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YexocaoBankuii MaTeMaTHdecknii ;xypuax, 1. 5 (80) 1955

ON THE MINIMA OF COMPOUND QUADRATIC FORMS

KURT MAHLER, Manchester.
(Received September 4, 1954.)

In my paper on Compound Convex Bodies,*) 1 obtained certain
approximation theorems by using geometrical methods. In this paper,
it will be my aim to derive similar theorems by means of properties of
quadratic forms. These properties deserve an interest in themselves
and seem to be new.

1. Asinmy I\Ja,per on Compound Convex Bodies,let 1 < p < n, let XD, X®),
..., X® be any p points in R,, and let E = [X®, X® . . X®»] be their

compound point in B, where N = (Z) . Explicitly, the coordinates &;, &;, ..., &y

of E are defined as the N p-th order minors of the p X n matrix formed by the
coordinates of XV, X®, ..., X, The ordering of these minors is arbitrary, but
fixed once for all. The compound point E is different from O provided X, X®),
..., X® are linearly independent.

2. Next let @ = (a,;) be any n-th order quadratic matrix. We then denote
by & = a® = (a{}}) the p-th compound of a, i. e. that matrix of order N the
elements of which are all the N* minors of order p of the original matrix «;
the ordering of the two indices of these minors shall be the same as in 1. From
the theory of matrices and determinants it is known that the p-th compound of
the product of two or more matrices is equal to the product of their p-th compounds,

(@b..)» = a®bm...

and that the determinant ||x|| of the p-th compound of a is given by

o] = 0| = [al® where P = (z _ i)

In particular, the p-th compound of a non-singular matrix is again non-singu-
lar.

*) To appear in the Proceedings of the London Math. Soc.
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3. Let

ﬂ

F(X) = Z Cun®s; (W = Urn)
be a positive—deﬁnite qua,dra,tic form in R,, and let

O(E) Z Z opréuéx = z z “HK§115K (xpr = ogp)

be its p-th compound form (concomitant, Begleitform) in R, the coefficient
matrix a® being defined as in the last section. Denote further by
= and A= A® = || = a2
the discriminants of F(X) and ®(E), respectively. Hence
A= A",
by what was said before.

The following statement follows immediately from the product rule for com-
pound matrices. Denote by

X->X'=0X and E —»E = QWE
a non-singular affine transformation of R,, and its p-th compound in R,
respectively. Then the new quadratic forms
G(X)=F(QX) and Y(E)= O(Q®E)
stand to one-another in the relation that ¥ (E) is again the p-th compound of
G(X).
To apply this result, let F(X) and @y(E) be the unit forms

Fy(X) = th and ®@y(E) st

in R, and Ry, respectively, which trivially are positive-definite. So, by hypo-
thesis, is F(X); hence there exists a non-singular affine transformation Q such
that
F(X) = F(QX).
It is easily verified that ®,(E) is the p-th compound of F(X); so necessarily also
O(E) = O(QME) .
This formula makes it evident that also ®(E) is positive-definite. It has thus
been proved that the compounds of positive-definite forms are likewise positive-
definite.
4. Denote again by F(X) and ®(E) a positive-definite form in R, and its
p-th compoundin Ry. Nextlet L, and A,be thelattices of all points with integral
coordinates in R, and R, respectively. We denote by

My, Mgy «.oy My
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Minkowski’s successive minima of F(X)in Ly, and by

My Moy o5 By
those of ®(Z) in A,. Thus n independent points X,, X,, ..., X, of Ly, and N
independent points E,, E,, ..., 5 of A, exist which have the following char-

acteristic properties. First,
FX))=m,for h=12,...,m, OEL) =uzgif H=1,2,...,N;
secondly,
F(X)=m,if X £0isinLy,, ®E) =p, if E % O isin A,;
and third, for A =1,2,..,n —land H=1,2,...,N — 1,

F(X) =m,,, if X e L, is independent of X,, X,, ..., X,,
O(E) = py,, if Ee A, is independent of E,, E,, ..

