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Yexocnopanknii maTemMaTHYeckHii aypuax, . 6 (81) 1956, Ilpara.

AN INEQUALITY FOR UNCORRELATED RANDOM VARIABLES

A. RENYI, Budapest and E. ZERGENYI, Sopron.
(Received October 18, 1955.)

This paper contains the proof of an inequality established by the
authors. The inequality can be easily applied to the proof of the
strong law of large numbers for pairwise orthogonal random variables.

Introduetion

A. N. KoLMOGOROFF [1] proved that if &, &,, ..., &, ... are mutually inde-
pendent random variables with mean value M (&) = 0 and finite variance
D¥&) = Di (k= 1, 2,...) and further if

D2
Z = (1)
then the strong law of large numbers is valid for the sequence {£;}, i. e. we have
Z Ek
P ( lim 2t — 0) (2)
n—sw N

(here and in what follows P(A) denotes the probability of the event 4). In
proving this theorem, Kolmogoroff used the following inequality, due to him:

m+1
( max |25,\_ )gé S D m=0,1,..) (3)

1<ksm+l -

for any ¢ > 0, which is valid under the conditions on the variables &, stated
above.

J. HAsEX [2] has recently discovered a similar inequality which, when used
instead of (3), simplifies considerably the proof of the above-mentioned and
other similar theorems. The inequality of Héajek states that if ¢, is a non-
increasing sequence of positive numbers (k= 1, 2,...), we have under the
same conditions as above

P( max ck}Z§]>a): (C2ZD2—|— 2 chz) (4)
ns<ksn+m j=m+1
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forn,m =1, 2, ... and any ¢ > 0. The inequality (4) is clearly a generalization
of (3); as a matter of fact, forn =1,¢, =1 (1 <k <m + 1) we obtain
from (4) as a special case the inequality (3).

It is well known that the strong law of large numbers is valid also if, in-
stead of the mutual independence of the random variables considered, only
pairwise uncorrelatedness is supposed, provided that instead of (1) the stronger
condition

i Dilog? k
k2

is fulfilled (see e. g. [3]). As a matter of fact, this result follows, from the
well-known theorem of H. RADEMACHER and D. MExcHOFF [4]. The proof
of this theorem is based on the following inequality (see [3] p. 156. Lemma
4.1.): If the random variables &, &,, ..., &, have zero mean values (M (&) = 0)
and finite dispersions D%(&) = D; (k= 1,2, ...,n), and if in addition they
are pairwise uncorrelated, i. e. M(§;6,) =0forj =k (j,k=1,2,...,n), we

have*)
etz g

1<ksn log 2

< 4+ (5)

from which it follows that, for any ¢ > 0,

Iﬁmﬂimzﬁszﬁ“W§M- (7)

1sksn j-1 log 2

In the present paper we shall prove the inequality (9) which is in the same
relation to inequality (7) as the inequality (4) of J. Hajek to the inequality (3)
-of Kolmogoroff.

This inequality simplifies the proof of the strong law of large numbers for
uncorrelated random variables.

Let &, &,, ..., &, ... denote a sequence of uncorrelated random variables
‘with mean values 0, i. e. we suppose M (&,) = 0 (k =1, 2,...) and M(§;&) = 0
for j + k (j,k=1,2,...). Let us suppose that the variances Dj = D)
exist (k=1,2,...).

Let further ¢, denote a non-increa.sing sequence of positive numbers, satis-

fying the inequality 1 < ¢ < L C(k=1,2,...). We shall prove that under

these conditions we have the mequa,hty

M@Mgm) (zyﬂzp mﬂ ()

n<k 3

*) To prove (6), instead of the pairwise uncorrelatedness and the vanishing of the
mean values of the random variables &, it suffices to suppose only the orthogonahty of
those variables, i. e. to suppose that M(§;&,) = 0 for § =+ k, without supposmv that

M(&,) = 0. In this case however D} must be replaced in (6) resp. (7) by M(&;).
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for n = 1, 2, ..., where the constant K depends only on the constants ¢ and C.
From (8) it follows easily, that
Plupel36=d < B S0t 3 mam o)
n<k € i=1 j=ny1
forany e > 0Oand n = 1,2, ...
To prove (8), let us fix the integer n and put
( Oifaﬁnzb and if b < a,

r  ifn<a<b,
6 =& and 8, = ,;f = (10)
zg,. ifa<n<b.
j=mn+1l

If k is a positive integer, n < k and the integer s is defined by the inequalities
2° <k < 2°*', we have

Ck = C’n + 6n,23 + 623,70 . (11)
It follows, by Cauchy’s inequality and by ¢,,.; < ¢, that

cily < 3(cpln + €350y 05 + c3s( max 03,)) for 2° <k <2t (12)
28K j<28+1 ’

and therefore
ale < 3(enln + Zczsan 2s 1 zcés( max (5‘,51)) (13)

=T 25<j <25 +1

for k =mn,n + 1, ..., where the integer r is defined by the inequalities
2" < m < 271 thus

M(sup ckck) < 3(CZM C ) + zcst n2s) + ECZSM( max 0%;)) . (14)

n<k 25<j <28 +1

Due to the uncorrelatedness of the variables &, we have

M) = > D; 1)
i
and
S AN = 3 DY ) (16)
s=r j=mn+l  j<2s
Sinoe by Sllpp051t1on ¢ < Cos i1 we have Z s < < 1 ¢ and thus from (16)
ists
c o0
SZ’(:%SM((SE’?S) = ez — 1 j..;1 1 ciD? ’ (17

As regards the third term on the right of (13) we use inequality (6) and obtain
2841

M( max 65, < K; > Djlog?j, for s>r+1,

28 <25+ j=284+1
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and
2s+1

M( max &) < K, > Djlogj, (18)

2r<j<2r+1 j=n+1
where K, is a constant, not depending on s.
Thus it follows that

2r+1 2st1

zcst max &zs;) < Ky(c3r > Djlog®j + z ¢z > D}log?j) (19)
s=r+1

28<j<28+1 j=n+1 j-254+1

and as ¢ys < Ccysyy < Cec; for 2° + 1 < § < 25, we obtain

zczslll( max 03s;) << C2KL( 2, lchf log? j) . (20)
j=m+

28§]<2841

It follows from (14), (15), (17) and (20) that

M(sup city) < K(c2 zDz—l— Z Dicilog?y) (n=1,2,...),

n<k j=n+1

where K is a constant, dependmg only on ¢ and C. Thus (8) is proved and as
we pointed out, (9) follows.

By applying the inequality (9) it follows immediately that if the variables -
&, have zero mean values, finite variances D2 = D2*(,) and are uncorrelated
and if in addition the series (5) converges, then the strong law of large numbers
is valid, i. e. (2) holds. As a matter of fact, by choosing ¢, = 1/k in (9) we ob-
tain for any ¢ > 0

k n

| 2.&] 507 . .

T K (= D? log? §
Pl = =20+ 5] e
Since by (5) the right hand side of (22) tends to zero for n — oo, we obtain

IZ &l
lim P (sup i > a) (23)
N—»c0 n<k

for any ¢ > 0, which is clearly equivalent to (2).
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Pesiome

HEPABEHCTBO [JIJ151 OPTOTOHAJIBHBIX CJIVUANUHKIX ITEPEMEH-
HBIX

A. PEHBU (A. Rényi), Byganemr, 9. 3EPITEHBU (E. Zergényi), Illonpon.
(ITocrynuio B pegaxnuio 17/X 1955 1)

B pa6ore pmoxasniBaercss HepaBeHCTBO (8), KOTOpOe cIpaBeJIMBO IIPH YCIIO-
BUUW, YTO CiyvailHele mepemeHHbie &, &y, &;, ... HONAPHO OPTOTOHANBHBI, YTO
X MaTeMaTMYeCKHe OKUIAHUSA PaBHH HYJIIO M UX JUCIEDPCUM KOHEYHH, I 4TO
HEBO3PACTAOIAA IIOCIEJJ0BATEILHOCTh IIOJOMKUTETBHEIX UHCEI Cy, Cy, Cg, ...

= 2k
ITocrossuran K, Berpevaromasicss B HepaBeHCTBe (8), 3aBUCUT TOIBKO OT € 1
JloxkaszaTenbeTBO OCHOBRIBaeTCS Ha HepaBeHeTBe (6) (em. [3]).

¢
YIOBJIETBOPsieT IpK JaHHBIX HocTosaHHEIX ¢ 1 C HepaBeHeTBY 1 << ¢ < E—’“— < ¢
C.

1
Has ¢, = - ¥ TPH YCHOBUSIX, IPH KOTOPHIX CIIPABE/IIMEO HEPABEHCTBO (8),

MOJKHO TIpM IIOMOIM HepaBeHcTBa (9), KOTOpOE sIBIsETCS HENOCPECTBEeHHEIM
ciejicTBEeM HepaBeHcTBa (8), JIErKO [IOKa3aTh CIPABEMIINBOCTH CHIIBHOTO 3a-
KoHAa 0OJIbIINX YHCelI.
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