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CONTINUOUS EXTENDERS FOR PSEUDOMETRICS

D.J. LUTZER

This fourth lecture concerns results appearing in 2 Jjoint
paper LY Teoder Przymusinski end myself &ﬂl .

Recall that a space X 1is collectionwise normal if, given any
discrete collection & of closed subsets of X , there is a corres-
poncéing disjoint collection ¥ = {V(F) : FE J:} of open sets in
X having FCV(F) for each FE€ J . This notion was introduced by
£ing [éﬂ in 1951 in his study of metrizability and normality in
Moore spaces, questions which today are not completely settled and
which make logic feel like a branch of applied mathematics.

But there are other uses of collectionwise normality. For a mo-
ment, consider the class of completely regular spaces. Completely re-
gular spaces are:

(1) those spaces determined by families of continuous real-
-valued functions;
(2) 'those spaces determined by families of continuous pseudo-
metrics.
If the space X 1is completely regular, then so is each (closed) sub-
space a and it is important to know what relationship, if any,
exists between the continuous functions (respectively, continuous
pseucometrics) which determine the topology of A and the continuous
functions (respectively, continuous pseudometrics) on all of X. Anc
that is where norm&lity and collectionwise normality become important,
48 the next two theorems show. But first I must settle on some nota-
tion. For any space Y, C(Y) and P(Y) are the sets of continuous
real-valued functions and continuous pseudometrics defined on Y ,
and the sets of bounded members of C(Y)} and P(Y)' are denoted by
C*(Y) and P*(Y) respectively. I can now state the basic theorems
about extending functions and pseudcmetrics as fclilows:

<

A. Theorem: a space X 1s normal if and only if for each clo-
sed 4CX , each member of C(4) 1is the restricticns of some member
of C(X) .U
That result dates from the 1920’8 and i due 16 Urysohn. Extending
renpers of P(4) to members cf P{(¥} 1s more difficult:
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B. Theorem: 4 space X 1is collectionwise normal if and only
if for each closed ACX , each member of P(4) is the restriction
of some member of P(X) . 0

1t is hard to say whose result Theorem B is. Half eof it is usuelly
ascribed to Arens E\d , but a closely related result is implicit in
a simultaneous paper by Dowker ﬁ)c] ; Louker’s result was noted by
E. Michael in his review of Dowker’s paper, [M]‘. The other half of
the theorem is usuually ascribed to Shapiro [S] and Gantner [G] .

There is a result midway between extending real-valued functions
and extending pseudometrics. It is due to Alo and Sennott E@ , but
the proof I’ll give here is due to Pol (see [P, §3:|) and neatly in-

" troduces many of the tricks of this trade. 4lso, I need it later.

C. Theorem: A 'rl space X 1is collectionwise normal if and
only if every continuous mapping f : A—eB , where A 1is &a closed
subset of X and B 1is any Banach space, can be extended to a con-
tinuous mapping F : X—B .

Proof: Suppose X 1is collectionwise normal and that
£ : A—B 1is given. Define a pseudometric p on 4 by P(x,y) =
= ”f(x) - £(y) || y where “.[l is the norm in B - According to
Theorem B, there must be a continuous pseudometric P on X which
extendes p - Let & Dbe the topology induced by P’ on X , and let
C = cl&(A) .~Suppose xE€C-A; then there must be a sequence a(n)€A
having 1lim P(x,a(n)) = O . But then, in the Banach space 3, the

sequence <f(a(n))> is Cauchy so that f(x) = lim f(a(n)) exists
n
and is independent of the choice of the approximating sequence

<al(n)> .

Defining f(a) = f(a) for each a €A, we obtain a continuous
function f : (C, &c)—*B . According to the pseudometric generali-
zation of the Dugundji Extension Theorem (for Banach-space-valued
functions) [D\g » there is a function F : (X, £ )—B which ex-
tends f .

