Previous |  Up |  Next

Article

Title: Harmonické funkce a věty o průměru (Czech)
Title: Harmonic functions and mean value theorems (English)
Title: Harmonische Funktionen und Mittelwertsätze (German)
Author: Netuka, Ivan
Language: Czech
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 100
Issue: 4
Year: 1975
Pages: 391-409
.
Category: math
.
MSC: 31B25
idZBL: Zbl 0314.31007
idMR: MR0463461
DOI: 10.21136/CPM.1975.117893
.
Date available: 2009-09-23T08:40:45Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/117893
.
Reference: [1] M. A. Ackoglu R. W. Sharpe: Ergodic theory and boundaries.Trans. Amer. Math. Soc. 1320968, 447-460. MR 0224770
Reference: [2] J. Aczél H. Haruki M. A. McKiernan G. N. Sakovič: General and regular solutions of functional equations characterizing harmonic polynomials.Aequationes Math. I (1968), 37-53. MR 0279471
Reference: [3] S. Alinhac: Une caractérisation des fonctions harmoniques dans un ouvert borné par des properiétés de moyenne sur certaines boules.C R. Acad. Sci. Paris, Sér. A-B 275 (1972), 29-31. MR 0306527
Reference: [4] J. R. Baxter: Restricted mean values and harmonie functions.Trans. Amer. Math. Soc. 167 (1972), 451-463. MR 0293112
Reference: [5] E. F. Beckenbach M. Reade: Mean values and harmonie polynomials.Trans. Amer. Math. Soc. 53 (1943), 230-238. MR 0007831
Reference: [6] W. Blaschke: Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logaritmischen Potentials.Ber. Ver. Sachs. Akad. Wiss. Leipzig 68 (1916), 3-7.
Reference: [7] A. K. Bose: Functions satisfying a weighted average property.Trans. Amer. Math. Soc. 118 (1965), 472-487. Zbl 0136.09404, MR 0177128
Reference: [8] J. Bramble L. E. Payne: Mean value theorems for polyharmonic functions.Amer. Math. Monthly 73 (1966), 124-127. MR 0192074
Reference: [9] M. Brelot: Éléments de la théorie classique du potential.CDU, Paris, 1969.
Reference: [10] W. Bródel: Funktionen mit Gaussischen Mittelwerteigenschaften fur konvexe Kurven und Bereiche., Deutsche Math. 4 (1939), 3-15.
Reference: [11] A. Brunel: Propriété restreinte de valeur moyenne caractérisant les fonctions harmoniques bornées sur un ouvert $R^n$.(selon D. Heath et L. Orey), Exposé No. XIV, Séminaire Goulaouic-Schwartz, Paris, 1971-72.
Reference: [12] Z. Cisielski Z. Semadeni: Przegl\c ad niektórych nowszych metod w teorii potenejalu III.Prace matematyezne II (1967), 99-128.
Reference: [13] R. Courant D. Hilbert: Mathematical methods of Physics.vol. II, Interscience Pub., New York, 1966.
Reference: [14] I. Černý: Základy analysy v komplexním oboru.Academia, Praha, 1967. MR 0222257
Reference: [15] J. Delsarte: Note sur une propriété nouvelle des fonctions harmoniques.C. R. Acad. Sci. Paris, Sér. A-B 246 (1958), 1358-1360. Zbl 0084.09403, MR 0096050
Reference: [16] J. Delsarte J. L. Lions: Moyennes generalises.Comment. Math. Helv. 33 (1959), 59-69. MR 0102672
Reference: [17] J. Delsarte: Lectures on topics in mean periodic functions and the two-radius theorem.Tata Inst. Fund. Research, Bombay, 1961.
Reference: [18] J. Deny: Families fondamentales. Noyaux associes.Ann. Inst. Fourier 3 (1951), 73-101. MR 0067262
Reference: [19] : Encyklopadie der mathematischen Wissenschaften.II. Band, 3.L, Teubner-Verlag, 1899-916.
Reference: [20] B. Epstein: On the mean value property of harmonic functions.Proc. Amer. Math. Soc. 13 (1962), 830. Zbl 0109.07501, MR 0140700
Reference: [21] B. Epstein M. M. Schiffer: On the mean-value property of harmonic functions.J. Analyse Math. 14 (1965), 109-111. MR 0177124
Reference: [22] G. C. Evans: On potentials of positive mass.Trans. Amer. Math. Soc. 37 (1935), 226-253. Zbl 0011.21201, MR 1501785
Reference: [23] W. Feller: Boundaries induced by non-negative matrices.Trans. Amer. Math. Soc. 83 (1956), 19-54. Zbl 0071.34901, MR 0090927
Reference: [24] L. Flatto: Functions with a mean value property.J. Math. Mech. 10 (1961), 11-18. Zbl 0097.30605, MR 0136751
Reference: [25] L. Flatto: The converse of Gauss's theorem for harmonic functions.J. Differential Equations 1 (1965), 483-490. Zbl 0132.07804, MR 0185134
Reference: [26] A. Friedman W. Littman: Bodies for which harmonic functions satisfy the mean value property.Trans. Amer. Math. Soc. 102 (1962), 147-166. MR 0151627
Reference: [27] A. Friedman W. Littman: Functions satisfying the mean value property.Trans. Amer. Math. Soc. 102 (1962), 167-180. MR 0151628
Reference: [28] W. Fulks: An approximate Gauss mean value theorem.Pac. J. Math. 14 (1964), 513-516. Zbl 0163.34503, MR 0162047
Reference: [29] A. M. Garsia: A note on the mean value property.Trans. Amer. Math. Soc. 102 (1962), 181-186. Zbl 0103.32202, MR 0151629
Reference: [30] C. F. Gauss: Algemeine Lehrsatze in Beziehung auf die im verkehrtem Verhaltnisse des Quadrats der Entfernung Wirkenden Anziehungs- und Abstossungs-Krafte.1840, Werke, 5. Band, Gottingen, 1867.
