Full entry |
PDF
(0.2 MB)
Feedback

Schauder linearization technique; Schauder differential equation; functional boundary conditions; boundary value problem

References:

[1] Castro A., and Shivaji R.: **Nonnegative solutions for a class of radially symmetric non- positone problems**. Proc. Amer. Math. Soc., in press.

[2] Chiappinelli R., Mawhin J. and Nugari R.: **Generalized Ambrosetti - Prodi conditions for nonlinear two-point boundary value problems**. J. Differential Equations 69 (1987), 422-434. MR 0903395

[3] Dancer E.N. and Schmitt K.: **On positive solutions of semilinear elliptic equations**. Proc. Amer. Soc. 101 (1987), 445-452. MR 0908646

[4] Ding S.H. and Mawhim J.: **A multiplicity result for periodic solutions of higher order ordinary differential equations**. Differential and Integral Equations 1, 1 (1988), 31-39. MR 0920487

[5] Fabry C., Mawhin J. and Nkashama M.N.: **A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations**. Bull. London Math. Soc. 18 (1986), 173-180. MR 0818822

[6] Gaete S. and Manasevich R.F.: **Existence of a pair of periodic solutions of an O.D.E. generalizing a problem in nonlinear elasticity, via variational method**. J. Math. Anal. Appl. 134 (1988), 257-271. MR 0961337

[7] Islamov G. and Shneiberg I.: **Existence of nonnegative solutions for linear differential equations**. J. Differential Equations 16 (1980), 237-242. MR 0569766

[8] Kolesov J.: **Positive periodic solutions of a class of differential equations of the second order**. Soviet Math. Dokl. 8 (1967), 68-79. MR 0206400 | Zbl 0189.38902

[9] Kiguradze I.T. and Půža B.: **Some boundary-value problems for a system of ordinary differential equation**. Differentsial’nye Uravneniya 12, 12 (1976), 2139-2148. (Russian) MR 0473302

[10] Kiguradze I.T.: **Boundary Problems for Systems of Ordinary Differential Equations**. Itogi nauki i tech. Sovr. problemy mat. 30 (1987), Moscow. (Russian)

[11] Nkashama M.N.: **A generalized upper and lower solutions method and multiplicity results for nonlinear first-order ordinary differential equations**. J. Math. Anal. Appl. 140 (1989), 381-395. MR 1001864 | Zbl 0674.34009

[12] Nkashama M.N. and Santanilla J.: **Existence of multiple solutions for some nonlinear boundary value problems**. J. Differential Equations 84 (1990), 148-164. MR 1042663

[13] Mawhin J.: **First order ordinary differential equations with several solutions**. Z. Angew. Math. Phys. 38 (1987), 257-265. MR 0885688

[14] Rachůnková I.: **Multiplicity results for four-point boundary value problems**. Nonlinear Analysis, TMA 18 5 (1992), 497-505. MR 1152724

[15] Ruf B. and Srikanth P.N.: **Multiplicity results for ODE’s with nonlinearities crossing all but a finite number of eigenvalues**. Nonlinear Analysis, TMA 10 2 (1986), 157-163. MR 0825214

[16] Santanilla J.: **Nonnegative solutions to boundary value problems for nonlinear first and second order differential equations**. J. Math. Anal. Appl. 126 (1987), 397-408. MR 0900756

[17] Schaaf R. and Schmitt K.: **A class of nonlinear Sturm-Liouville problems with infinitely many solutions**. Trans. Amer. Math. Soc. 306 (1988), 853-859. MR 0933322

[18] Schmitt K.: **Boundary value problems with jumping nonlinearities**. Rocky Mountain J. Math. 16 (1986), 481-496. MR 0862276 | Zbl 0631.35032

[19] Smoller J. and Wasserman A.: **Existence of positive solutions for semimilear elliptic equations in general domains**. Arch. Rational Mech. Anal. 98 (1987), 229-249. MR 0867725

[20] Šenkyřík M.: **Existence of multiple solutions for a third-order three-point regular boundary value problem**. preprint. MR 1293243

[21] Vidossich G.: **Multiple periodic solutions for first-order ordinary differential equations**. J. Math. Anal. Appl. 127 (1987), 459-469. MR 0915071 | Zbl 0652.34050