal set C
in ¢ such that _<f\x§ ,-F‘nhﬁé V' whenever §,7e C, (RS1.
Thus if we put A=4{xc %, , B = {4e3c , then A, B are
proximal in X 3 let €,,..., §,,< oc , pick out § & c »
€>6.,1v=1,..., m; then Xg € A,yge B 1 5,%"
= fg .6, Yg - But f‘[AJ.,i’EB] are digtent in Y - a
contradiction,

PROPOSITION 3. Let X be a subapace of a product 'FLT“ X; ’
o be an infinite c¢ardinal and ¥ be a proximally conti-
nuous mapping on X into a space Y , If the uniform pseu-
dooh,éraoter of Y 1is less than cof ¢ , then f depends
on less than o¢c ooordinates. |

The next example shows that Proposition 3 cannot be
generalized to ‘the form that the factorized mapping is
proximally continuous or that f depends on «, coordina-

tes even if Y 1is uniformly discrete.
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EXAMPLE 1, Let Y be a uniformly disorete space of cardi-

nality greater than Q.% ; X ite proximally coarse (pre-
compact) modification and f: X—> ¥ the identity map-
ping fXx = X o Embed X 1into a power of [6;4] o The
mapping f 18 proximally continnoua;. it ¢ | depended on
a countably many coordinates of the power 6: EO,ﬂ. ,then

"o
points, Sup-

the image Y should have at most ( 2‘0’)
pose now that caxd ¥ = @, » 2%2 @y 2% @, ,By Propo-
sition 3 the mapping f depends on @, coordinates (we
may suppose that X 1is embedded into [0,43“’3 )o If
the faotorization 1s proximally continuous, then again by
Proposition 3 the mapping f depends on @, coordinates,
but now certainly not proximally confinuously because ot-
herwise ¥ would depend on w, coordinates.

Now, we are prepa_red' to generalize Proposit :I.t_m 23

THEOREM 2, A product of proximelly fine spaces is proxim-

ally fine iff any finite subproduct is proximally fine.
Proof, By Proposition 2 we have to prove that a

countable product ‘Ll' Xm  Of pracimally fine spaces is
proximally fine if JL., Xm 1is proximally fine for all
% e N . Suppose that there is a proximally continuous
mapping ¥ on ";‘T Xm= X into a metric space < Y, d?
which is not uniformly continuous. Hence there exists an
€¢ >0 such that for any symmetric uniform neighborhood
U of 4, there 1s (¥, ,4 > € U with d<fx ,fy,>Zc¢.
By Lemma 2 there is a % € N such that d<fx,fy) < €/3
whenever i, X = 1 for allms K. Let a, e X, for

m>k, Z= T;!'hxmx ({a,|m>%3),q9=f/Z .81ince
mnz



-130-
the space Z 1s proximally fine there 1s a symmetric uni-

form neighborhood V of 1, eu_ch'that d<gx,gy>< €/3
provided <x,4>e€ V . Put U=L<x,n)e Xx X |<upx, rade
€V}, %=tz %y > 4u=frz%y . Then

d<foy,fpy > € d<fxy, fxly Y+ o Chxf, fy) >+ alryly, fiyy d<
<€/3 +e/3+€/3=¢ - acontradiction.

In the next results on products of proximally fine
spaces I ehavll use the following idea: to prove that the
product X x Y of proximally fine spaces ie proximally
fine, we embed Y into a product of metrizable spaces and
show that any given proximally Qontinuous mapping f: X < V>
—»Z ,Z metrizable, factorizes via 1y > L by means of
a m_ap'ping g . If w&kﬁow tha_t' ¢ 1is proximally continuous
and X x fie [Yj i1s proximally fine, then f 1is uniform-
ly coht:l.nuous. In the case when st (Y] 1s uniformly dis-
orete, the mapping ¢ :I,.é proximally continuous since
'1X x . is a pr'ozimal' quotient in this case (if A, B
are proximal in X x v [ Y] then (4y x wm)-TrAd, |
4y > »rvr,)"' [B] are proximal in X < ¥ ), Recall that
a space having a linearly ordered base is either metrizab-
le or uniformly (0 -dimensional.