Conversely, suppose each Banach-space-valued continuous functior
on a closed subspace of X can be extended continuously over X . T¢
prove that X 1is collectionwise normal, I again use Theorem B, 8o
assume @ i3 a continuous pseudometric defined on a closed subspace
A of X . Then, identifying points of A at j)-distance 0, I ob-
tain a metric space (M, §¢ ) and a natural projection of: A—eM .
Since M 1is metrizable, M can be isometrically =2mbedded in a Banact
space B 80 that there must b& a continuous F : X—B which ex-



tends £ . Let H.“ denote t}?efnorm of b and define § on X=X
oy Plx,y) = ||[Fx) - By
of p . D

In a earlier lecture [L] you hearc me talk about sharpening
Urysohn’s result (Theorem 4, above) to produce & function e : C"(a)
— C*(X), called an extende¥, satisfying

(1) if fE€C"(4) then e(f) extenas £; and

(¢) e 1s continuous when both function spaces carry the

. ~ - - . -
|. Then § 18 the requirec extension

sup-norm topology-.

The new material to be presented today concerns similar sharp-
enings of Theorems B aad C. I’1ll start with a special case of Theo-
rem C, but first I’ll introduce some notation. For any space Y and
any Banach space B, C(Y,B) denotes the set of all continuous
£ :Y—5B, and C"(Y¥,s) 1is the set consisting of all bounded members
of C(Y,3), i.e., functions f : Y—B such that the set f[Y] has
finite diameter with respect to the norm H . || of B . The set
C*(Y,3) 1is itself a linear space (as is the larger set C(Y¥,3)) and
becomes a Banach space if we define the sup-norm by

12 (] = sup {|lz || : ve¥}
for each fE€C*(Y¥,B) . (The obvious notational abuse could cause enc-
less confusion later on, but to De notationally precise is often mes-
3) . -Tust to illustrate the real price of precision, later today I'll
“~'yuce norms ” e lly » 1<i<5, on five different spaces appearing

L. .h¢ same proof.) I can now present

D*. Theorem: Let 4 be a closed subset of a collectionwise
normal space X, and let B be any Banach space. Then there is a
continuous extender e : C*(4,B) —C*(X,B) such that for each
recr@a,s), [lee)|| = [l2]]-

Proof: As in my third lecture [L] , 1 will use the Bartle-
-Graves Theorem which asserts that if R : E—F 1is a continuous li-
L2Rr surjection between Banach spaces, then there is a continuous
¢ + F—E such that e(y)eﬂ-l{y} for each y€E€F Eﬁ@ . According to
“heorem C, the restriction operator R : C*(X,B)—C®(4,s) 1is a sur-
Jection, and R - is obviously continuous and linear. Hence there is
a continuous & : C‘(A,B)—'C'(X,B) which is a.: extender. Of course,
this € may fail to be norm-preserving anc¢ in ... t c2se we mooify
€ by defining, for fE€C"(4,B) ard x€X,
ey ir |l & || |le ]l

L%&%&%‘%xm 2| i (i g]>[le ]

e(f)(x) =
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. A i . . . !
Nowe inat ;ge(f)(x);] is the ncrm of an element of 5 , while |!f
. . ‘ o *,. .
i3 the sup=-norm of an element of C7(4,3) . D

Now Theorem C can be sharpened. #2or any space Y and any oana
sgace o5 let <C(Y,3) carry the topology of uniform convergence.
Then C*(Y,8), with the sup-norm topology, is a closed linear subsp
ce of C(Y,3) andéd C(Y,8) 1is metrizable (although C(Y¥,B) 1s usu
1y not a topological vector space).

De Theorem: Let A be a closed subset of a collectionwise no
mal space X and let o be any danach space. Then there is a conti
nuous extender ¢ : C(4,B)—C(¥,b) .

Proot: Let #fCC(4d,3) De chosen so that the colilection
{f + C*(a,b) : fEEF} is exactly the family of cosets of the linear
suospace C*"(4a,3) 1in the vector space C(i,B) . According to Theo-
rem C , I may choose an extension f&€C(X,B) for each f€F .
According to Theorem [” there is a continuous extender e : C"(a,B)-
—C (X,5) . Now define €& : C(a,B)—C(X,B) by the rule that, for
2€l(a,B)
g(g) = £ e e(g-f) where f 1s the unique member of F having
g€’ + C"{4a,8) . oecause C*(4,B) is an open and closed subspace of
C{(a,3), this € 1is continuous. d

Now let me try to sharpen Theorem B. First 1 must describe <he
topology on the set F*(Y). Each f € P*(Y) 1is, of course, aﬁmember
of C”(YxY), and we topologize P*(Y) &as a subspace of C“(Y‘): It
is easily seen that P"(Y) 1is a closed, convex subset of C®(Y<),
indeed even & cone in C*(Y?) in the sense of &Qﬂ , but PT(Y) is
not a linear subspace of C'(YZ). That unfortunate fact makes a
Bartle-Graves proof of the next theorem impossible, at least using
known tools.

