Previous |  Up |  Next

Article

Title: Remarks on Grassmannian Symmetric Spaces (English)
Author: Zalabová, Lenka
Author: Žádník, Vojtěch
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 569-585
Summary lang: English
.
Category: math
.
Summary: The classical concept of affine locally symmetric spaces allows a generalization for various geometric structures on a smooth manifold. We remind the notion of symmetry for parabolic geometries and we summarize the known facts for $|1|$-graded parabolic geometries and for almost Grassmannian structures, in particular. As an application of two general constructions with parabolic geometries, we present an example of non-flat Grassmannian symmetric space. Next we observe there is a distinguished torsion-free affine connection preserving the Grassmannian structure so that, with respect to this connection, the Grassmannian symmetric space is an affine symmetric space in the classical sense. (English)
Keyword: parabolic geometries
Keyword: Weyl structures
Keyword: almost Grassmannian structures
Keyword: symmetric spaces
MSC: 53A40
MSC: 53C05
MSC: 53C15
MSC: 53C35
idZBL: Zbl 1212.53054
idMR: MR2501585
.
Date available: 2009-04-26T06:12:34Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/128279
.
Reference: [1] Biliotti, L.: On the automorphism group of a second order structure.Rend. Sem. Mat. Univ. Padova 104 (2000), 63–70. MR 1809350
Reference: [2] Čap, A.: Correspondence spaces and twistor spaces for parabolic geometries.J. Reine Angew. Math. 582 (2005), 143–172. Zbl 1075.53022, MR 2139714, 10.1515/crll.2005.2005.582.143
Reference: [3] Čap, A.: Two constructions with parabolic geometries.Rend. Circ. Mat. Palermo (2) Suppl. 79 (2006), 11–37. Zbl 1120.53013, MR 2287124
Reference: [4] Čap, A., Schichl, H.: Parabolic geometries and canonical Cartan connection.Hokkaido Math. J. 29 (2000), 453–505. MR 1795487
Reference: [5] Čap, A., Slovák, J.: Parabolic Geometries.to appear in Math. Surveys Monogr., 2008.
Reference: [6] Čap, A., Slovák, J.: Weyl Structures for Parabolic Geometries.Math. Scand. 93 (2003), 53–90. Zbl 1076.53029, MR 1997873
Reference: [7] Čap, A., Slovák, J., Žádník, V.: On distinguished curves in parabolic geometries.Transform. Groups 9 (2) (2004), 143–166. Zbl 1070.53021, MR 2056534
Reference: [8] Čap, A., Žádník, V.: On the geometry of chains.eprint arXiv:math/0504469. MR 2504769
Reference: [9] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry.vol. II, John Wiley & Sons, New York, 1969. Zbl 0175.48504, MR 1393941
Reference: [10] Podesta, F.: A class of symmetric spaces.Bull. Soc. Math. France 117 (3) (1989), 343–360. Zbl 0697.53047, MR 1020111
Reference: [11] Sharpe, R. W.: Differential geometry: Cartan’s generalization of Klein’s Erlangen program.Grad. Texts in Math. 166 (1997). Zbl 0876.53001, MR 1453120
Reference: [12] Zalabová, L.: Remarks on symmetries of parabolic geometries.Arch. Math. (Brno), Suppl. 42 (2006), 357–368. Zbl 1164.53364, MR 2322422
Reference: [13] Zalabová, L.: Symmetries of almost Grassmannian geometries.Proceedings of 10th International Conference on Differential Geometry and its Applications, Olomouc, 2007, pp. 371–381. MR 2462807
Reference: [14] Zalabová, L.: Symmetries of Parabolic Geometries.Ph.D. thesis, Masaryk University, 2007.
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_16.pdf 548.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo