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Yexocropanknii MaTeMaTnuecknii wyprad, T. 7 (82) 1957, Ipara

MEASURES THE VALUES OF WHICH ARE
CLASSES OF EQUIVALENT MEASURABLE FUNCTIONS

VACLAV FABIAN, Praha.
(Received January 13, 1956.)

In this paper we consider properties of measures, the values of
which are classes of equivalent measurable functions; such classes
are called random variables.

0. Introduction and summary

The concept of a measure the values of which are random variables is a
simultaneous generalization of the concepts of the real-valued measure and
of the conditional probability. It is possible sometimes (but not always) to
treat the conditional probability as a system of real-valued measures; we say
in this case that the conditional probability is regular. It is, however, of interest
to study the analogy between conditional probability and real-valued measure
without the assumption of regularity and this is to what the following pages
are essentially devoted.

The most important fact we systematically use is that the system of all
finite random variables on a measurable space is a regular K-space and that
the space of all random variables (not necessarily finite) on a measurable
space, although being not a regular K-space, has certain important properties
of a regular K-space. These properties are studied in sec. 3.

In sec. 4 three lemmas useful for further considerations are stated.

In sec. 5 a theorem on extension of a measure defined on a ring to a measure
defined on a ¢-ring is proved.

In sec. 6 the weak integral of a real-valued measurable function is defined
and a theorem on a representation of a functional (the values of which are
random variables) by a weak integral is proved.

In sec. 7 we study the problem of integration of functions the values of
which are again measurable functions. The W-integral is defined, for
functions the values of which are (W) measurable functions.
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Both the W-integral and the weak integral have the usual properties of
nonnegativity, linearity and continuity from below, the later implying the
usual continuity f, - f, 0 < f, < g, Jg finite = Jf, — Jf, where J denotes
the weak or the W-integral and — denotes the convergence induced by the
partial ordering of measurable functions and random variables respectively.

The concept of a strong measure is introduced; a measure u is strong if,
roughly speaking, the W-integral exists for sufficiently ample o-algebra W.
Three theorems show conditions under which a measure u is strong. In the
third of them the concept of the degenerate functional is used; these function-
als are used in the mathematical theory of the dynamic of turbulence (Braxc-
LAPIERRE, ForTET [2], p. 613).

In sec. 8 further properties of the W-integral are proved. First the domain
of definition of the W-integral is extended in a way analogous to the extension
of a real-valued measure to its completion. The relation with the integral
with respect to a system of real-valued measures is stated and theorems
analogous to those of Fubini and Radon-Nikodym are proved.

In sec. 9 the conditional probability is studied. The assertion of Theorem
9.4 is near to the results of SHU-TEH CHEN Moy [8], whose method we have
used in the proof of Lemma 7.14. Theorem 9.5 says that every conditional
probability is (as a measure) strong; on the other hand every strong measure
is closely related to a conditional probability (Theorem 9.6).

In sec. 10 a further property of conditional probability is studied and re-
sults are obtained generalizing the author’s results in [3].

There are essentially two ways in defining the integral. The first supposes
essentially the elementary integral is first defined for characteristic functions
of sets in a ring or in a o-ring. This method is commonly used in the theory
of measure and probability. The other method supposes the elementary integral
is defined on a linear space of arbitrary real-valued functions, or, in a more
general case, on a lattice (see e. g. MCSHANE [9], STONE [11]).

Thus extending the domain of the elementary integral to a o-complete
lattice we obtain in the first case the system of all measurable characteristic
functions, in the second case the system of all measurable functions. Thus in
the first case further considerations are necessary to obtain the usual domain
of the integral.

In this paper we use essentially the measure-theoretic consideration, but
we attempt to unify the two aspects. For example we consider the outer
measure u* x-induced by a functional J and the measure y induced by u* and
study the relation between J and u. We suppose that J (which may be infinite)
is defined on a system 2J of non negative finite functions on a set X. Con-
cerning 2.J we suppose only that with two functions f and g the system 2J
contains the functions max(f, 9), min(f, 9) and f — min(f, g). (See Theorems
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5.8 and 5.13.) Thus 9J may be for example the system of characteristic
functions of sets in a ring, or the system of all non negative continuous funtions
on a topological space. Both cases are of great importance but so far as I know,
they are commonly treated by two different manners.