E". Theorem: Let a be a closed subspace of the collectionwise
normal space X . Then there is a continuous extender E : P*(a)—
—P"(X) such that for each PEP*(a) , ||E(p)]| = Hell -

Proof: The proof requires a sequence of lemmas which are
no: difficult if only one can keep straight which norm refers to whic
panach space. [o that end, norms will be subscripted, - |3
(1£i<5). ror example, in the statement of the theorem, H E(p )H
and !! 9[' are really norms in different spaces.

(E 1) Lemza: There is a continuous mapping (indeed, an isomet-
ry) L : P*(a)—C"(4,C"(4)) defined by the rule that if p€EP™(4)
and if x,y€A then (L(p)(x))(y) = p(x,y) .
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Proof: Since f is vounded and continuous, the rezl-valued
function L(§ )(x) definec on the space =~ is continuocus &né bounc-
ec, @8 1s the function L(g¢) : A—C7"(a). Thus L is well-definec.
Let H . ll Genote the sup-norm in C"(a) ang let | . ii?_‘ cenote
the sup-norm in C®(4,C"(a)) defined from ] . Hl . Let ; . .!J
be the sup-norm in P*(a). To prove that L 1is uan iscomewric emseda-
ing, let §,J € P (a). Then

L0y = e8|, = sup {[iLipita) - LL&I)||, : a€a)
= sup {sup {[L(¢)(a)(®) - LU&N@Id) | oEA} :acal =

= sup {|f(a,b) - &(a,b)

b

:a,b€A} = ||g- 5 -0

Now by Theorem D', because C*(4) 1is a Banech spalce, tnere 1s
a continuous extenuer e : C*(4,C*(4))—C"(X,C*(A)). Continuing the
peinful notation of Lemma (E 1), we let '
in C"(X,C"(A)) defined by the sup-norm

. H dencte the sup-nornc
Tl on C'{a) .

[

'

(E 2) Llemma: For each fEC"(X,C°(4)) and each x,yEX defi-
ne S(£)(x,y) = || £(x) - £(y) “l « Then S(f) 1is a bounced, contin-
aous pseucometric on X and the function S : C*(X,C"(a))—PT (X}

18 continuous.

Proof: For a fixea f,S(f) 1is clearly a continuous bounc-
ed pseudometric on X . To prove that 3 1is cominuous‘we show that
if f,TGC’(X,C*(A)) then H S(f) - S(g)“552 Hf—g||4 , where

|

. is the sup-norm on P"(X). We have

]|S(f) - S(g)”5 = sup {lS(f)(x,y) - S(g)(x,y)l : (x,y)EXz} .

sut | S(£)(x,3) - S(&)(x,y) | =
=| L E(x) - £(y) "1 - Hg(x) - g(y)Hl l =

< |le) - £ - s + e ||] <

< |2 - gly * g@) - e |, <2 |lf - ell;
where the last inequality follows from the definition of I . “4 ’
while the preceding two inequalities are consequences of the triangle

, .0

(E 3) Lemma: With L,e ana S as above, the composite function
E = Seeel. P*(A) —P*(X) 1is a continuous extender.

inequality for the norm H .

