[1] Axler, C.: 
Estimates for $\pi (x)$ for large values of $x$ and Ramanujan's prime counting inequality. Integers, 18, Paper No. A61, 2018,  
MR 3819880[2] Berndt, B.C.: Ramanujan's Notebooks. Part IV. 1994, Springer-Verlag, New York, 
[5] Hardy, G.H.: Ramanujan. Twelve lectures on subjects suggested by his life and work. 1940, Cambridge University Press, Cambridge, England; Macmillan Company, New York, 
[6] Hassani, M.: 
Generalizations of an inequality of Ramanujan concerning prime counting function. Appl. Math. E-Notes, 13, 2013, 148-154,  
MR 3141823[8] Mossinghoff, M.J., Trudgian, T.S.: 
Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function. J. Number Theory, 157, 2015, 329-349,  
DOI 10.1016/j.jnt.2015.05.010 | 
MR 3373245[9] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, Ch.W.: 
NIST Handbook of Mathematical Functions. 2010, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge,  
MR 2723248[10] Platt, D., Trudgian, T.: 
The error term in the prime number theorem. arXiv:, 1809.03134, 2018, Preprint..  
MR 3448979[11] Ramanujan, S.: Notebooks. Vols. 1, 2. 1957, Tata Institute of Fundamental Research, Bombay,