On the other hand, the two aspects differ more in our case than in the simpler
case of a real-valued integrand, since the majority of difficulties does not
consist in extending the elementary integral (the functional J in Lemma 7.9)
but in proving that the elementary integral has the necessary properties,
in particular that it is continuous from below. '

We note that, under the restriction to o¢-finite measures, Theorem 5.15
can be easily proved by means of Theorem 4.21, Chapt. IX of KaNTOROVIC,
VuricH, PINSKER [5].

1. Basie definitions and notations

1.1, The symbol E denotes the space of all real numbers, £* = £ U {— o0} U
U {4 oo} with usual conventions about ordering, multiplication and addition;
in particular 0. (4 o) = 0. Further we denote £, = {¢;ce E,c = 0} and
EY = {c;ce B* ¢ = 0}.

Let {b;} be a finite or infinite sequence, let 4 be a set and let B be the set
of all b,. Then we write {b,} C- A for BC 4, {b;} D Afor BD A and {b;} == 4
forB = 4.

1.2. If S isasystem of sets, then S, (S, ) is the system of all finite (countable)
unions of sets in §; similarly S, is the system of all finite intersections of sets
in §; S_ denotes the system of all differences 4 — B, where 4 ¢S, BeS. § is
called a lattice, if 0§, S, CS, S, CS; a pseudolattice?), if the system of all
finite unions of disjoint sets in § is a lattice; a ring, if 0 S,§ ,CS,S_CS;
a o-ring, if 0§, S, ,CS, S_CS. A ring (s-ring) § is an algebra (c-algebra),
if USeS. If Cis asystem of sets, then rC resp. sC denotes the smallest ring
resp. o-ring which contains C. We denote by % the smallest o-algebra containing
all intervals I C £ and the sets {— oo}, {4 oo}.

1.3. If 7 is a transformation, then 27T is the set on which 7' is defined and
RT = T(2T). The meaning of symbols 7'(4), T-YB), T(x) = Tx for 4 C
C 2T, BC 2T, x e 2T is obvious. If V is also a transformation, 2V D ZT, .
then the symbol V7' denotes the composed transformation. If 4 C 27, then
T, is the transformation of 4 into #Z7T defined by the relation 7,2 = Tx
for every z € A. If V and 7' are two transformations and 2V C 9T, Tgy =V,
then 7' is an extension of V, in symbols 7 - V. A transformation 7' is called
measurable (V, S), if S and V are o-rings, US = 27, UV D ZT and 4 ¢V =-
=T"14)¢S.

1) It is easy to see that every semiring (see [4]) is a pseudolattice.
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1.4. A (finite) real-valued function is a transformation f with #f C E*
(%f C E). If A is a set, then f*4 (fA) is the system of all (finite) real-valued
functions defined on 4. By the symbol f7A4 resp. f, A we denote the system
of all functions belonging to f*4 resp. f4, which are non negative. If f; e f¥4

E [

(t=12,..,k), we denote Afi=Ff AfoA-..ANfr=1i(f, ... r), V]i=
i-1 i-1

=hViV -V fe = sup (f, oI fe =V 0, fo=(=f)s = — (A 0). The

symbols V f and Af have the analogous meaning. Further f, < f, means

filx) = f2 in E* for every x e A = Df;; f, < f, means f; < f, and f; =+ f,;
fi—f or limfi:f means f( ac)—>fx) in E* for every xe A; f; #/ f (f:[)
means f; —fand f, < f;., (f; = fizq) fori=1,2, ...

1.5.If A4 is a set, we denote by ¢, the characteristic function of the set 4 (the
meaning of the complement of 4 will be always clear from the context). Let
S be a system of sets. Then we denote by ¢S the system of all functions ¢, with
AeS. IfSisa system of sets, then a real-valued function f is called S-simple,

if 2f = USand]‘_Za ¢4 Where a; e B, A; € S. If S is a o-ring, then a real-

valued function f is called (S) measurable if Zf = U S and f~1(4) €S as soon as
Onone A eD. If o C f*4 then we denote by ko/ the smallest o-ring such that
every fe A is (ke/) measurable. We denote by m*S (mS) the system of all
(finite) real-valued (§) measurable functions, by m*S (m,S) the system of all
f e m*S (f e mS) which are non negative.

If 4 is a set, o C f*4, then &7, resp. o/, resp. 7, denotes the set of all
fV g resp. fAgresp. Vfl,where fed,ged, {f}7 C oA HACFA BCKA,
then we define

A B =~ OSh=h=[eB e, e},

If o/ =P cf A we write &/ _ = o _(H).

Let o7 C fA. Then 7 is called an f-lattice, if of Ccfd4,0edd, L ,CA, A, CH;
an f-ring, if o7 is an f-lattice and «/_ C &; a basic system, if o/ is an f-ring and
fed,ceEB,=c.fesd, fALleAL.

1.6. A real measure is a real-valued non negative function p such that

[ee]

Pu is ac-ring and u( U A )_ z,u(Ai) assoonas A, e Pu and 4;N A4; = 0 for
=1

every i = 1,2,...; 4 # t. A measure p is said to be totally o-finite, if there
exists a sequence of sets {4,};” ; C- Qu such that Y4, = Y Du and u(4,) <
< 4 o forevery 7 =1, 2, ... . A measurable space is such a couple of ¢-rings
(S, Sp) that there exists a totally o-finite measure g such that § = Yy and
So ={4; 4 ¢S, u(4) = 0}. In such a case we say that (S, S,) is induced by u,
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or that y induces (S, Sp). If (S, S,) is a measurable space, then two (§) measurable
functions f,, f, are (S,) equivalent if there exists aset V, ¢ S, such that f,(z) =
= fy(x) for all xe Y § — V,,. Thus the system m*S can be divided into disjoint
classes of (S,) equivalent functions; such classes are called random variables.
If .# C m*S, then the system of all such random variables, which contain at
least one element of .#, is denoted by n ,(S, S,). In particular we denote by
n*(S§, §;) resp. n:‘i(S, S,) resp. n(S,S,) resp. n,(S,S,) the set n ,(S,S,) where
M = m*S resp. A = m™ S resp. #4 = mS resp. 4 = m_S.

The addition, multiplication and ordering of random variables are defined
as follows (x and f are supposed to be random variables beloging to
n* (8, S,)): First we define x 4+ 8 if and only if there exist two functions
fex~, gep such that f 4+ ¢ is defined. In this case we define

a4+ pB={f+¢:fex,gef,f+¢g hasameaning}.
Further we put « . f = {f . ¢; f e x, g € #} . Finally we write x = § if and only
if there exist f e «, ¢ ¢ f such that f =< ¢g. Obviously x + p and « . are ran-
dom variables and belong to n*(S, §,).

If fexen* (S, S,), let us write for a moment ~x = n(f).

If 4¢S then we denote y, = n(c,). If ce E*, fem*S, fx = ¢ for every
x ¢ 2f, we denote both f and n(f) by the same symbol ¢. Every totally o-finite
real-valued measure & induces a measurable space (S, S,); in such a case we
write n*& = n*(§, §;) etc. We denote also the §j-equivalence of f, g e m*S by
f =g [£]. The elements of n* resp. n resp. n are called random resp. finite
random resp. non negative random variables. If fege n’:f, we define
Jo dé = [fd&.

1.7. If a binary transitive relation > is given in a set Y, we write « = b
if and only if @ > b or @ = b. Then a subset B C Y is said to be bounded from
below in Y, if there exists a y ¢ ¥ such that y < b for every b e B; we write
in this case y (<) B. By the symbol inf, B, if A C Y, we denote such an ele-
ment of 4 that

inf, B(<)B

and & (Z)B, he A= h < inf, B. If inf, B exists and if the relation = is
antisymmetric, then inf, B is uniquely determined.

In an analogous way the boundedness from above and sup, B are defined.
If B = {b)}} ;, we write also

k k
squB:b,VbZV...ka:ylbi, inf,,B:bl/\b?A.../\bkz.Albi.

The convergence in a partially ordered set Y is defined in the following way:

b;—~byifandonlyif b,¢ Y,V Ab;and A V b,exist, b=V Ab,=A Vb.

m=1i-m m=1¢=-m m=1i=m m=1i=m
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It is easy to see that for real-valued functions this convergence coincides
with the convergence everywhere. For random variables this convergence
means «; — «, if and only if there exists a sequence a; e «; such hat a;, - a,
or, what is the same, if for every sequence a; ¢ «; there exists a set N € §,
(if &; e n*(S, S;)) such that lim a;(x) = a,(x) for every x e US — N.