-
)

q -
It was shown by MINKOWSKI in the ,,Geometrie der Zahlen‘ that the succes-
sive minima satisfy the inequalities,

A=Zmm,...m, <5,4, (1)
ASups... iy = 0yA. (2)
Here §,, and 4, are defined by
0p = A(G,)7%, 8y = A(Gy)72,

where A(G,) and A(G'y) denote the determinants of the critical lattices of the
unit spheres
G, 1X| =1 and Gy |E]| 1

in n and N dimensions, respectively. There are well-known lower and upper
bounds for A(G,) and A(GQy), due to MiNKOWSKI, BrLICcHFELDT, HLAWKA
and others; but for our purpose it suffices to know that 4, and d, are positive
constants depending only on » and N and not on the special quadratic forms
under consideration.

5. There exist N = (Z) distinct systems of p indices #»,, v, ..., v, satis-
fying.
1l <rn<..<y, =n.
With each such system we associate the product of minima

M@y)=m,m,, ...m, .

Denote by M,, M,, ..., M all these products arranged in order of increasing
size, ’
M, =M, <...=<My.
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Then, evidently,
MM, ... My = (mmy ... m,)" . (3)
We shall prove a set of simple inequalities connecting the N minima ¢y with
the N products M.
6. This proof is based on an algebraic identity. Denote by

n n

F(X,Y)=F(Y,X)= 21 2, Wi
h=1 k=1

the bilinear form belonging to F(X) = F(X, X). Let again X1, X®, ..., X®»
be p linearly independent points in R, and let
B = [XO, XO, ..., X®]
be their compound. Then, identically in X, X®, ..., X®,
‘F(X(l’, X(”), F(X(l’, X('Z)), e F(X‘l), X™)
F(X®, X)), F(X®, X®), ..., F(X®, X®)

o : o mee W

|

| F(X®, XV), FX®, XO), ..., FE®, X7)|

For assume, first, that F(X) = F,(X) and hence ®(E) = ®y(E) are the unit
forms of X and H, as defined in 3. Then F(X, Y) = XY is simply the inner
product of X and Y, and the identity (4) holds in this special case because it
coincides with the well-known formula for the determinant of the product of
a rectangular matrix into its transposed. But then (4) is true in general, as
follows from the equations

F(X,Y)= Fy(QX, QY), OE)= Q,(Q»E),
[QX®, QXO), ..., QX®)] = QWE ,
where the affine transformation Q is defined as in 3.

7. The determinant on the left-hand side of (4) is symmetrical. We therefore
construct the corresponding quadratic form

D V4
Q2) =3 2 F(X0,X0)zz,;
e=1 o=1

here Z = (z,, 2, ..., 2,) may be any point in R,. This quadratic form can be
written as an inner product,

AZ) =3 3 (2,0X0)(0X0) =YY,

where
Y =2,QX0 4+ 2,QX® ... 4 2,QX® .

The points X, X, ... X® by hypothesis, are independent, and the same
is therefore true for the transformed points QX®, QX®, ... QX®, Hence
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Y +£ 0 and YY > Ounless z; = 2, = ... = 2, = 0. This means that the quad-
ratic form Q(Z) is positive-definite. But then its discriminant, i. e. the-determin-
ant on the left-hand side of (4), cannot exceed the product

F(XM, X0) F(X®, X®) ... F(X®, X®) = F(XV) F(X®)... F(X®)
of its diagonal elements, and so it follows from (4) that always
O(E) < F(X®) F(X®) ... F(X®) if E = [X®, X®, ..., X®]. (5)
8. The n points X,, X,, ..., X, in which the successive minima of F(X) in
L, were attained are, by hypothesis, independent. Let us form the compounds
H() = [X,, X,,,.... X, ] (6)
of all N sets of p distinet ones of these points; as before, the »’s run over all

sets of indices for which 1 < », < v, < ... <, < n. The so defined points
H(») in Ry are then also independent, as may be proved in the following way.

