Previous |  Up |  Next

Article

Keywords:
singularities; Navier-Stokes equations; Brownian motion; stationary solutions
Summary:
The classical result on singularities for the 3D Navier-Stokes equations says that the $1$-dimensional Hausdorff measure of the set of singular points is zero. For a stochastic version of the equation, new results are proved. For statistically stationary solutions, at any given time $t$, with probability one the set of singular points is empty. The same result is true for a.e. initial condition with respect to a measure related to the stationary solution, and if the noise is sufficiently non degenerate the support of such measure is the full energy space.
References:
[1] J. Bricmont, A. Kupiainen, R. Lefevere: Ergodicity of the 2D Navier-Stokes equation with random forcing. Preprint. MR 1868991
[2] A. Bensoussan, R. Temam: Equations stochastiques du type Navier-Stokes. J. Funct. Analysis 13 (1973), 195–222. DOI 10.1016/0022-1236(73)90045-1 | MR 0348841
[3] L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), 771–831. DOI 10.1002/cpa.3160350604 | MR 0673830
[4] A. Chorin: Vorticity and Turbulence. Springer, New York, 1994. MR 1281384 | Zbl 0795.76002
[5] G. Da Prato, J. Zabczyk: Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. MR 1207136
[6] B. Ferrario: Ergodic results for stochastic Navier-Stokes equations. Stochastics and Stoch. Reports 60 (1997), 271–288. DOI 10.1080/17442509708834110 | MR 1467721
[7] F. Flandoli: On a probabilistic description of small scale structures in 3D fluids. Annales Inst. Henri Poincaré, Probab. & Stat 38 (2002), 207–228. DOI 10.1016/S0246-0203(01)01092-5 | MR 1899111 | Zbl 1017.76074
[8] F. Flandoli: Irreducibility of the 3-D stochastic Navier-Stokes equation. J. Funct. Anal. 149 (1997), 160–177. DOI 10.1006/jfan.1996.3089 | MR 1471103 | Zbl 0887.35171
[9] F. Flandoli, D. Gatarek: Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Rel. Fields 102 (1995), 367–391. DOI 10.1007/BF01192467 | MR 1339739
[10] F. Flandoli, B. Maslowski: Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Comm. Math. Phys. 171 (1995), 119–141. MR 1346374
[11] F. Flandoli, M. Romito: Statistically stationary solutions to the 3-D Navier-Stokes equation do not show singularities. Electron. J. Probab (to appear). MR 1825712
[12] F. Flandoli, M. Romito: Partial regularity for stochastic Navier-Stokes equations. Trans. Amer. Math. Soc (to appear). MR 1885650
[13] U. Frisch: Turbulence. Cambridge Univ. Press, Cambridge, 1998. Zbl 0972.76501
[14] S. Kuksin, A. Shirikyan: Stochastic dissipative PDEs and Gibbs measures. Comm. Math. Phys. 213 (2000), 291–330. DOI 10.1007/s002200000237 | MR 1785459
[15] Y. Le Jan, A.-S. Sznitman: Stochastic cascades and 3-dimensional Navier-Stokes equations. Probab. Theory Rel. Fields 109 (1997), 343–366. DOI 10.1007/s004400050135 | MR 1481125
[16] P. L. Lions, A. Majda: Equilibrium statistical theory for nearly parallel vortex filaments. Comm. Pure Appl. Math. 53 (2000). MR 1715529
[17] M. Romito: Existence of martingale and stationary suitable weak solutions for a stochastic Navier-Stokes system. Preprint, Quad. Dip. U. Dini, Firenze, 2000.
[18] M. Romito: Some examples of singular fluid flows. Preprint, 2001. MR 2206484
[19] R. Temam: The Navier-Stokes Equations. North Holland, 1977. MR 0609732 | Zbl 0335.35077
[20] M. Viot: Solution faibles d’equations aux derivées partielles stochastiques non linéaires, these de Doctorat. Paris VI, 1976.
[21] M. I. Vishik, A. V. Fursikov: Mathematical Problems of Statistical Hydromechanics. Kluwer, Dordrecht, 1980. MR 0591678
[22] E. Weinan, J. C. Mattingly, Ya G. Sinai: Gibbsian dynamics and ergodicity for the stochastic forced Navier-Stokes equation. Comm. Math. Phys (to appear). MR 1868992
Partner of
EuDML logo