1.8. If (§,S,) and (V,V,) are two measurable spaces, we write (S, S,) <
< (V,Vy)ifandonlyif SCV, UV=US,S, = V,; i. e, if n*(S, ;) C n*(V, V,),
where C denotes the usual set inclusion. If 0 e .# C n*(V,V,), where (V,V,)
is a measurable space, then there exists a smallest measurable space
(q#, q,.#) such that n* (q#, q.#) contains 4. It is easy to see that

Qye# = {A;c,e0e M},
q# =s{A; A =g '(B);0noneBeB,geyed}.

2. The Radon-Nikodym derivatives

In this section we remind of certain properties of the Radon-Nikodym de-
rivatives.

2.1. Definition. Let 1 and » be two real-valued measures. We say that » is
absolutely continuous with respect to u (v << pu) if Qu = Dv and if 4 € Dy,
() = 0= n(d) =

2.2 Lemma. Let u and v be two real measures, let u be totally o-finite and let
v << << u. Then there exists one and only one x such that

xenty, (2.2.1)
Benfpu= [fdv= [a.Bdu. (2.2.2)

2.3. Definition. Let u and » satisfy the conditions of the preceding Lemma,
let o be the (unique) random variable satisfying (2.2.1) and (2.2.2). Then « is
d?’
a0

2.4. Lemma. Let y and v; be real measures, let ju be o-finite and v; << u for
every 1 = 1,2, .... Then

called the Radon-Nikodym derivative; it is denoted by the symbol

d(vy +v,) Elﬂ dv,

o\t Bl L = 2.4.1
dy dy
vy, < vy _/1 < &,172 ; (2.4.2)
, dlimy, d
i—>0 . Vi
vy = vy, < ..o limy; ds a real-valued measure, =2 — lim . (2.4.3)
= io du o du

For proofs of (2.2) and (2.4) see for example Harmos [4], § 31, Theorem B and
Exercises 7, § 32, Theorems A and B.

196



3. The spaces of random variables and the K-spaces

3.1. Lemma. Let (V,V,) be a measurable space. Then there exists a pseudo-
probability & (i. e. a real-valued measure & such that E(U V) is equal to 0 or to 1)
inducing (V, V,).

Proof. From the definition it follows that there exists a totally o-finite
measure 7 inducing (Y, Vy). If (UV) = 0, we put & = 5. If n(Y V) > 0, then

there exists a sequence {4,};" ; C-Vsuchthat Y4, =UYV, 0 < u(4,) < + o©;
-1

(AN A4,

ut £(4) = 7 .

put &(4) = ,Z Sy

3.2. Definition.?) Y is a K-space, if Y is a linear space with a binary rela-
tion >, satisfying

Yy>z<=sy—2>0, (3.2.1)
y>0=y £0, (3.2.2)
Yy>0,z2>0=>y+4+2>0, (3.2.3)

if y € ¥, then there exists a ze Y such that z =0, 2=y, (3.2.4)
yeY, ceH, y>0,¢>0=c.y>0, (3.2.5)
for every non empty set B C Y bounded from below in Y there exists
inf, B . (3.2.6)
3.3. Notation. If x and § are random variables, we write « > f if and
only if x = f and « % f.
3.4. Theorem. Let (V,V,) be a measurable space, let B C Y* = n*(V, V,).
Then both inf,. B and supy. B exist. Moreover a countable subset B’ C B extsts
such that inf,, B’ = inf,. B and sup,. B’ = sup;. B.

Proof. If B = 0, then inf,., B = + o0, sup,. B= — oo. If B—= {p, }, 1
then obviously sup,. B is the random variable containing the element Vb,-,
i=1
where b, € 8,. If B is uncountable, we proceed as follows.
+ o —
¢ * — —_—
Put, for every aeY,g(a)—fl+]|d§ Where1+ T o

mean 1 and — 1 respectively and where & is a pseudoprobability inducing
(V, V,). Clearly
x < f=o(x) < olp) - (3.4.1)

Let C be the set of all random variables of the form V «;, x; ¢ B. It is evident
i=1
that if sup,. C exists, so does sup,« B and sup,. C = sup;. B.
2) See [5]-
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Now let {y;};1 be such a sequence that y;eC, o(y;) — sup o(y). Since

yeC
Vy;eC and o(y;) = o(V y,) it follows that
i-1 i=1
o(V y;) = sup o(y) (3.4.2)
=1 yeC

and V y; = sup;. C = sup,. B. Indeed, if for a y ¢ C the inequality y < V y;
ic1 i-1
does not hold, then Vy; < (Vy,)VyeC, which is impossible according to
Q-1 i-1

(3.4.1) and (3.4.2). However, VY y, is supremum of a countable subset B, C B.
i-1

By a similar argument we obtain a countable set B, C B such that inf,, B, =
= inf,. B and it suffices to put B’ = B, U B,.