Reference: [31] R. Godement: Une generalisation du theoreme de la moyenne pour les fonctions harmoniques.C R. Acad. Sci. Paris Ser. A-B 234 (1952), 2137-2139. Zbl 0049.30301, MR 0047056
Reference: [32] M. Goldstein W. H. Ow: On the mean-value property of harmonic functions, Proc. Amer. Math. Soc. 29 (1971), 341-344. MR 0279320
Reference: [33] J. W. Green: Mean values of harmonic functions on homothetic curves.Pac. J. Math. 6 (1956), 279-282. Zbl 0071.32003, MR 0080759
Reference: [34] M. Heins: Complex function theory.Academic Press, New York, 1968. Zbl 0155.11501, MR 0239054
Reference: [35] L. L. Helms: Introduction to potential theory.Wiley-Interscience, New York, 1969. Zbl 0188.17203, MR 0261018
Reference: [36] M. R. Hirschfeld: Sur les fonctions $\mu$-harmoniques dans un espace localement compact mesuré.C R. Acad. Sci. Paris, Ser. A-B 262 (1966), 174-176. MR 0192069
Reference: [37] E. Hopf: Bemerkungen zur Aufgabe 49.Jber. Deutsch. Math. Verein. 39 (1930), 2. Teil, 5-7.
Reference: [38] F. Huckemann: On the one circle problem for harmonic functions.J. London Math. Soc. 29 (1954), 491-497. Zbl 0056.32601, MR 0063499
Reference: [39] G. Choquet J. Deny: Sur quelques propriétés de moyenne caractéristiques des fonctions harmoniques et polyharmoniques.Bull. Soc. Math. France 12 (1944), 118-140. MR 0013496
Reference: [40] V. Jarnik: Diferencialní počet II.NCSAV, Praha, 1956.
Reference: [41] F. John: Plane waves and spherical means applied to partial differential equations.Interscience Publishers, New York, 1955. Zbl 0067.32101, MR 0075429
Reference: [42] O. D. Kellog: Converses of Gauss's theorem on the arithmetic mean.Trans. Amer. Math. Soc. 36 (1934), 227-242. MR 1501739
Reference: [43] C. D. Kellog: Les moyennes arithmetiques dans la theorie du potentiel.L'Enseignement Math. 21 (1928), 14-26.
Reference: [44] O. D. Kellog: Foundations of Potential Theory.Springer-Verlag, Berlin, 1967. MR 0222317
Reference: [45] J. Král I. Netuka J. Veselý: Teorie potenciálu II.SPN, Praha, 1972.
Reference: [46] P. Koebe: Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft.Sitzungsber. Berlin. Math. Gessellschaft 5 (1906), 39-42.
Reference: [47] Ü. Kuran: On the mean value property of harmonic functions.Bull. London Math. Soc. 4(1972), 311-312. Zbl 0257.31006, MR 0320348
Reference: [48] H. Lebesgue: Sur le théoreme de la moyenne de Gauss.Bull. Soc. Math. France 40 (1912), 16-17.
Reference: [49] E. Levi: Sopra una proprietá caratteristica delle funzione armoniche.Atti della Reale Acad. Lincei 18(1909), 10-15.
Reference: [50] J. L. Littlewood: On the definition of a subharmonic function.J. London Math. Soc. 2 (1927), 189-192.
Reference: [51] J. L. Littlewood: Some problems in real and complex analysis.Hath. Math. Monographs, Massachusetts, 1968. Zbl 0185.11502
Reference: [52] J. Mařík: Úloha č. 10.Časopis Pěst. Mat. 81 (1956), 470.
Reference: [53] J. Mařík: Dirichletova úloha.Časopis Pěst. Mat. 82 (1957), 257-282. MR 0090666
Reference: [54] L Netuka: Řešení úlohy č. 10.Časopis Pěst. Mat. 94 (1969), 223-225.
