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YexocaoBaANKHii MaTeMaTHIeCKHii KypHax, T. 6 (81) 1956, Ilpara

TRANSFORMATION OF m-DIMENSIONAL LEBESGULE
INTEGRALS

%& 4
JAN MARIK, Prague.
(Received September 21, 1955.)

A substitution theorem is proved for ""arBitra,ry mappings with
continuous derivatives of the first order.

Lemma 1. Let K be an m-dimensional cube (2. . e. a cartesian product of m closed
intervals of equal finite and positive length). Let F be a function, which is defined
on the family of all cubes IC K and let F ka/ve the following property: If 1, ..

I,, I are cubes and U I, =1C K, then Z F > F(I). Let ¢ be a positive

number. Suppose tkat for every point b e K them exists a neighbourhood U of b
such that for every cube I, where bel C K N U, we have F(I) < eu(l).r) Then
F(K) = eu(K).

Proof. Let F(K) be greater than eu(K). We divide K in an obvious way
into 2™ = r smaller cubes I, ..., I,. The relations eu(l;) = F(I;) (¢t =1, ..., 1)

T

would imply eu(K) = > eu(l;) = Z F(l,) = F(K); it follows that esu(l;) <
= 1

i1

< F(I,) for some ©. We put [, = Kl In a similar way we find a cube K, C K,
such that su(K,) < F(K,) and so on. Let b ¢ N K,. By assumption, F(K,) <

7 =1

< eu(K,) for some n; we arrive at a contradiction.

Definition. We say that a mapping ¢ of an open set G C E,.2) into K,, 1s of the
class C,, if (@) = [@1(x), ..., ¢.(2)], where the functions @, ..., @, have conti-
nuous derivatives of the first order in G. We denote by Dop(x) the functional deter-
manant of @ in the point x € G. |

Lemma 2. Let ¢ be a mapping of the class C, of the open set G C H,, into .
Suppose that b € G and Dp((b) = 0. Let ¢ > 0. Then there exists a neighbourhood
U of b such that u(p(K)) < eu(K)Y) for every cube K, where be K C U.

1) u is the m-dimensional Lebesgue measure (Volume)
2) K, is the m-dimensional euclidean space.
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Proof. Suppose, for instance, that the m-th row of the matrix ( 0x

0p,(b) )

can, be expressed as a linear combina,tion of the other rows, 1. e.

0P "
m 2 X . ;
8xk ,,,,,, 8(’61{

(k=1,...,m).

fyek,, v=I[y,... Ym], W€ put
m —1
l(y) — [?/17 o Ym—1s Ym — Z “zsz .
=1

Then [ 1s a linear mapping, Dil(y) = 1; let p(x) = lp(x)) (xelG). We have
w(4) = u(l(4)) for every measurable set A, therefore u(¢p(A4))= u(l(p(4))) =
= u(yp(4)) for every compact set A C G. Let K, be a cube with center b,

. . » 0P,
K, C @. There exists a finite positive constant ' such that vil@) < C for

0x
every z ¢ K, and for all 4, j. Bus 2P _ ~ 1
v x € K, and for all ¢, 9. But s 0 for all k; consequently, there
k
exists a cube K, C K, with center b such that
| Oyp(®) < &

- (Qm)m . Cm-1

for every x ¢ K, and all k. Now let K be a cube such that b ¢ K C K, and let «
be an arbitrary point of K. The segment with the end-points b, x contains

points ¢ such that

3'7; k

wi(x) — py(b) = ; o, (x; — b;)
(e =1, ..., m)

(where [y, ..., %n] = 2, [b;, ..., b,] = b). Since |x; — b;| <, where n™ =
= u(K), we have

l'l"?:(x)‘ — (b i . mCny (v = 1, ceny M — 1),

&

ITP’M( T me(b)l =~ M. (Qm)m ' Om____l' . 1.

Consequently, the set p(K) is contained in an m-dimensional interval of the

volume
E

(2mCn)™=1 . 2m . (B} O n = enm

It follows that u(y(K)) < en™ = gu(K), which completes the proof.
Lemma 3. Let ¢ be a mapping of the class U, of the open set G C H,, into K,,.

Let B = E[x; Dp(x) = 0]. Then u(p(B)) = 0.
Proof. First of all, let 4 be a compact subset of @ and Dg(x) = 0 for
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every z ¢ A. Let the cube K contain the set 4. If I is a cube, I C K, put F(I) =
— M((}Q(A N I)) If Ila e I'm I are Cllb-eS, U Ig — IC K:, th@'n
71

UAdAnl, =A4Anl, Uepdnl)=q¢A4nl),
-1

7 =1
whence

F(l) = u(p(4A n 1)) <Zu An])__._.ZF

Let ¢ > 0,be K. If bnon ¢ A, we have F(I) = 0 < gu(I) for every sufliciently
small cube I, where b e I C K. Let now b e 4. It follows from lemma 2 that

there exists a neighbourhood U of the point b such that u(p(l)) < eu(l) for
every cube [, where b e/ C U. If I is a cube cmch that bel C KNU, we have

therefore

F) = p(p(4d n1)) = u(fp(l)) < w(l)
By lemma 1, pu(p(4)) = u(p(d N K)) = F(K) ‘§____; euw(K); ¢ being an arbitrary
positive number, we obtain u(p(4)) = 0.

Let now ¥, F,, ... be compact, G — U F,. Then B — U (BN F,). Since

| n .1 | n =1
the sets B N F, are closed in @, they are closed in F,,; hence they are compact.