Since X, X,, ..., X, are independent, every point in R, is of the form
8:.X, + 8 Xy + ... + 8, X,
with real coefficients. Such a representation holds thus, in particular, for each
one of the n unit points
E, = (1,0,...,0), B, = (0,1,...,0), ..., B, = (0,0,...,1)
in R,. On the other hand, we obtain all N unit points in R, by forming all the N
compounds
(B, By, oo By ]
where 1, 4, ..., 4, run over the distinct set of p indices with
1=h<h<...<l,=n.

These compounds may then be written as linear combinations

20(r) H)

O]
with real cooefficients o(v), of the compounds (6), and they form a basis of Ry.
This proves the assertion.

Evidently the points H(v) belong to the lattice A, i. e. they have integral coor-
dinates.

9. With each lattice point H(») associate the product
M(y) = m,m,, ... m, .
Further denote these points also by
Hy, Hy, ..o, Hy (7)
where Hy is that point H(») fof which M(v) = M.
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The basic inequality (5) implies that
O(H() < m,m,, ...m, = M().
In the new notation, this is equivalent to
OH,) =M, (H=1,2..N). (8)

Here, by hypothesis,
M, <M, <...=M,. (9)

On the other hand, it will not, in general, be true that the values (I)(Hn) are
likewise arranged in order of increasing size. Therefore denote by

H¥ HE ..., HY
such a permutation of the points (7) for which
D(HY) = O(H}) = ... = B(HY). (10)
Then, by the characteristic properties of the successive minima yu,;,
OH}) =u, (H=1,2,..,N).
It is further clear from (8), (9), and (10) that
O(H}Y) < max {®(H,), ®(Hy), ..., D(H,)} < M, .
Hence the last inequality implies that
gy <My, (H=12..,N). (11)

10. On combining this upper bound for x; with former inequalities, we may
deduce also a lower bound.

By (2) and (11),

N N N
a2 AT ™ = ACTT MGt = AMG( [ ] M)t
K+ H it K=t

Here, by (1) and (3),
N
H My = (mm, ... m,)" < (3, 4)",
K=1

while further
A= AP 5 6n = A(Gn)72 .
Therefore, finally,

Uy =AM, (0,4) " = ANG)" My (H=1,2,...,N). (12)
In (11) and (12), the following result is contained.
Theorem 1: Let 1 <p <n —1, N = (Z) and P = (z j i) let fyyther

A(@,) denote the lattice determinant of the n-dimensional unit sphere G, |X | 2L
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Let F(X) and ®(E) be a posttive-definite quadratic form in R,, and its p -th com-
pound in R, respectively. Let further

My, Moy ony My AN foy, flo, «ooy Uy

be the successive minima of F(X) and O(E) in the lattices Ly and A, of all points
with integral coordinates in R, and R,, respectively. Finally let My, M,, ..., M y be
the set of all products

M(v) = m,m,, eem, (1S9 <rp<..<v =n)
arranged in order of increasing size. Then
AG) " My Suy <M, (H=1,2,..,N).
11. Two simple deductions from the last theorem have some interest in

themselves.

Theorem 2: Let the hypothesis be as in the last theorem,; assume furthermore that
F(X) and so also D(E) are of unit discriminants. Then the first minima m, and u,
of these two forms are connected by the relation

AG)F m? <y < A@,)*mi .
Proof: Since
m =my=...=<m,, (13)
it is obvious that M, the smallest of the products M, has the explicit value

M, =mm,...m,.
Therefore
M, =m7,
and so, by Theorem 1,
My, g A(Gn)2P '”"11J .

Next, again by Theorem 1 and on account of 4 = 1,

< mgmg...m,
and
My =mm,...m, < 6,(my, My, 5...M,)" 1.