3.5. Lemma. Let Y = n(V, V), Y* =n*\V, V,), 0 & BC Y. Then the following
four conditions aire mutually equivalent:

B s bounded from below in Y , (3.5.1)
inf,. Be Y, (3.5.2)

inf, B exists and inf,. B = inf, B , (3.5.3)
inf, B exists . (3.5.4)

Proof. If (3.5.1) holds, then there exists an « ¢ Y such that B (=) x. Hence
inf,, B=na. As B + 0, there exists a fe¢BCY and o <inf,. B <
Thus (3.5.2) holds. Clearly (3.5.2) = (3.5.3) = (3.5.4) = (3.5.1).

3.6. Notation. In the next, if A C Y* = n(V, V,), the symbol inf 4 denotes
inf,. 4.

3.7. Definition. Let ¥ be a K-space. Denote by ¥ the space ¥ U {4+ %} U
U{— %}, where — 35 <y << + & for every yeY. [y, =y in Y] means of
course the convergence induced by the ordering in Y.

3.8. Lemma. Let ¥ =n(V,V,), {637 .:C Y, a;en;. Then «;— + 5 in

Y if and only if the following condition s satisfied: N x; €Y and there exists
i=1

a set VeV — V, such that lim a,(x) = + oo for every x e V.

i—00

Proof. Let f; = inf;{a;; j = i, + 1, ...}. Then a; — + o in ¥ if and only

if f; >+ T in Y.

First let «; — + 5 in Y. Then i, € Y for some i), and thus also A x; =

i=1
-1 ©

= A ;AP ¢ Y. Further, if b, = A a;, then b, ¢ f; and b = lim b, exists. Ob-
i=1 .

j=1 i—>00
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viously b is not in mV and thus there exists a set V ¢ V — V, such that b(z) =
= + oo for z ¢ V; hence it follows that a;(x) = + oo for every z ¢ V and the
“only if” is proved.

On the other hand, if ¢;ex;, VeV — V,, @, () - 4 oo for every z ¢ V and
A x; €Y, then sup; f; = + & and thus o; — + & in Y.
-1 i

The following lemma is a slight generalization of a theorem due to FRECHET
(see [5], p. 177).

3.9. Lemma. Let Y =n(V, V), let «;; €Y, x; € Y for every <, §, let

limoa,; =04 t=1,2,...and ¢; >« in Y.
j—o0

Then there exists a sequence of inbegers ny << ny < my < ... such that o, — o
n Y.

Proof. Let £ be a pseudoprobability (see Lemma 3.1) inducing (V, V,), let
(15 € 0g5, Ay € x5, @€ x. For every n there exists (Jegorov’s Theorem) a set W, ¢ V

1
such that &(W,) < " and a;; - a; uniformlyon YV — W, forevery : = 1, 2, ....
But, for every ¢t =1, 2, ..., a;; = a; uniformly on YV — V,, where V,, = | W ;.
i1

Clearly V; DV, D ... and &(N V,) = 0. Accordingly, we may choose a sequence

n-1
of integers 0 << n, << n, < ... such that

|(x) — afz)] < % forevery zeUV —7V,.

Suppose ; >xeY, aex, a; >a. f xe YV — A V,, then there exists an
t=1

index %, such that x e YV — V; for all ¢ > 14,; thus

1 ..
|@ni(®) — ay(@)] < ~ for i >4,

[=e}
which implies a;,,(x) = a(x). Thus a;,, >aon UV — NV, i e., x; — .
=1

Suppose «; — -+ . This is equivalent (see the preceding Lemma) to the
existence of a set M ¢V — V, such that a;(x) > 4+ o« for every x e M and

A x; Y. But obviously A &y, €Y and a;,(x) = co for every ze M — A V..
i=1 i=1 i=1
Thus also &, — + .

