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SEMINAR UNIFORM SPACES 1975-76 

Atoms and proximal f'inenesa

J. Pelant and J. Reiterman

W• are going to continue an investigation ot unif'orm 
atoms on ťA) • Tbe saIOO e:f'fort is a .t'eature of [SJ in tbis 
volume, so the reader can :f'ind there all needed details; 
see eleo [PR]. 

In relation to problems concerning products of' proxi�. 
mally fine spaces, M. Hušek raised the question whether 

here 1s an otom whjch is proximally fine. The answer 1s 
:ťtirmative .gnd we h·ied to characterize these atoms. We 
hall not give a complete characterization. However, we ho-

pe that the partial results, especially relations between 
stoms and ultrafilters -that appear in the f'ollowing, are 
not without any interest. 

Definitions. All uniform spaces are assumed to be Haus­
dorf'f. Let (X,'U,) ba a uniforrn space. 
1) (X,'ll) is an atom. if the only uniformity which is stric­
tly finer than (X,'l(,) is the uniformly discrete one.
2) (X; 'U) is proximal.ly fine if each uni:ťormi ty inducing
the same proximity is coarser than (X,'U.).
3) (X,'U,) is proximally diccrete 1! it induces a proximal­

discrete proximity, i.e. if it contains all finite covers
Cequivalently: all partitiona into two sets). 
4) Let $' bé a filter on (AJ= -to,1,2, ••• �, let X=�><

. {0 1 1; . Denote S(:Ť) = (X,'Zl-(9')) the unif'orm space euch 
t .at the base tor '1l(3") is tormed _by all covers o.f the 
t m {-t< n,O > , < n,l > 1 ; n E F � u -C -i x ! ; x EX} where FE�-

Remark. _By [.PR], an atom on a countable set is proxi­
mally non-discrete i:ťf it is uni.formly homeomorphic to s(�)" 
t r some ultr�filter � • Further, a proximally fine·atom 

a_t be proximally non-discrete ( proximal discretenesa and 
proximal f'ineness imply uniform discretenesa). Thus, we re­
a.trict ours@lves to inveatigation of the S{S"'}�s 1 
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Consider the tollowir..g propertiea ot an ultra.tilter 

on� : 

(PFl = S(g') is proximally fine; 
{OPF) = S(�) 1s proximally fine w„r.t. 0-dimensi.onal unif 
mities; 
(Sel) = � is selectíve; 
(R) ::: If t, g: (AJ --+ <.c) are two mappings such that t :f =

= g!l' then there is F� 3' with f/F: g/F;
{P}: If f, g: � � G> are two one-to-finite relations
(i.'3 .. , ror every n E. ev , fn and gn are finite sets), st:c
that fFn gF:4=0 for every F e 3' , then either there ie. F
such that :tnn gn::pň for every n é. F or there is n with t-... n
u 8-ln 6 'J' ;
(Z) =- If f, g: ú) __.,.. w are as in (?) then either there 
mappings f 'c f, g 'c g wi t h t ',;-JI = g '3' , or t bere is n wi 
f'-1n u g-1

n E- � ..

As for the above tilter theoretical properties, we ha 
the tollowing relations: 

Proposition l" (P)<-.> (Sel). 
Proof. (p) �> (Sel). Given T with (P), take a par.tf 

tion {lJ =- {Dn3 of 4> • Suppose that � I') S' = 0. Denc 

rv the equivalence defined by ti) and put

ti = ..f21 � v .( 2j • 1; i:> j and i..-v j I ,

gi = .(. 2 i + 1 J u { 2 j ; i ;:ir j Sl d i,..,., j 'l •
Then i t, g are one-to-tinita relations such that fingi = � 
for each i. By (p) there is FE. <3' with fFngF = 0. But 
t e defini t ions oť f, g ťorce that \ F n Dn I b 1 for each 11, 
Thus, r is selective. 

(Sel) ) (p). Let f: G> � 4> be an one-to-tinite re

lation. Then i :t-1n; n E 4:> j is a point :finite cover. ��:n

it 'i!" is selective then, by i. L J , either f-ln E;- ff for 3 
-1 \ n or tbere 1s F

:r 
é � such that \ t nnFf 1::; 1 for ever-]

?low, it f, « are as above Csee (p)), we ahall suppose that

latter case takes place Cother cases are easy). Then for � 

n E. F ff"I F g we have fn n f'm = 0 and gn r, gm = fS provided m+ r.. 
!i.i.ay euppose th�t the l�st two equalities hold for each cou
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m, n € CA) , m=tn. Then � f-1gn; n E Q i is a point tinite
cover consisti� of finite sets. Usi� the selectivity ot/F 
once more, we get F1 E � such that \ F

1 
ri t-1gn I I: l for

every n. In other words, if m, n� F
1, m-q:.n, tllen f'nn p • 0.