From this inequality, by (13),

n-1 n-1
My My 5 oo My = (MM ... M,) =m, .

whence, finally,

This completes the proof.
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Theorem 2 is a transfer principle of the same kind as the well-known ones due
to PerroON and K HINTCHINE,!) and, in fact, one easily sees that it contains these
as very special cases.

12. Since ( ) = (;) , the (n — p)-th compound of F(X), the form

N N
WH) =5 > alixnme (@fiz" = afn”)
H=1

say, depends likewise on just N variables. We may then interpret ®(E) and
¥(H) as forms in the same space R . It lies near to look for relations between
the successive minima s;, pg, ..., 4y of ®(E) and the successive minima u}, ui,
..., ity of W(H), both in the lattice A, of all points in R, with integral coordi-
nates. Again Theorem 1 leads to an answer to this question.

We earlier introduced already the products
M@p)=m,m,, ...m, (1 =y < <..<» =n).
We now associate with each such product a second product
M*(v) = My, My e My, A =Ery <y <<...<v, <n),

the new indices being such that the sequence »,, v, ..., », forms a permutation
of 1,2, ..., n. Thus
M(v) M*(v) = mm, ... m,

is independent of v, v,, ..., ¥,.

Let, as before, M, M,, ..., M y denote the products M (») arranged in order of
increasing size,
M, E=M,=...=M,.

If, in this notation, M(v) = M, then write

M*(v):M;I:I~H+1-
Then also
Mf<My<..<=M}
and
MMy 4.1 =mmy...m, .
By Theorem 1,
AG)T My = py = My, (14)

and the same theorem gives also the analogous inequalities

NG My < iy < M3 . (15)

) See J. F. Korsma, Diophantische Approximationen, Ergeb. d. Math. IV, 4 (Berlin
1935), p. 66.
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Here
P n— 1 N n — 1)
T \m—p—1/ | p

oG-

and therefore

1 p P
Hence, on multiplying corresponding inequalities (14) and (15), we find that
A(Gn)z‘V MHM;"II a= /‘H‘u?]—H+ 1= MHM’lI\‘hHrar 1-
Further, by (1),
AS MMy 4,1=mmy...m, <AG,) *4.

Therefore, finally,
AG)N A = pypy g1 =AG) 24

There is no loss of generality in assuming again that 4 = 1. The result
obtained may then be expressed as follows.

Theorem3: Let 1 <p <n—1and N = (;) ; let further A(G,) be defined as

before. Let O(E) and V' (H) be the p-th compound and the (n — p)-th compound,
respectively, of the same positive-definite quadratic form F(X) of unit discrimin-
ant in R,. Let py, py, .., iy and pi, us, ..., uy be the successive minima of
D(E) and V' (H), respectively, in the lattice A, of all points with integral coordinates
in Ry. Then

AG)Y Supp_wa =ANG) " (H=1,2,...,N).

The most interesting case of this theorem is that when p = 1. This case is
closely related to the theorem on polar convex bodies by M. Riesz and myself;
compare my paper on Compound Convex Bodies.

13. To conclude this paper, let us deduce from Theorem 1 the main result of
the paper just mentioned.

Let K be any closed, bounded, symmetric, convex body in R,, and let K =
= [K]® be its p-th compound in R. By the theorem of Fritz Joun,*) there
. exists in R, an ellipsoid E with centre at the origin such that

ntEcKcE. (16)
Hence, if E = [E]® denotes the p-th compound of E, then also
nPEcKcE. (17)

It is rather difficult finding the explicit form of E. We introduce therefore an
ellipsoid E* which is easier to handle.

