Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
chemotaxis; singular sensitivity; global solvability
Summary:
We study the chemotaxis system with singular sensitivity and logistic-type source: $u_t=\Delta u-\chi \nabla \cdot (u \nabla v/ v) +ru-\mu u^k$, $0=\Delta v-v+u$ under the non-flux boundary conditions in a smooth bounded domain $\Omega \subset \mathbb {R}^n$, $\chi ,r,\mu >0$, $k>1$ and $n\ge 1$. It is shown with $k\in (1,2)$ that the system possesses a global generalized solution for $n\ge 2$ which is bounded when $\chi >0$ is suitably small related to $r>0$ and the initial datum is properly small, and a global bounded classical solution for $n=1$.
References:
[1] Black, T.: Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete Contin. Dyn. Syst., Ser. S 13 (2020), 119-137. DOI 10.3934/dcdss.2020007 | MR 4043685 | Zbl 1439.35486
[2] Ding, M., Wang, W., Zhou, S.: Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source. Nonlinear Anal., Real World Appl. 49 (2019), 286-311. DOI 10.1016/j.nonrwa.2019.03.009 | MR 3936798 | Zbl 1437.35118
[3] Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 424 (2015), 675-684. DOI 10.1016/j.jmaa.2014.11.045 | MR 3286587 | Zbl 1310.35144
[4] Fujie, K., Senba, T.: Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 81-102. DOI 10.3934/dcdsb.2016.21.81 | MR 3426833 | Zbl 1330.35051
[5] Fujie, K., Senba, T.: Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity 29 (2016), 2417-2450. DOI 10.1088/0951-7715/29/8/2417 | MR 3538418 | Zbl 1383.35102
[6] Fujie, K., Winkler, M., Yokota, T.: Blow-up prevention by logistic sources in a parabolic- elliptic Keller-Segel system with singular sensitivity. Nonlinear Anal., Theory Methods Appl., Ser. A 109 (2014), 56-71. DOI 10.1016/j.na.2014.06.017 | MR 3247293 | Zbl 1297.35051
[7] Fujie, K., Winkler, M., Yokota, T.: Boundedness of solutions to parabolic-elliptic Keller- Segel systems with signal-dependent sensitivity. Math. Methods Appl. Sci. 38 (2015), 1212-1224. DOI 10.1002/mma.3149 | MR 3338145 | Zbl 1329.35011
[8] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. DOI 10.1016/0022-5193(70)90092-5 | MR 3925816 | Zbl 1170.92306
[9] Kurt, H. I., Shen, W.: Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting. SIAM J. Math. Anal. 53 (2021), 973-1003. DOI 10.1137/20M1356609 | MR 4212880 | Zbl 1455.35269
[10] Lankeit, J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equations 258 (2015), 1158-1191. DOI 10.1016/j.jde.2014.10.016 | MR 3294344 | Zbl 1319.35085
[11] Lankeit, J., Winkler, M.: A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data. NoDEA, Nonlinear Differ. Equ. Appl. 24 (2017), Article ID 49, 33 pages. DOI 10.1007/s00030-017-0472-8 | MR 3674184 | Zbl 1373.35166
[12] Nagai, T., Senba, T.: Behavior of radially symmetric solutions of a system related to chemotaxis. Nonlinear Anal., Theory Methods Appl. 30 (1997), 3837-3842. DOI 10.1016/S0362-546X(96)00256-8 | MR 1602939 | Zbl 0891.35014
[13] Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal., Theory Methods Appl., Ser. A 51 (2002), 119-144. DOI 10.1016/S0362-546X(01)00815-X | MR 1915744 | Zbl 1005.35023
[14] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. MR 1893940 | Zbl 1145.37337
[15] Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46 (2014), 1969-2007. DOI 10.1137/13094058X | MR 3216646 | Zbl 1301.35189
[16] Tao, Y., Winkler, M.: Persistence of mass in a chemotaxis system with logistic source. J. Differ. Equations 259 (2015), 6142-6161. DOI 10.1016/j.jde.2015.07.019 | MR 3397319 | Zbl 1321.35084
[17] Tello, J. I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equations 32 (2007), 849-877. DOI 10.1080/03605300701319003 | MR 2334836 | Zbl 1121.37068
[18] Viglialoro, G.: Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source. J. Math. Anal. Appl. 439 (2016), 197-212. DOI 10.1016/j.jmaa.2016.02.069 | MR 3474358 | Zbl 1386.35163
[19] Viglialoro, G.: Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source. Nonlinear Anal., Real World Appl. 34 (2017), 520-535. DOI 10.1016/j.nonrwa.2016.10.001 | MR 3567976 | Zbl 1355.35094
[20] Winkler, M.: Chemotaxis with logistic source: Very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 348 (2008), 708-729. DOI 10.1016/j.jmaa.2008.07.071 | MR 2445771 | Zbl 1147.92005
[21] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller- Segel model. J. Differ. Equations 248 (2010), 2889-2905. DOI 10.1016/j.jde.2010.02.008 | MR 2644137 | Zbl 1190.92004
[22] Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equqtions 35 (2010), 1516-1537. DOI 10.1080/03605300903473426 | MR 2754053 | Zbl 1290.35139
[23] Winkler, M.: How strong singularities can be regularized by logistic degradation in the Keller-Segel system?. Ann. Mat. Pura Appl. (4) 198 (2019), 1615-1637. DOI 10.1007/s10231-019-00834-z | MR 4022112 | Zbl 1437.35004
[24] Winkler, M.: The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in $L^1$. Adv. Nonlinear Anal. 9 (2020), 526-566. DOI 10.1515/anona-2020-0013 | MR 3969152 | Zbl 1419.35099
[25] Winkler, M.: $L^1$ solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 24 (2023), 141-172. DOI 10.2422/2036-2145.202005_016 | MR 4587743 | Zbl 7697296
[26] Zhang, W.: Global generalized solvability in the Keller-Segel system with singular sensitivity and arbitrary superlinear degradation. Discrete Contin. Dyn. Syst., Ser. B 28 (2023), 1267-1278. DOI 10.3934/dcdsb.2022121 | MR 4509358 | Zbl 1502.35184
[27] Zhao, X.: Boundedness to a parabolic-parabolic singular chemotaxis system with logistic source. J. Differ. Equations 338 (2022), 388-414. DOI 10.1016/j.jde.2022.08.003 | MR 4471552 | Zbl 1497.92037
[28] Zhao, X., Zheng, S.: Global boundedness to a chemotaxis system with singular sensitivity and logistic source. Z. Angew. Math. Phys. 68 (2017), Article ID 2, 13 pages. DOI 10.1007/s00033-016-0749-5 | MR 3575592 | Zbl 1371.35151
[29] Zhao, X., Zheng, S.: Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source. J. Differ. Equations 267 (2019), 826-865. DOI 10.1016/j.jde.2019.01.026 | MR 3957973 | Zbl 1412.35177
Partner of
EuDML logo