THEOREM 3. Any product of spacee having linearly ordered

bases is proximally fine,

| Proof. By Theorem 2 1t suffices to prove our theorem
for finite productes, Let X ’&ﬁo’ X3 + X; have linearly
ordered bases, X, be metrizable (e.g. a ome=point space)
‘and X, nonmetrizable if m >0 . The proof goes by
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induction on m : our result is trivial for m =0 ; suppo-

ge it is true for all K < m, m >0 and let f be a
proximally continuous mapping on X into a metrizable
space Y . We must prove that ¥ 1is uniformly continuous,
The uniformity of X, has a base U  which is well-or-
dered by inclusion, has a regular cardinality oc and is
oomposed of equivalences. Therefore X, 1is projectively
generated by the canonical mapping into UE'IL Xn/U , vhe-
re X,/ Ll 1ie the quotient of X, along W . Clear-
ly, ¥ factoriges via a subspace of "'if)(‘-, > I{X,,,/U. and
by Proposition 3 it depends on lese than o« coordina-
tes - we may suppose that it depends on (X,,-.., Xm-qV w
fora U c U, caxd U < < . IfLLé?L,thn’ZL’,
then f factorizes via the product "n'l;l:1 X; < X, /U and
the factorization 1s proximally continuous (see the pa-
ragraph before Theorem 3), hence uniformly continuous by

induoctive assumption.

Till now we have used factorization lemmas whioch
hold generally and do not take into account special fea-
tures of our problem. The next two lemmas make use of two
such features: the subspace of the product is of the foi'm
XxY and the investigated proximally continuous mapping
is separately uniformly continuous.

LEMMA 3. Let X, (1 eI) and ¥ be spaces, X be &
subspace of TIT X3 and f: X< Y—> Z be a proxi-
mally continuous mapping into a Hausdorff space Z . Sup-
pose that there is an infinite dense set T in Y such
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that for any t € T the map /X = (%t) 4is uniformly

continuous and the uniform character of Z 1is oc . Then
f depends on oc.cand T ooordinates and the factoriza-
tion is proximally continuous provided one of the spaces
X,V 18 proximally coarse.

Proof. By'a theorem from (V], for each t € T there
is a set J, c I  such that f/X x (t) depends uniform-
1y continuously on J, and cad J, &€ ¢ if o 18 infi-
nite, Jp 1s finite if &« =41 . Put J = LIy 4 then
cad JL& c.candT and f depends on J , i.6., f =
,'go.q%/xx 1) tora g: Ay LXIxY—>Z (indeéd.
it x,x'e X, pryx = ey x’ , te T, then f<x,t>=
=f{x,t> seince Jy c J 3 if yp €Y ,then there is a
_nef {ty,} in T oonverging to 2 and clearly <x,t, >—
—> <%,y ), <Xt > —> x> ,hence F<xX,y)=f<x,y)).
To prove that £ has a pfoximally continuous factorization
via qut; L X1x ¥ we must show that the extension of ‘to
Samuel compactifications factoriges via the Samuel compac-
tification of pr, [X1> Y . We know thét this is true
tor £/ qe LX) x(t), teT. If one of the spaces X, Y
is proximally coarse, the Samuel compactification of Xx Y
or fut,LX1 > Y 4s the product of Semuel compactifioa-
tions and wé can prove the required fact in ‘the same way
as we proved that f factorized via qu,LX1xY .

LEMMA 4. Suppoée that a mapping f : X xY—> Z of spa-
ces is not uniformly continuous but that £/ X x(y) is
uniformly continuous for each a4 €Y .o Then there 1is

Y« Y @euch that £/ X x ¥’ 4s not uniformly continu-



ous and card Y& o« /318,,3 where o< 1@ the density of
X and (3 4is the uniform character of Y .