*) See R. CouraNT, Anniversary Volume, New York 1948, 187— 204.
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Let F(X) be the positive definite quadratic form the square root of which is
the distance function of E; this ellipsoid is thus defined by F(X) = 1. Let ®(E)
be the p-th compound form of F(X), and let E* be the ellipsoid in R, which has
D(E)! as its distance function, hence is defined by ®(E) = 1. As we shall prove,

N-iE* CEcCE*, (18)
whence, by (17),
(nPN) *E* c K c E*. (19)

14. The relation (18) is obtained as follows. There is a non-singular affine

transformation X — X’ = QX in R,, with its p-th compound E — & = QWE
in Ry, such that
G, = QF and I'" = QWE . (20)

Here (,: |X| < 1 denotes the unit sphere in R,, and I'? its p-th compound
in Ry. The first relation (20) implies the identities
F(X) = Fo(QX), O(E) = Oy (QPE)

of section 3; here Fy(X) and ®y(E) are again the quadratic unit forms. Since
®,(E)! is the distance function of the unit sphere G in Ry, and ®(E)! is that
of the ellipsoid E*, we obtain the further relation

Gy = QPE* . (21)
Since the property of being a subset is not destroyed by any affine transfor-
mation, it is obvious from (20) and (21) that the relation (18) holds if, and only

if, it is true that
NGy cT™c Gy . (22)

As T have shown in my note On the p-th Compound of a Sphere,*) T'" is the
convex hull of the set
S0 = Gy 0 Qn, p) -

Here Q(n, p), the Grassmann manifold in R,, consists of all points
B — [XD, X®, .. X
where X, X®, ..., X® run independently over R,. In particular,
XM c @y, TPcGy,

whence the right-hand half of (22).

Next, by taking for X, X®, ... X® all combinations of p distinct unit
points in R,, it follows at once that Q(n, p) and therefore also X{” and I'®
contain the 2N positive and negative unit points

(F1,0,...,0), (0,F1,...,0), ..., (0,0,..., F )

*) To appear in the Proceedings of the London Math. Soc,
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in Ry. Hence I, by its definition as a convex hull, encloses the generalised
octahedron .

6] 4 &+ ..o+ €y S 1.
Next, all the hyperplanes

TLEFELT...Féy=1

bounding this octahedron have a distance N~! from the origin. The sphere
N-1G@y is then a subset of the octahedron and so also of I'?). This proves the
left-hand half of the relation (22).

15. Let now m,, my, ..., m, be the successive minima of K in Ly, and uy, u,,
...y ity those of Kin A, L, and A, being as before the lattices of all points with
integral coordinates in R, and Ry, respectively. Let similarly m;, mj, ..., m,
and uy, ui, ..., py be the successive minima of £ in Ly, and of E* in A,, respecti-

vely. The relations (16) and (19) lead immediately to the inequalities,

mf<m, <nm’ (h=12..,n), (23)
wy Sug <@°N)yuy, (H=1,2,..,N).
Next denote by my, my, ..., m, and uy, ug, ..., iy the successive minima of

the quadratic forms F(X) and ®(E) in L, and A,, respectively. Since F(X)! is
the distance function of E, and ®(E)! is that of E*, the equations
’ *2
m, =m,- (h=1,2,...,n),
, 24
py=p (H=1,2,...,N) (24)
hold.

We finally apply Theorem 1. Denote by My, M,, ..., My the products
M'(v) = m,m,, ...m'p Ay <r<..<y, =<n)

v,

arranged in order of increasing size, and define corresponding products M7,

MY, ..., M} and M,, M,, ..., M, for the two sets of minima m}, m¥, ..., m*
and my, m,, ..., m,. It is then trivial, by (24), that
My=M (H=1,2,...,N). (25)

Next associate with each product

MH(v) = mimy; ... m}
the analogous product

) M(y) =m,m,, ... m, .
The first set of formulae (23) implies that
M*(v) < M(v) = n'? M*(»),
and it is therefore evident that also
My <M, <v’My (H=12,..,N), (26)
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because both sets of products M}, and M, are numbered in order of increasing
size.

16. We finally apply Theorem 1 which, at once, gives
A(Gn)zp 17”111 = “/u = M;l .

By (24), these inequalities are equivalent to
A@)" My = gy = M

On using now the second set of formulae (23) together with the formulae (26)
we find that

TV AG) My = AG)" My < pjp = py = (00N gy <
< (n?N)! M¥ < (n*N)* M, .