Suppose &; > — . Then (—«;) =+ &, (— &) >+ o and o, —

— + o. Thus the Theorem is proved.
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3.10. Lemma. Let M C n*(V, V,) and let
xeM,BeM, x #=xAp=0.
Then M 1is countable.
Proof. For every sequence {x;} C- M we have ilf(xiA 1dé =1, if & is

a pseudoprobability inducing (V, V,). Thus the set of all x A 1, where & € M,
is at most countable. Further « + f, xAf = 0=>a A1l + f A1, which fini-
shes the proof.

3.11. Theorem. Let (V,V,) be a measurable space. Then n(V, V,) is a regular
K-space.

Proof. n(V, V,) is a K-space according Theorem 3.4 and Lemma 3.5 and is
regular according Lemmas 3.9 and 3.10 (see [5], Chapt. V.).

3.12. Definition. A subset B of a partially ordered set A is called down
oriented, if a € B, b ¢ B implies the existence of such ad e Bthatd =a,d < b,

3.13. Theorem. Let B C n*(V, V,) and let B be down oriented. Then there exists
a sequence {f;}7.1 C- B such that ; \ inf B.
Proof. From Theorem 3.4 it follows that there exists a sequence {x;};”, C- B

such that A «, = inf B. Now it suffices to choose 8, ¢ B, f, = o1 AX A ... Ao,
i=1

for every n.‘(this is possible for B is down oriented).
3.14. Definition. If (V, V,) is a measurable space, 4 ¢V, then we denote by
P, the transformation from n*(V, V,) onto n*(,V, ,V,), where
Y={B;ADBeV}, Vy={B,ADBeV,},

which satisfies the condition fe @ en*(V,V,) = f, ¢ P,¢.

Further, if «en*(V,V,), Be®B, then we denote by «~1(B) the system
{4; A =a"(B),a ex}.

3.15. Lemma. Let Y* = n*(V,V,), M e V. Let x ¢ Y*, 8 € Y*. Then

x =Zp=>Pyux =P,p3, (3.15.1)
Pux >Puf <o .y > B tus (3.15.2)
Pux =2 Py, Pyy ux ZPyy uf=o =f; (3.15.3)
if « 4+ B is defined, then
' Py(x + B) = Pyx + P,f. (3.15.4)

Proof. The Lemma follows from the definition of P, immediately.
3.16. Theorem. Let A C n*(V, V,), M e V. Then
P, inf 4 = inf P,(4) (3.16.1)

and :
P, sup 4 = sup P,(4) . (3.16.2)
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Hence, in particular, if {x,}7, C-n5(V, V), then
Py > ;=2 Pya,. (3.16.3)
-1 i-1

Proof. Both members of (3.16.1) have a meaning. Let y ¢ P,(4). Then
there exists a o« € 4 such that y = P,x. It is « = inf 4 and thus according
to the preceding Lemma, y = P, inf 4. Hence P, inf A < inf P,(4). On the
other hand, if '

y=infP,(4)>P,inf4d and y=P,f, x=inf4d,
then . x5 > « . x4 according to (3.15.2); thus
B.oguw+o(l—yy)>a=infd and B.yx, + «(l — gy ()4,
as it follows from (3.15.3). But this is impossible. Thus P, inf 4 = inf P, (A4).

By duality P, sup 4 = sup P, (4). We have proved (3.16.1) and (3.16.2).
Since (3.16.3) follows from (3.15.4) and (3.16.2), the proof is complete.

4

In this paragraph three lemmas, which are more or less known, are stated
for the convenience of the reader.

4.1. Notation. If 4 is a set, &/ Cfid4, then o/, = {f;f =g+ h,ge o,
hesty, oy ={> [ {fd1C A} A ={c.fifesd, ce B}
i1

4.2. Lemma. Let C be a pseudolattice, 5/ C (U C),

Ay, CoA, A _(cC)C L, cCC . (4.2.1)
Then
o D csC. (4.2.2)
If even
oA CA,
then
o Dm’sC. (4.2.3)

Proof. Let us denote by A the system of all sets the characteristic functions
of which are in «. For B ¢ C let us denote by ,C the pseudolattice of all 4,
which satisfy B D 4 ¢ C. Clearly A D ,C. Then from [4], § 5, Ex. (2), (3e) and
(5) it follows that A D s,C. Thus

ADB=U {s;C; Be C},
where B is defined by the context. Now, if we define

D—={>4;A:¢B Aind; =9 for i+j},

201



then, since B C A and «&/,, C &, we obtain D C A, or equivalently c¢D C &.
But D is a o-ring, DD C, and thus D D sC. (In fact D = sC.) We obtain
& D cD D esC and (4.2.2) is proved.