Proof. Let T be dense in X of cardinality ¢ and
YV be a base of the uniformity of Y of cardinality (3 .
Denote by U a base of the uniformity of X . There ex-
ists a uniform neighborhood W of 4, such that for any
UWeWU, VeV  there are <xw,x[w)e l, <'y‘uv7{y—hv.>€ v
with <£<xyy, 40 ?, F<Qy, 40y > ¢ W . Since
£/X > (o), £/X x (447y) are uniformly continuous we
may suppose that Xyy ? “ILV belong to T , Pick out
a pair {apy 4o vy 4'¢ 4oy dE€ Y=Y for {t,t">eTxT,
Vel such that for a L €U we have 4y 4.\ = Hyy»
'*'t,t’,v= ry.:“, and t=x,, ,t'= %[,y 1f such a pair ex-
ists. Denote by Y’/ the set of all Yo,0,y ! 'l}’t,t’,v 3
then card YV’'& o« . 3 and /X »x Y’/ is not uniforme-
ly oontinuoda; indeed, if U e U , Ve U, t = x4y
t'= X}, , then <t,tdell, Uy gy 1¥g,4y 6V and
Pty > X DO EW .

Now we are prepared to prove the last main theorem;
it generalizes results proved in [13'1 (product of finite-
ly many proximally fine and coarse spaces is proximally
fine), [I,](any product of proximally fine and coarse
spaces is proximally fine) and in [Kd] (product of a
proximallj fine space with a compact space is proximally
fine). -

THEOREM 4. Let X; (i € I) be proximally fine spaces and
all except at most one of them be proximally ocoarse. Then
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1;1" Xy is proximally fine.

Proof. It suffices to prove that XxY 1e proxim-
ally fine provided X and Y are prorimally fine and Y
is proximally coarse since that, by indiction, any finite
product of proximally fine and coarse spaces is proximally
fine, and, of course, prdximally c'oarse; consequently by
Theorem 2, any product of proximally fine and coarse spa-
ces 1is proximally fine and coarse and the product of this
product with a »nroximelly fine space 1is proximally fine.

Let then X ©be proximally fine and Y be proximally
fine and coarse., Suppose that f : X x Y—> Z ig proxi-
mally continuous mapping into a complete metrizable epaée

Z 3 then f has a proximelly continuous extension to

-~

X x ¥ dinto Z , vhere Y 1is a completion of Y . Thuse
we mau_y and shall suppose that Y 1is compact although the
next proof is almost the same also fo: proximally fine
and coarse Y . By dP we denote the density and by wP
the uniform character of the space P . We shall prove
by induotion on odX that f is uniformly continuous
provided the following condition (X ) holdss

X 1is a space, Y 1is a compact space, Z is a met-
rizable space and f: X x¥Y—> Z 1is a proximally conti-
nuous mapping which is uniformly continuous on e¢very
X > (y) for sy from a dense set Y’ in Y with
cand Y = Y .

Our essertion clearly holds if dX < @, 1 suppo-
ge it is true for all X with dX < o« , where o« 1is8
an uncountable cardinal. Let now dX = « and Y, Z, f



satisfy (% ). Pirst let wu¥ < o« ; since dY & «V , by

Lemma 3 + fa_ctoﬁzes proximally continuously via X’x Y,
where 4 X’'% 4 Y and the factorized mapping f‘ satisfies
again (% )e If ¢’ is not uniformly continuous, then by
Lemm 4 there exists X” c X’ such that £/X* x Y 1is
not uniformly continuous aml carnd X7 £ 4 Y but this is
@ contradiction with the inductive assumption, If wY= o
and cof o % @, , then by Lemma 2 f <factorizes via
X x Y’ where wuY'<dX, Y 1is an image of Y (1.e,

X % ¥’ is a proximal quotient [P] and, hence, uniform |
quotient of X x ¥ ) and again the factorized mapping sa=-
tisfies (% ) and we have the preceding case. If cofoc= @,
and T is dense in X with card T = o ,T=L~JT,,,, with
canlTy< o« ,then /7T, = ¥ is uniformly continuous for
each m by the inductive assumption; thus if Yc:'lil' Yi »
Y; pseudometrizable compact, f/ Tn > ¥ factorizes via
a countable J, . Consequently, f factorizes via L"‘)Jm,
(proximally continuously as in the preceding case) and we
have again the first case., If, at last, uY > oc , then by
Lemma 3 € factorizes proximally continuously via X x Y’
with Y’ £ ¢ and we obtain the previous cases. The

proof is finished.

The following example shows that not any product of
proximally fine (even topologically fine) spaces is pro-

ximally fine. The spaces can be found countable, one of
them uniformly discrete and the other with a unigue accu-

mulation point.
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EXAMPLE 2, Let P be a space and D (or E ) a uniformly

discrete (or indiscrete, respectively) two-point space

with points c¢,d . Put Fy= Z4E,, ., |<h,9>ell-14,3+

+ Z{Dw,q.)