The following result has thus been proved.
Theorem 4: Let 1 <p <n—1, N = (;) , and P = (Z : i), let further

A(@,) be as before. Let K be any closed, bounded, symmetric, convex body in R,,
and let K == [K]® be its p-th compound in R . Let further

My, My <oy My, ANA [y, fgy -y lhy

be the successive minima of K and K in the lattices L, and A,, respectively. Let
finally My, M,, ..., My be the N products

My)=m,m, ..m, (1=r <»<..<w,=<n)
numbered in order of increasing size. Then
NG My Spy <@NYEM, (H=1,2,...,N).
This is essentially the Theorem 3 of my paper On Compound Convex Bodies,

which stated that
My Spg < My,

with a positive constant ¢, depending only on » and p. By combining the two
theorems, we obtain immediately the slightly improved result that

P AG) My S pg = My .

The old theorem was in so far more general that, instead of the minima of K
and K in L, and A,, the minima of these two bodies in any pair of lattices L and
A = [L]™ were considered; here [L]® denotes the p-th compound lattice of L.
There is no difficulty in extending also Theorem 4 to this more general case,
and no new ideas are involved.
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Peswome

O MUHUMYMAX HKBAPATNYECKUX CONPOBOMIAIONNX
OOPM

KYPT MAJIEP (Kurt Mahler), Mauuecrep.
(ocrynuio B pegaxiuio 4/1X 1954 r.)

B cBoeit paGore ,,Compound Convex Bodies” st MOJTYIMI reoMeTpIYECKUM
myTeM HeCKOJBKO aNNpOKCHMANMOHHEIX TeopeM. 3/71ech 1 HA 0CHOBAHUU CBOICTB
KBaflpaTN4HBIX (OPM JOKA3EIBAI0 HECKOJIBKO POJCTBEHHEIX TEOpPEM, MMeIOIINX
CaMOCTOATEINBHELA MHTEpeC.

I. Myers 1 <p<n—1, N = (Z) Econ XM ...0 X® — toyku n-mep-

Horo mpocrtpancrBa R,, To mycrs E = [X®, ... X®] o3nayaer uX COIpo-
BOMKJAIONIYI0 TOYKY B R,, T. e. Ty Toury, N KOOpAMHATAMY KOTOPOI ABJIAIOTCA
OTIpeNeNTUTeIN P-ro MOPAAKA 7 X P-MATPMIBL, COCTABJIEHHON M3 KOOPANHAT

rouek XU ..., X®. It ompepmesnureny MOKHO OpaTh B IIPOMBBOJBHOM, HO
pas HaBcerJa yCTAHOBJICHHOM HOpPAMKe.
II. ITyers

n
F(X) = z Wpn@y s Qi = App)
hE=1

— feifcTBATeaBHAS KBaJpaTHYHAA opMa (B IOCTEAYIONEM HBJI0KEHNI BCETA
MOJIOFKUTENBHO OlpeieieHHas). Bripassenuem ,,p-asg conpososgaomas fopma
¢opmer F¢¢ o6osuauum Gopmy

OE) = a'(IﬁIEHEK )

rae xoaduuuents a7y pasHbl N2 OmpefesuTessAM p-TO MOPAKKA MATPUIHL,
€OCTaBJIEHHO 13 KOBYPUIMEHTOB @y;. [lopsanok uHREKCOB TaKoif e, Kak u B I.
Ecau F nomosurensHO onpefiesensa, 1o n @ Gyger HOJOMUTETBHO OIpefe-
JIeHHOM Popmoiis

ITycts Temeps L, (coors. Ag) — MHOsecTBO BeeX Touek u3 R, (cooTB. u3 Ry)
¢ nesounciaenusivi kooppunaramu. Ilyers m; < ... < m, — mociegosareds-
Hble MuHMMYMBl MunakoBckoro Gopmer F(X) nus X ms L, Amanornuso, nycrs
w < ..o < uy — muaumymsl O(E) pasa B uz Ay sBectHo, 4TO

