Previous |  Up |  Next

Article

Keywords:
continuous inverse algebra; infinite dimensional Lie group; vector bundle; projective module; semilinear automorphism; covariant derivative; connection
Summary:
We call a unital locally convex algebra $A$ a continuous inverse algebra if its unit group $A^\times $ is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group $G$ on a continuous inverse algebra $A$ by automorphisms and any finitely generated projective right $A$-module $E$, we construct a Lie group extension $\widehat{G}$ of $G$ by the group $\operatorname{GL}_A(E)$ of automorphisms of the $A$-module $E$. This Lie group extension is a “non-commutative” version of the group $\operatorname{Aut}({\mathbb{V}})$ of automorphism of a vector bundle over a compact manifold $M$, which arises for $G = \operatorname{Diff}(M)$, $A = C^\infty (M,{\mathbb{C}})$ and $E = \Gamma {\mathbb{V}}$. We also identify the Lie algebra $\widehat{\mathfrak{g}}$ of $\widehat{G}$ and explain how it is related to connections of the $A$-module $E$.
References:
[1] Abbati, M. C., Cirelli, R., Mania, A., Michor, P. W.: The Lie group of automorphisms of a principal bundle. J. Geom. Phys. 6 (2) (1989), 215–235. DOI 10.1016/0393-0440(89)90015-6 | MR 1040392
[2] Bkouche, R.: Idéaux mous d’un anneau commutatif. Applications aux anneaux de fonctions. C. R. Acad. Sci. Paris Sér. I Math. 260 (1965), 6496–6498. MR 0177002 | Zbl 0142.28901
[3] Blackadar, B.: K-theory for operator algebras. Cambridge Univ. Press, 1998. MR 1656031 | Zbl 0913.46054
[4] Bratteli, O., Elliot, G. A., Goodman, F. M., Jorgensen, P. E. T.: Smooth Lie group actions on non-commutative tori. Nonlinearity 2 (1989), 271–286. DOI 10.1088/0951-7715/2/2/004 | MR 0994093
[5] Connes, A.: Non-commutative Geometry. Academic Press, 1994.
[6] Dubois-Violette, M.: Dérivations et calcul différentiel non-commutatif. C. R. Acad. Sci. Paris Sér. I Math. 307 (8) (1988), 403–408. MR 0965807 | Zbl 0661.17012
[7] Dubois-Violette, M.: Noncommutative differential geometry, quantum mechanics and gauge theory. Differential geometric methods in theoretical physics. Lecture Notes in Physics, Springer Verlag 375 (1991), 13–24. DOI 10.1007/3-540-53763-5_42 | MR 1134141
[8] Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative differential geometry of matrix algebras. J. Math. Phys. 31 (2) (1990), 316–322. DOI 10.1063/1.528916 | MR 1034167 | Zbl 0704.53081
[9] Dubois-Violette, M., Michor, P. W.: Dérivations et calcul différentiel non commutatif. II. C. R. Acad. Sci. Paris Sér. I Math. 319 (9) (1994), 927–931. MR 1302791 | Zbl 0829.16028
[10] Elliott, G. A.: The diffeomorphism group of the irrational rotation $C^*$-algebra. C. R. Math. Acad. Sci. Soc. R. Can. 8 (5) (1986), 329–334. MR 0859436 | Zbl 0617.46068
[11] Glöckner, H.: Algebras whose groups of units are Lie groups. Studia Math. 153 (2002), 147–177. DOI 10.4064/sm153-2-4 | MR 1948922 | Zbl 1009.22021
[12] Glöckner, H., Neeb, K.-H.: Infinite-dimensional Lie groups. Vol. I, Basic Theory and Main Examples, book in preparation.
[13] Grabowski, J.: Isomorphisms of algebras of smooth functions revisited. arXiv:math.DG/0310295v3. MR 2161810 | Zbl 1082.46020
[14] Gracia-Bondia, J. M., Vasilly, J. C., Figueroa, H.: Elements of Non-commutative Geometry. Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2001.
[15] Gramsch, B.: Relative Inversion in der Störungstheorie von Operatoren und $\Psi $-Algebren. Math. Ann. 269 (1984), 22–71. DOI 10.1007/BF01455995 | MR 0756775 | Zbl 0661.47037
[16] Harris, B.: Group cohomology classes with differential form coefficients. Algebraic K-theory, vol. 551, (Proc. Conf. Northwestern Univ., Evanston, Illinois), Lecture Notes in Math., Springer-Verlag, 1976, pp. 278–282. DOI 10.1007/BFb0080008 | MR 0498570 | Zbl 0405.20043
[17] Harris, L. A., Kaup, W.: Linear algebraic groups in infinite dimensions. Illinois J. Math. 21 (1977), 666–674. MR 0460551 | Zbl 0385.22011
[18] Jurčo, B., Schupp, P., Wess, J.: Nonabelian noncommutative gauge theory via noncommutative extra dimensions. Nuclear Phys. B 604 (1-2) (2001), 148–180. MR 1840858 | Zbl 0983.81054
[19] Kosmann, Y.: On Lie transformation groups and the covariance of differential operators. Math. Phys. Appl. Math., In: Differential geometry and relativity, Reidel, Dordrecht, vol. 3, 1976, pp. 75–89. MR 0438405 | Zbl 0344.58020
[20] Kriegl, A., Michor, P. W.: The convenient setting of global analysis. Math. Surveys Monogr. 53 (1997), 618 pp. MR 1471480 | Zbl 0889.58001
[21] Madore, J., Masson, T., Mourad, J.: Linear connections on matrix geometries. Classical Quantum Gravity 12 (1995), 1429–1440. DOI 10.1088/0264-9381/12/6/009 | MR 1344279 | Zbl 0824.58008
[22] Milnor, J.: Remarks on infinite-dimensional Lie groups. Relativité, groupes et topologie II, (Les Houches, 1983), North Holland, Amsterdam (DeWitt, B. and Stora, R. eds.), 1984. MR 0830252 | Zbl 0594.22009
[23] Mrčun, J.: On isomorphisms of algebras of smooth functions. arXiv:math.DG/0309179v4. MR 2159792
[24] Neeb, K.-H.: Infinite-dimensional Lie groups and their representations. Lie Theory (Lie Algebras and Representations, Progress in Math., Ed. J. P. Anker, B. Ørsted, Birkhäuser Verlag, ed.), 2004, pp. 213–328. MR 2042690
[25] Neeb, K.-H.: Towards a Lie theory of locally convex groups. Japan. J. Math. 3rd ser. 1 (2) (2006), 291–468. DOI 10.1007/s11537-006-0606-y | MR 2261066 | Zbl 1161.22012
[26] Neeb, K.-H.: Nonabelian extensions of infinite-dimensional Lie groups. Ann. Inst. Fourier 56 (2007), 209–271. DOI 10.5802/aif.2257 | MR 2316238
[27] Neeb, K.-H., Wagemann, F.: Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds. Geom. Dedicata 134 (2008), 17–60. DOI 10.1007/s10711-008-9244-2 | MR 2399649 | Zbl 1143.22016
[28] Rudin, W.: Functional Analysis. McGraw Hill, 1973. MR 0365062 | Zbl 0253.46001
[29] Schupp, P.: Non-Abelian gauge theory on non-commutative spaces. Internat. Europhysics Conference on HEP, arXiv:hep-th/0111083, 2001. MR 1832107
[30] Swan, R. G.: Vector bundles and projective modules. Trans. Amer. Math. Soc. 105 (1962), 264–277. DOI 10.1090/S0002-9947-1962-0143225-6 | MR 0143225 | Zbl 0109.41601
Partner of
EuDML logo