Thue, denoti� F·=-{neF1; :f'nngn,+0J Elld F 1 

a:F
1 

- F, we

have t'F 1

() gF' = 0· so that F
1 E$ fJ' • Thsn i' e � • The prooZ

is tinished. 

Remsrk. We do not know which ultrafilters are characte­
rized by the property (z). However, the following is obvious: 

Proposition 2o ( P) - > (R) and ( R + Z) ==> P ,- Z.

Remark. (R) does not imply (P). Indeed, Alain Louveau 
kindly 1.nformed u� that it is well known that, under CH, the­
re exists an ul trafilter � on 4J '4th the tollowing pro­
perty: There is a partition 6/)

0 
of ú'J such that each ether 

partition is :F-equivalent either to (;D 0 , or to ci[)l :s {4>! 
or to �

2 
= -( < n � ; n e Q i , while �o is g- -equivalent

neither to c01 nor to 6/J2 (two partitions are �-eq�iva­
lent if there is Fe 9"' sueh thst their traces on F coinci­

de). Note that the ultrafilter constructed in the proot ot

Theorem 2 in (Sl has the above property. It is clear that 
such an ultrafilter has (R) but is not selective. 

I:t c;,., is a .fil ter on w , denote �.6 the fil ter on 
� x Ct> whose base consist s of sete G )(. G - b ( 6. being 
the diagonal 1n (,,) >< � ) where G e- � o 

Proposj tion 3. An ul trafilt er T has not (R) it't 1t 
admi ts an image oe '3 under a mapping a(_ : 4.> --...:,, ev x Cc.> 
refining some <J.,A " 

Proof'. Easy: Take projectione Pi:�,< Ce) -� Cc> , P2: 
: eJ x w) -.:;, C'c.> and conaider the obv ious relat ion.s between 
mappings oe : <c> ...--+ 4> ;,,c. ec> and couplee t, g: a> �--.;,. � 
( P1 tX = t, P2· 0(. = «) • 

Theoťem. ( Sel)� (P) =>(PF)� {OPF)�� R. 
Proo:t. (OP.F) � (R). Suppose that g:' has (OPF) but ha9 

ot (R), 1.e. there �re t, «: c,J .---; c:c.> such thet t � e: g :1"
nd, without loss of generality, tn:;=,in for etJery :a � c.c> • 
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Def'ine an equivalence relation ,v on X • Q x i O,l J sa 
lowa: 

< n,o ) rv < m,o) it'f' :tn = t'm, 
< n,O > N < m,l > itt f'n = gm, 
< n,l >IV< m,l) 1ft gn = gm. 

Then rv induces a decompos it ion :/) ot' X. Clearly, ;/J � I 
so that tha unif'ormity 'li/ whose subbase is p UC$ l u -{ c2li

(wbere p denotes the praecompact modif'ication) is not co� 
le with ?l ( g:'). On the other band, 'IJ,' is 0-dimensional 
inducea the same proxi.mity - a contradiction with (OPF). 

(R) > (OPE} o Let � have the property (R) and let
be a 0-dimensior.al unif'ormi ty which induces the same prcxl 
ty es 'lt ( �). Then each part i tion :;/> e 'll" sat1sf'iee t 
t'ollowing condition: 

If F
0

, F1 e- !1' then there are x1 � F1 such that
< x0 ,o),..., < x1,1 > where "" denotee the equivalence de!1
by 3) •

It 1s suf'f'icient to prove that ;i) E 'U (9'). To do t 
denote (l) : -{ Dn J arň de.tine f', g: Q --.:;. c.c> by 

fll = n itt � 111,0 > E Dn, «m = n ií'f' < m,l> e Dn•

Now, by (R) there 1s F es 7 such that f'IF•= g/F, i.s. auc 
that for each m E F, < m,O > , < m,l > e. Dn for some n. Thus, 
cover {.(.<m,O) ,<m,l)J ; me.FJv{-C xf; xEXi ref'ine 
:/) and eo 3J E U ( 9"). The proof is f'inished. 

(p)� (pf}. Remember that each uniformity on a co�
able set hss a base consisting ot· point f'inite covers [V], 
(PR]. Now, the proof is quite analogous to that one o� 
(R) =s> (OP.F): replace· only the partition /() by a point :fin
cover, eo that f, g detined above are one-to-.tinite relati

Remark. We do not kno\f whether (OPF) > (PF) or 
(PF) =:;, (p) holds. Of cour se, according to the last remark 
these implications cannot hold simultaneously. Observe als1 
that if 'F has (z) then (p), (PF), (OP.F) are equivalent. 
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