Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Darboux problem; partial differential equation; Ulam-Hyers stability; Ulam-Hyers-Rassias stability; Wendorff lemma
Summary:
In this paper, we first investigate the existence and uniqueness of solution for the Darboux problem with modified argument on both bounded and unbounded domains. Then, we derive different types of the Ulam stability for the proposed problem on these domains. Finally, we present some illustrative examples to support our results.
References:
[1] Bainov, D., Simeonov, P.: Integral Inequalities and Applications. Mathematics and Its Applications. East European Series 57. Kluwer Academic Publishers, Dordrecht (1992). DOI 10.1007/978-94-015-8034-2 | MR 1171448 | Zbl 0759.26012
[2] Brzdęk, J., Popa, D., Raşa, I.: Hyers-Ulam stability with respect to gauges. J. Math. Anal. Appl. 453 (2017), 620-628. DOI 10.1016/j.jmaa.2017.04.022 | MR 3641794 | Zbl 1404.34016
[3] Brzdęk, J., Popa, D., (eds.), T. M. Rassias: Ulam Type Stability. Springer, Cham (2019). DOI 10.1007/978-3-030-28972-0 | MR 3971238 | Zbl 1431.39001
[4] Çelik, C., Develi, F.: Existence and Hyers-Ulam stability of solutions for a delayed hyperbolic partial differential equation. Period. Math. Hung. 84 (2022), 211-220. DOI 10.1007/s10998-021-00400-2 | MR 4423476 | Zbl 07551294
[5] Dezső, G.: The Darboux-Ionescu problem for a third order system of hyperbolic equations. Libertas Math. 21 (2001), 27-33. MR 1867764 | Zbl 0994.35080
[6] Huang, J., Li, Y.: Hyers-Ulam stability of delay differential equations of first order. Math. Nachr. 289 (2016), 60-66. DOI 10.1002/mana.201400298 | MR 3449100 | Zbl 1339.34082
[7] Jonesco, D. V.: Sur une classe d'équations fonctionnelles. Annales Toulouse (3) 19 (1927), 39-92 French \99999JFM99999 53.0477.03. DOI 10.5802/afst.343 | MR 1508394
[8] Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17 (2004), 1135-1140. DOI 10.1016/j.aml.2003.11.004 | MR 2091847 | Zbl 1061.34039
[9] Jung, S.-M.: A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007 (2007), Article ID 57064, 9 pages. DOI 10.1155/2007/57064 | MR 2318689 | Zbl 1155.45005
[10] Jung, S.-M.: Hyers-Ulam stability of linear partial differential equations of first order. Appl. Math. Lett. 22 (2009), 70-74. DOI 10.1016/j.aml.2008.02.006 | MR 2484284 | Zbl 1163.39308
[11] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its Applications 48. Springer, New York (2011). DOI 10.1007/978-1-4419-9637-4 | MR 2790773 | Zbl 1221.39038
[12] Kwapisz, M., Turo, J.: On the existence and uniqueness of solutions of Darboux problem for partial differential-functional equations. Colloq. Math. 29 (1974), 279-302. DOI 10.4064/cm-29-2-279-302 | MR 0364918 | Zbl 0284.35036
[13] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Stability Analysis of Nonlinear Systems. Pure and Applied Mathematics 125. Marcel Dekker, New York (1989). DOI 10.1007/978-3-319-27200-9 | MR 0984861 | Zbl 0676.34003
[14] Lungu, N., Popa, D.: Hyers-Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 385 (2012), 86-91. DOI 10.1016/j.jmaa.2011.06.025 | MR 2832076 | Zbl 1236.39030
[15] Lungu, N., Popa, D.: Hyers-Ulam stability of some partial differential equation. Carpatian J. Math. 30 (2014), 327-334. DOI 10.37193/CJM.2014.03.11 | MR 3362855 | Zbl 1349.35035
[16] Lungu, N., Rus, I. A.: Ulam stability of nonlinear hyperbolic partial differential equations. Carpatian J. Math. 24 (2008), 403-408. Zbl 1249.35219
[17] Marian, D., Ciplea, S. A., Lungu, N.: Ulam-Hyers stability of Darboux-Ionescu problem. Carpatian J. Math. 37 (2021), 211-216. DOI 10.37193/CJM.2021.02.07 | MR 4264071 | Zbl 07445719
[18] Otrocol, D., llea, V.: Ulam stability for a delay differential equation. Cent. Eur. J. Math. 11 (2013), 1296-1303. DOI 10.2478/s11533-013-0233-9 | MR 3047057 | Zbl 1275.34098
[19] Popa, D., Raşa, I.: On the Hyers-Ulam stability of the linear differential equation. J. Math. Anal. Appl. 381 (2011), 530-537. DOI 10.1016/j.jmaa.2011.02.051 | MR 2802090 | Zbl 1222.34069
[20] Popa, D., Raşa, I.: Hyers-Ulam stability of the linear differential operator with nonconstant coefficients. Appl. Math. Comput. 219 (2012), 1562-1568. DOI 10.1016/j.amc.2012.07.056 | MR 2983863 | Zbl 1368.34075
[21] Rus, I. A.: On a problem of Darboux-Ionescu. Stud. Univ. Babeş-Bolyai Math. 26 (1981), 43-45. MR 0653967 | Zbl 0534.35018
[22] Rus, I. A.: Picard operators and applications. Sci. Math. Jpn. 58 (2003), 191-219. MR 1987831 | Zbl 1031.47035
[23] Rus, I. A.: Fixed points, upper and lower fixed points: Abstract Gronwall lemmas. Carpathian J. Math. 20 (2004), 125-134. MR 2138535 | Zbl 1113.54304
[24] Rus, I. A.: Ulam stability of ordinary differential equations. Stud. Univ. Babeş-Bolyai Math. 54 (2009), 125-133. MR 2602351 | Zbl 1224.34165
[25] Teodoru, G.: The data dependence for the solutions of Darboux-Ionescu problem for a hyperbolic inclusion of third order. Fixed Point Theory 7 (2006), 127-146. MR 2242321 | Zbl 1113.35116
[26] Zada, A., Ali, W., Park, C.: Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari's type. Appl. Math. Comput. 350 (2019), 60-65. DOI 10.1016/j.amc.2019.01.014 | MR 3899985 | Zbl 1428.34087
Partner of
EuDML logo