Previous |  Up |  Next


change-point problem; Ferguson-Dirichlet prior; posterior distribution; Bayes estimate
A change-point problem is examined from a Bayesian viewpoint, under nonparametric hypotheses. A Ferguson-Dirichlet prior is chosen and the posterior distribution is computed for the change-point and for the unknown distribution functions.
[1] C. E. Antoniak (1974): Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2, 1152-1174. MR 0365969
[2] L. D. Broemeling (1972): Bayesian procedures for detecting a change in a sequence of random variables. Metron 30, 214-227.
[3] D. M. Cifarelli P. Muliere, and M. Scarsini (1981): Il modello lineare nell'approccio bayesiano nonparametrico. Research report N. 15, Istituto Matematice G. Castelnuovo, Roma.
[4] G. W. Cobb (1978): The problem of Nile: conditional solution to a change-point problem. Biometrika 65, 243-251. DOI 10.1093/biomet/65.2.243 | MR 0513930
[5] P. Diaconis, D. Freedman (1982) : Bayes rules for location problems. in Statistical Decision Theory and Related Topics III, (ed. by S. S. Gupta and J. O. Berger) vol. I, 315- 327, Academic Press, New York. MR 0705295
[6] T. S. Ferguson (1973): A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209-230. DOI 10.1214/aos/1176342360 | MR 0350949
[7] A. N. Pettit (1981): Posterior probabilities for a change-point using ranks. Biometrika 68, 443 - 450 DOI 10.1093/biomet/68.2.443 | MR 0626405
[8] A. F. M. Smith (1975): A Bayesian approach to inference about a change-point in a sequence of random variables. Biometrika 62, 407-416. DOI 10.1093/biomet/62.2.407 | MR 0381115
[9] A. F. M. Smith (1977): A Bayesian analysis of some time-varying models. in Recent Developments in Statistics (ed. by J. R. Barra et al.), 257-267, North-Holland, Amsterdam. MR 0501550
[10] A. F. M. Smith (1980): Change-point problems: approaches and applications. Trab. Estadist. 31, 83-98. DOI 10.1007/BF02888348 | MR 0638874
Partner of
EuDML logo