A< m...m, < AG,) 24, (1)

A S AG)A, A=at p= (")

rae A, A o6osnauaror muckpumurantst fopm F u @; A(G,) ects onpeneauTens
KPUTHYECKUX pemerok n-MepHoii epunmunoit cdeps. Ilyers temepn M; <
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< ... £ My npeAcTaBIAOT PACION0KEHHbBIE B BO3pAcTalonleM MOpPSjKke npo-

3Be eI My, My, o, (L Zyp < vy <. <p, < ). Torpa cupasejnisa
Teopema 1.
MG My < jiy < My (H=1,2 .. N).
Jloxasareaserso nmposojuTes npu nomouw (1), (2) 1 HepaBeHcTBa

D(E) < F(XD) ... F(X®) (:

rjae E 0603HaYaeT COMPOBOMKRAAIONIYIO TOUKY [XD), ... X®)]

ot
~

<

Ws reopemsr 1 BBITEKAIOT [Ba CJIEACTBUS (B Teopemax 2, 3 MBI IpejoJa-
raem muiA npocrotsl 4 = 1). Bo-mepBrX, ofmas Teopema mepeHoca:
Teopema 2.
"

AT my < py < A(G,) 2 mi‘

D
-1
Bo-Bropsrx, u3 teopemsl 1 ciegyer teopema, KOoTopasi B HpPOCTEIflieM cayuae
p = 1 HAXOUTCA B TECHOI CBABM € TEOPEMAMU 0 MOJISPHBIX BEINYKJIBIX Teaax M.
Puca u aBropa. A mmenno, nycrs @ Oyger p-as, V" Oyuper (n — p)-as conpo-
Boskpanouas gopma Gopmsr F; rorga @ n W mmeior ogHy u TY Ke pasMepHOCThH
y=("=( " ). 1 <<k 5

= =1, . Myers py < ... < py — H0CJeI0BaTEJ I bHBIE MUHUMYMbI

P
W¥'. Torga umeer mecTo"

Teopema 3.
A(Gn)zNé/‘Hlu;—H—yl:<A(GW)V—2 (H: 1727"'7N)'

Haxonen, B nocneguux absamax (13—16) paGorsl goxasbiBaercs Teopema,
He BHIKABLIBAION[ASA CYITECTBEHHBIX OTJINYMIL OT ry1aBHOH Teopemsl pabors: Com-
pound Convex Bodies:

Teopema 4. IIycmv K — oepanuuennoe, 3amknymoe, CuMMEMPUYECKOe 6bl-
nyxaoe meao 8 Ry, nycmv K — eeo p-oe conpososcdarowee meao 8 Ry. Ilycms,
danée,m; < ... < m, — nocaedosamenvivie munumymve mesa K ¢ Ly, nycmo

ur oo < oy — sunusyms K e Ag. Iyems, nakoney, M, < ... < My —
pacnosoxcertvie 6 603pacmaiouje nopadke npouscedenus m,m,, ...m, (I <
Sy < vy < ... < vy < ). Toeda Gydem

n VNG My < py < (PN} My (H=1,2,..,N).

HorasarenbcTBo HpoBojTCH, B 0OIUX vepTax, cjaeayloliuM obpasoM:
Coracio ®@. [lmony, cymecrsyer smmmcous E, pus roroporo n i c
C K CE. llyers F(X) < 1 ecth HepaBeHCTBO, ompefesioliee dJIIHICOMT 1,
nycrs @ ectb p-ag conpososkpawmasn fopma gopmst F u nyers E¥ — aomun-
comx ®(E) < 1 B Ry. Mu porasuiBaem, uro (n?N) 1 E* C K C E¥ u mcmons-

3yeM IOTOM Teopemy 1.
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