Proof: Obviously E 18 continuous; we sho 1l &s an exten-
der. To that end, let e,b€A4 and let P €P*(4). Tren, from cefi-
nitions, and with notation as above,

E(JO )(a,b) = S(e(L(p)))(a,b) = -
= ||e(pra) - et (®[]; . But



L{y)EC"(A,C'(a)) and e 1is aj{extender sc that e(L{p ))(a) =
LlP () &?d e(L{p })(b) = L(p )(b). Hence, fr m definitions,
(pra,b) = g - nigrwll, =

sup {JlLtp ez - Lyrm@|| : zea,

sup gla,z) - p(b,z) l . ZEa} = ¢(a,b
th- :2t equality following from the triangle law for the pseuaomet-
rie f Pl ‘he fact that bea .0

=0
"

It is not guaranteed that ” {y )" II % H » as required
Ey the theorem, where ,l5 denotes the norm of P (X). However
E can be modified as follows: for 96? (A) and for x,y€X, Ilet
ECp)(x,y) = min {E(p )(x,y) [lgll;} - men & : pra)—P 0 is
a continuous extender and F‘(f )”5 H f”‘ for eact P EP*(A),
as asserted by Theorem E

Having proved Theorem E*, I should present a Theorem E asserting
that there is a continuous extender from P(A) to P(X) where the
latter two sets are equipped with the topology of uniform convergen-
ce inherited from C(AZ) and C(XZ) respectively. Unfortunately I
do not have such a theorem. A moment’s reflection will convice you
that the coset approach used to obtain Theorem D from Theorem L* has
no hope of working. Currently I tend to favor a selection-theoretic
approach to a possible Theorem E. For each
S EP(4), let E(S) = {A€P(X)| A extenas &}

It is easy to see that E(Jd ) is a closed convex subset of P(X)
and C(KZ). However there are two problems:

(1) Most selection theorems would require that E(J ) be a
sutset of a Banach space, while C(Xz) is not even a topo-
logical vector space (except in the unlikely event that
X% is pseudocomract) .

(2) Most currently ¢xisting selection theorems treat only those
situations where :he correspondence & —E(J) is lower
semi-continuous. [his also presents difficulties.

Indeed, more can be said about selection-theoretic proofs, and about
that second problem even if only bounded pseudometrics are conside-
red. For each & €P"(A), define a subset F(&) of P"(X) by

PGS = {AEP"(X) ' /A extends 6‘} . Pryzmusinski has discovered
a topological proof that F 1is lower-semi-continuous, but it is at
least as hard as the above proof of Theorem E*. There ought to be an
easier functional-analytic proof for lower-semi-continuity of F .

To see the possible shape of such a proof, consider the selec*ion
theoretic proof of the Bartle-Graves theorem: take a continuous 1:in2ar



surjection r : X—Y where X and Y are senach SpuCeS &nd CONgi-

3y

cer tne set-valued function (=carrier) =na given vy R(y; = r 1y}

for each y€Y . Lower-semi-continuity of R 1is exactly oquivuléLL

to the fact that r 1s an open mapping &ndé that is exacily tne ¢} a55-
ical Open Mapping Theorem. (The continuous selection e : Y—X for

K s exactly the function requirec in the Jartle-Graves theorem.)
Such reflections raise & natural gues:ion: is there an o:;en Mapplng
theorem for affine surjeciions beiween closed cones in sinach spaces 7
The desirea applicaticn, of course, is to the restriction operator

r : P(X)—P*(4): one wants to say that if U 1is a relatively open
subset of P*(X) then r(U] 1is & relatively open subse: of F”(a)
and that woulc be enough to guarantee that the carrier &, definec
above, is lower-semi-continuous.

Let me make two comments in closing. First, the paper @g
contains more <technical results than the ones mentioned today - for
exaxzple, pseucdometrics of weight A and Sanach spaces of weight A
are consicered insteuad of arbiirary pseudometrics and Banach spices.
Secona, let me mention an untouchead area for future research. Neither
Przymusinsgki nor 1 have studied it seriously, beyona determining that
a lot of peoplie who should know about any results in the area dorn’t
know them. We concluce that the area 1s a virging one. Here is the
general question: find conditions on X so that for each closed
ACX , there is a continuous affine extender E : P"(4)—P*(X) (1.
e., if 6‘,f€P’(u) and if 8,16(0,1] have 8 + t = 1 , then
E(sd + tp ) = sE(Q ) + tE(&)) such that for each P EP(4),

[lec ol = Ilg

woulé be aptly titled "Lugundji Extension Theory for Pseudometirics”.

. A paper obtaining positive results in that area
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