Reference: [55] M. Parreau: Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann.Ann. Inst. Fourier 3 (1951), 103-197. Zbl 0047.32004, MR 0050023
Reference: [56] M. Plancherel: Les problěmes de Cantor et de du Bois-Reymond.Ann. Sci. Ecole Norm. Sup. 31 (1914), 223-262. MR 1509177
Reference: [57] H. Poritsky: On operations permutable with the Laplacian.Amer. J. Math. 54 (1932), 667-691. Zbl 0005.36001, MR 1506929
Reference: [58] H. Poritsky: Generalizations of the Gauss law of spherical mean.Trans. Amer. Math. Soc. 43 (1938), 199-225. MR 1501939
Reference: [59] I. Privaloff: On a theorem of S. Saks.Mat. Sb. 9 (51) (1941), 457-460. Zbl 0024.40402, MR 0004364
Reference: [60] S. Saks: On the operators Blaschke and Privaloff for subharmonic functions.Mat. Sb. 9(51)(1941), 451-456. MR 0004363
Reference: [61] S. Saks A. Zykmund: Analytic functions.PWN, Warszawa, 1965.
Reference: [62] K. T. Smith: Mean values and continuty of Riesz potentials.Comm. Pure Appl. Math. 9 (1956), 569-576. MR 0081357
Reference: [63] E. Smyrnélis: Sur les moyennes des fonctions paraboliques.Bull. Sci. Math. 93 (1969), 163-173. MR 0277901
Reference: [64] E. Smyrnélis: Mesures normales et fonctions harmoniques.Bull. Sci. Math. 95 (1971), 197-207. MR 0294681
Reference: [65] J. M. Thompson: Distribution of mass for averages of Newtonian potential functions.Bull. Amer. Math. Soc. 41 (1935), 744-752. Zbl 0013.01501, MR 1563179
Reference: [66] L. Tonelli: Sopra una proprietá caratteristica delle funzione armoniche.Atti della Reale Acad. Lincei 18 (1909), 557-532.
Reference: [67] W. A. Veech: A zero - one law for a class of random walks and a converse to Gauss mean value theorem.Ann. of Math. 97 (1973), 189-216. Zbl 0282.60048, MR 0310269
Reference: [68] W. A. Veech: A converse to the mean value theorem for harmonic functions.(preprint). Zbl 0324.31002
Reference: [69] V. Volterra: Alcune osservazioni sopra proprietá atte ad individuare una funzione.Atti della Reale Acad. Lincei 18 (1909), 263-266.
Reference: [70] J. L. Walsh: A mean value theorem for polynomials and harmonic polynomials.Bull. Amer. Math. Soc. 42 (1936), 923-930. Zbl 0016.12302, MR 1563465
Reference: [71] L. Zalcman: Analyticity and the Pompeiue problem.Arch. Rational Mech. Anal. 47 (1972), 237-254. MR 0348084
Reference: [72] L. Zalcman: Mean values and differential equations.Israel J. Math. 14 (1973), 339-353. Zbl 0263.35013, MR 0335835
Reference: [73] S. Zaremba: Contributions á la théorie d'une equation fonctionnelle de la physique.Rend. Circ. Mat. Palermo (1905), 140.
Reference: [74] S. Alinhac: Une caracterisation des fonctions harmoniques dans un ouvert par certaines propriétés de moyenne.Rev. Roumaine Math. Pures Appl. 18 (1973), 1465-1472. MR 0346169
Reference: [75] S. C. Chu: On a mean value property for solutions of a wave equation.Amer. Math. Monthly 74 (1967), 711-713. Zbl 0149.06402, MR 0212419
Reference: [76] M. Nicolescu: Une propriété caractéristique de moyenne des solutions régulières de l'équation de la chaleur.Com. Acad. R. P. Romane 2 (1952), 677-679. Zbl 0082.31001, MR 0070844
Reference: [77] M. Nicolescu: Sur une propriété caractéristique de moyenne des fonctions polycaloriques.Com. Acad. R. P. Romane 4 (1954), 551-554. Zbl 0059.09201, MR 0070845
Reference: [78] M. Nicolescu: Propriété de moyenne des fonctions harmoniques bornées dans un demi-plan ou dans un angle droit.Rev. Roumaine Math. Pures Appl. 1 (1956), 43-50. MR 0083046
Reference: [79] M. Nicolescu: Sur les moyennes généralisées successives d'une fonction.Rev. Roumaine Math. Pures Appl. 6 (1961), 429-441; Mathematica (Cluj) 4 (27) (1962), 107-121. Zbl 0108.05203, MR 0155987
Reference: [80] D. P. Stanford: Functions satisfying a mean value property at their zeros.Amer. Math. Monthly 80 (1973), 665-667. Zbl 0277.26006, MR 0315068
Reference: [81] J. Barta: Some mean value theorems in the potential theory.Acta Tech. Acad. Sci. Hungar. 75(1973), 3-11. Zbl 0309.31006, MR 0348129
.

Files

Files Size Format View
CasPestMat_100-1975-4_9.pdf 2.487Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo