Previous |  Up |  Next

Article

Title: Strict topologies as topological algebras (English)
Author: Khurana, Surjit Singh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 433-437
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a completely regular Hausdorff space, $C_{b}(X)$ the space of all scalar-valued bounded continuous functions on $X$ with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally $m$-convex. (English)
Keyword: strict topologies
Keyword: locally convex algebras
Keyword: locally $m$-convex algebras
MSC: 28B05
MSC: 28C15
MSC: 46E10
MSC: 46E25
MSC: 46G10
MSC: 46H05
MSC: 46J10
idZBL: Zbl 0983.46025
idMR: MR1844321
.
Date available: 2009-09-24T10:43:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127658
.
Reference: [1] Alan C. Cochran: Topological algebras and Mackey topologies.Proc. Amer. Math. Soc. 30 (1971), 115, 119. MR 0291807, 10.1090/S0002-9939-1971-0291807-4
Reference: [2] H. S. Collins and R. Fontenot: Approximate identities and strict topology.Pacific J.  Math. 43 (1972), 63–79. MR 0313824, 10.2140/pjm.1972.43.63
Reference: [3] L. Gillman and M. Jerrison: Rings of Continuous Functions.D. Van Nostrand, 1960. MR 0116199
Reference: [4] D. Gulick: $\sigma $-compact-open topology and its relatives.Math. Scand. 30 (1972), 159–176. Zbl 0253.46045, MR 0331031, 10.7146/math.scand.a-11072
Reference: [5] S. S. Khurana: Topologies on spaces of continuous vector-valued functions.Trans. Amer. Math. Soc. 241 (1978), 195–211. MR 0492297, 10.1090/S0002-9947-1978-0492297-X
Reference: [6] S. S. Khurana and S. A.  Othman: Grothendieck measures.J.  London Math. Soc. 39 (1989), 481–486. MR 1002460
Reference: [7] G. Koumoullis: Perfect, $u$-additive measures and strict topologies.Illinois J.  Math. (1982). Zbl 0471.28003, MR 0658457
Reference: [8] E. A. Michael: Locally multiplicatively-convex topological algebras.Mem. Amer. Math. Soc., No. 11 (1952). Zbl 0047.35502, MR 0051444
Reference: [9] V. Pták: Weak compactness in convex topological spaces.Czechoslovak Math.  J. 4 (1954), 175–186. MR 0066550
Reference: [10] H. H. Schaeffer: Topological Vector Spaces.Springer-Verlag, 1986.
Reference: [11] F. D. Sentilles: Bounded continuous functions on completely regular spaces.Trans. Amer. Math. Soc. 168 (1972), 311–336. MR 0295065, 10.1090/S0002-9947-1972-0295065-1
Reference: [12] C. Sunyach: Une caracterisation des espaces universellement Radon measurables.C.  R.  Acad. Sci. Paris 268 (1969), 864–866. MR 0248321
Reference: [13] R. F. Wheeler: Survey of Baire measures and strict topologies.Exposition. Math. 2 (1983), 97–190. Zbl 0522.28009, MR 0710569
Reference: [14] V. S. Varadarajan: Measures on topological spaces.Amer. Math. Soc. Transl. 48 (1965), 161–220. 10.1090/trans2/048/10
.

Files

Files Size Format View
CzechMathJ_51-2001-2_16.pdf 309.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo