[2] Golan J. S.: 
The Theory of Semirings with Applications in Mathematics and Theoretical Computer Sciences. (Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 54.) Longman, New York 1992 
MR 1163371 
[3] Klement E.-P., Mesiar, R., Pap E.: 
Problems on triangular norms and related operators. Fuzzy Sets and Systems 145 (2004), 471–479 
MR 2075842 | 
Zbl 1050.03019 
[4] Klement E.-P., Mesiar, R., Pap E.: 
Triangular Norms. (Trends in Logic, Studia Logica Library, Vol. 8.) Kluwer Academic Publishers, Dortrecht 2000 
MR 1790096 | 
Zbl 1087.20041 
[7] Marková-Stupňanová A.: 
A note on the idempotent functions with respect to pseudo-convolution. Fuzzy Sets and Systems 102 (1999), 417–421 
MR 1676908 | 
Zbl 0953.28012 
[11] Murofushi T., Sugeno M. : 
Fuzzy t-conorm integrals with respect to fuzzy measures: generalizations of Sugeno integral and Choquet integral. Fuzzy Sets and Systems 42 (1991), 51–57 
MR 1123577 
[13] Pap E.: 
Null-Additive Set Functions. Ister Science & Kluwer Academic Publishers, Dordrecht 1995 
MR 1368630 | 
Zbl 1003.28012 
[14] Pap E., Štajner I.: Pseudo-convolution in the theory of optimalization, probabilistic metric spaces, information, fuzzy numbers, system theory. In: Proc. IFSA’97, Praha 1997, pp. 491–495
[15] Pap E., Štajner I.: 
Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, system theory. Fuzzy Sets and Systems 102 (1999), 393–415 
MR 1676907 
[16] Pap E., Teofanov N.: 
Pseudo-delta sequences. Yugoslav. J. Oper. Res. 8 (1998), 111–128 
MR 1621522 
[20] Zagrodny D.: 
The cancellation law for inf-convolution of convex functions. Studia Mathematika 110 (1994), 3, 271–282 
MR 1292848 | 
Zbl 0811.49012