<fr,9>€Px P-LL3 , where Een o>= EyDpgr=D
and L belongs to a base U composed of symmetric uni-
form neighborhdoda of 41,, o Pinally put P= inf{ Py and
hi<n,@),e= 1, nkn,@>,dd=q . Then h:P—> P is
a duotient mapping ([I,],pe. 52 and (&1,p. 699 ). Conse-
quently, if P 4is not proximally fine then ? 18 not pro-
ximally fine too and, therefore, there exists a proximal-
ly continuous mapping ¢ defined on 3’ which is not uni-
formly continuous.

Put now X to be a uniformly discrete space with the
underlying set Px P-4, eand Y the set(Px P-4,‘,_)u(z),
% ¢ Px P , endowed with the fine uniformity of the topo-
logy having the only accumulation point z with the base
of neighborhood system <( LiL- 4n)u(z)| UeU3 . We shall
prove that if P is not proximally fine then XxY 1is
not proximally fine.

We embed P into X x Y in the following way:

in,908) s Kn,9%zd, 4+<<Kn,Qdd)=Knr,9>,{r,eM
and define f on X x Y into the range of ¢ 3
£, (197> = glln,g),c) if <p,9) + <pn’g”")
£, 00,4010 =g <K 900>
FLN0Y,2) = §<<m,q0, ¢
We have fo 4 = g and, hence, f is not uniformly conti-

nnous and it remains to prove that f is proximally con-
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tinuous. Suppose that A,Bc X x Y, A, B are proximal

in X xY @and fLAJ,fLB] are distant in the range of
f . Then for each L € U  there are {pn,,q, >€ PxP-1,
and o , & € Y with &4y ,quraydeA, <<ny,qy” 8% B,
(ay, &) e Uulx), Clearly, (f<<f,,Qy> ay ), F<<ny, 9 %4
= (g Lny,qu%e) 9 Kn,,q, Kdd)Put A= EKny,9, 2, a2y »
B, =442y, 9y 2 &y 7 By 5 then Ay, B4y are proximal in

X>xY and f[A,J,f[B,] are ¢igtant. One of the pointe
Ly Qu2ray?s Sy, >, £y > must belong to the diagonel
Ay , Bay <<y, ay ) e 1y and we denote a,=a;

=% and similarly for the other case; then

It we put A,={n,,9, %8, % , By=1ny, 9,0, &y >3y

then A2 , B are proximal in X x ¥ , in fact in 4',['5],
end fLA,1,flB,] are distant in the range of f , which

is a contradiction because f -1 is proximally continue

ous.

REMARKS,. By modifying the space ?  we can obtain exam-
ples where X is not uniformly discrete (any uniformity
coarser thean P and finer than the uniformity projecti-
vely generated by S 1is all right for S to be quoti-
ent).

The space 7 need not be proximally fine but at
any case it is proximally minimal, i.e... any strictly
finer uniformity induces i ﬁt_ﬁ.ctly finer proximity. In-
deed, let W be a uniformigzable neighborhood of 4$
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which does not belong to U and is emaller than the ba-

sic neighborhood of 415 in Z4Ec, oy |<p,g> € Px P-ig 1.
Then for each LL €U there exists <fi,,q > € ll such
that <K<py,qu 20> Kny,qu2,d>> & W . Put
Asf{ny,q,%,e>% , B= {L&fy,qy?, d>3q - Then A,B
are proximal in P obat they are V -distant. This pro-
- perty of P was found when I tried to solve the follow-
ing problem posed by J. Vilimovsky in the seminar: Does
there exist a nontrivial coreflection in Umif preserv-
ing proximity? Since we have Jjust proved that any space
is a quotient of a proximally minimal space, there exists
no suoh coreflection.

By the method used to prove Theoremes 3 and 4 one ocan

prove other results on products of proximally fine spaces.

Begey 1f X has a linearly ordered base and the density
of X is o« and if Y 1is proximally fine and the inter-
section of o« uniform neighborhoods .of 1y 1e agein a
aniform neighborhood of 1y , then X x Y is proximally
fine.
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