It follows u(p(B N F,)) = 0forn=1,2,...,0 < u(p(B)) < > ulep(B N F,)) =
n-=1 .
= 0, which proves this lemma.

Definition. Let N be an arbitrary set of indices; let a,, be a non-negative number
for every ne N. We put > a, = sup > a,, where ¥ is a finite subset of N.

nelNV F net’
If a, are real numbers (n e N) and of al least one of the values

Z (@n) s 2 (@)

neN nelN

Z Ay = Z (a’n)~l~ m z (a’fn)w

nelN nelN neN

s finate, we put

and say that the sum > a,, exists.
nelN

Theorem. Let G be open in K,,. Let ¢ be a mapping of the class C, of G into
E... Let f be a function on G such that the Lebesgue integral

= [|Dg(0)] f(t) di

3) b, = max(b, 0), b_ == max(— b, 0).
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exists. If x ¢ @(G), let N(x) be the set of all t € G such that ¢(t) = x. Then the sum
g,(x) = z f(t) exists for almost all x € p(G) and

te N(x)
[ gs(x)de =1T.

7 (B)

Proof I. First, suppose that Dg(t) == 0 for every fe (. If t, e G, there
exists a bounded open neighbourhood U of ¢, (U C @) such that @(t;) =+ @(tsy)
for t,,t, e U, t; == t,. For x e p(U) put yp(x) = ¢, where @(f) = x, t ¢ U. Let f be
a bounded measurable function on G such that f(f) = 0 for ¢ non ¢ U. Let g be
a function on ¢(G), which is deﬁned as follows: g(x) = f(y(x)) for x e ¢(U),
g(x) = 0 otherwise. Evidently g(x) = > f(t) = g,(x) for every x e ¢(@); if

teN(x)

t e U, we have f(t) = g(¢(t)). Since [[D(p )| g(@(t)) dt = [ g(x) dx (see Jarnik,

g(U)

Integralni pocet 11, p. 219, theorem 103) we have
JIDp@)] 1) dt = [1Dy()] gp(t) dt = [ g() dv = [ g,(a) da
J ¢(U) ¢ (&)
Now let K be a compact subset of (. For every v e K there exists a neigh-

bourhood U, with the following property: If f is a bounded measurable function
- on @ such that f(¢) = 0 for { non ¢ U,, then

[IDp(®)] f(t) dt = [ gs(x) d . (1)
G ()
There exist v,,...,v, such that KC U, v..vU,. Let V,=U, —UU,
j<i
(t =1, ...,n). Let f be a bounded and measurable function on ¢ such that

ft) =0 fort e @ — K. Let f,(t) = f(t) for t e V,, f,(f) = O otherwise (+ = 1, ..., n).
Then the reiations

[ [De(t)| f:(t) dt = [ g (x) da (2)

0 g ()
hold for ¢ :::::* , n. Evidently Z f, = {1, S gf — ¢,. If we add the equalities

(2), we obtain a relation of the fmm (1).

. Let now f be an arbitrary non-negative measurable function on G. There
exist compact sets K, C ¢ and bounded non- nega,twe measurable functions

f. such that f,(t) = 0 for te G — K, and [ = E f.. Adding the relations (2)' |
tor ¢+ = 1, 2, ..., we obtain (1) again. If [Dq ]/( ) dt < oo, then g,(x) < o
almost everywhere in ¢(G). If fis an erbltl ary function on @ such that j De(t)] .

. f(t) dt exists, we apply the proved results to the functions (F(£))+ and (f(8))_.
Thus the theorem is proved for the case Dg(f) == 0 on G. |

Il. Let now ¢ be an arbitrary mapping of the class (;; let the integral
!iD‘P(t)l f(t) dt exist. Let G, be the set of all ¢ € G, where Dg(t) = 0; let N,(x)
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be the set of all ¢ G, where ¢(t) = z (x ¢ ¢(@,)). By the part 1 of our proof
the sum g% (x) = Z f(t) exists for almost all z € ¢(G;) and

telV (x)
U (B)] f() dt = [ g5 (x) d .

9(G1)

Put Z = ¢(b), where B — ¢ — @,. Evidently N(x) = N,(z) for every z e
€ (p(G) Z and

¢(G) — Z C ¢(G4) C ¢(G) .
By lemma 3, u(Z) = 0, whence [ ¢\"(z)dx = [ g,(x) dz. Thus we obtain

¢(Gh) ?(G)
J1Dp@)| 1(t) dt = [|De()] f(t) dt = [ g (@) da = [ g,(x) da
G G, a(G) @(G)
which proves the theorem.
Pezwowme

[TIPEOBPASOBAHUA m-MEPHBIX NHTEI'PAJIOB JIEBETA

SIH MAPKUK (JAN MARIK), Ilpara.
(ITocrynmio B pegaxiuio 21/I1X 1955 r.)

Teopema. [lycmv ¢ — omobparncenue omrpvimozo muoxcecmsa G C £, ¢ I,
nycmv omobpamcerue @ umeem HenpepsleHvle NPou3sodmnvle l-02o nopadka.
ITycmv Dg(t) — Pyuryuonarvuuiii onpedeaumenv omobpamcenus @ 6 Mouke

t € Q. llycmy f— Pynryus na mroncecmee G maras, wmo cywecmsyem urmezpan
Jlebeza

[ = (,f f(2) [ De(2)] dt .

Toeda das noumu ecex x o(GQ) umeem cmvica cymna g(x) = > (1) u
g(t)~w

I = [ g(z)de.

7(G)
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