Now suppose that &/, C &Z. Let f e m*sC. Then there exists a sequence of
sC-simple functions f, such that i f. = f. But f, are linear combinations of
elements of ¢sC and thus, since .Z% xl C o and &/, C o, we obtain {f,} C. &
and ilfn = fes/. Thus & Dm7sC.

4.3. Lemma. Let & be a basic system; denote

F={4;9, 7 cos {gnjn 1C F} . (4.3.1)
Then for every f e F, c € B, we have
{z; f(x) > c} e F (4.3.2)
and thus
k# = sF. (4.3.3)

Proof. The following proof is due to MaRix [6]:
Let fe#,ceE,. Put

In :n[f/\(c—{—%) ~afAc].
Then g, / (4. tz)~c}» Which proves (4.3.2). Hence it follows that k% C sF. On
the other hand k& O F and thus k% = sF.

4.4. Lemma. Let B be a basic system,
ADRB, A, Cd, A.Cst, A_(B)CA. (4.4.1)
Then s D m’kaA.

Proof. Let fe %, C, ={4;9, /¢, =, {gn}w.1C-#}. We have cC,C «.
Indeed, if {9,} C- %, 9, "¢, =fand h, =g, b, = g, — Gy forn = 2,3, ...,

then %, e o/ _(#) Co/ and ¢, = > h, e o/, C . Clearly every C, is a lattice;
n=1

since Z is a basic system, the union C = U {Cy; f ¢ #} is a lattice, too. We
have ¢C C &/ and we deduce easily that «/_(cC) C 7. Thus all the assump-
tions of Lemma 4.2 are satisfied, we get o/ D m’sC and it remains to prove
that sC D k4.

Let fe#, ceE,.. Then there exists a sequence {g,} C-% such that
G 7 Clayzmy>c} (see Lemma 4.3). Since ¢, < % .fe%B, we have {x; f(x) > ¢}
eCt CC and kZ C sC.

[
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5. Funectional, measure and outer measure
Definitions and prinecipal properties

5.1. Definition. J is a functional, if J is a transformation, 2J C f*X, where
X is a set (we shall write X = 22J), ZJ C n*(V, V,), where (V, V,) is a measurable
space. J is called finite, if #J C n(V,V,); additive, if {f, g, f + g} C 2J =
= J(f + g) = Jf + Jg; homogeneous, if {f,c . f} C- DJ,ce E= J(c.f) = c.Jf;
linear, if it is additive and homogeneous; continuous from below, if {f.}n-o C-
C-2J, fu 7 fo= Jfy 7 Jfy; non negative, it fe2J, f = 0=-Jf = 0; subad-
ditive, if {f,, fo, 1 V fo} C 2T = J(f, V f2) = Jf, + Jfs; monotone, if {f,, f>} C-
C-2J,f; = fa=Jf, = Jf,.

5.2. Definition. u is called a sef function, if Du is a system of sets, Zu C
Cn*(V, V,), where (V,V,) is a measurable space. We say that u is non negative,
if ZuCn¥(V,V,); monotone, 1f {4,B}C. Qlu, AC B= u(d) < u(B); o-sub-

additive, if {4}, C Du, UA e.@,u:>/c(UA <Z/L :); o-additive, if

©

{437.1C Du, UA €Du, A;nA;= 0 for i *?:>/1(UA)—L,M(A) o-fi-

nite, if for every AeDu there exists a sequence {A }1 1 C 9/1 such that

u(4;) en(V, V,) for every ¢ and U A, = A. p is called a measure if p is a non
=1

negative o-additive set function and if Dy is a o-ring.

5.3. Definition. H is a hereditary o-ring, if His a o-ringand 4 C Be H =
=AecH

5.4. Definition. x* is an outer measure, if x* is a non negative, monotone
and o-subadditive set function, if Zu* is a hereditary o-ring and p*(9) = 0.

5.5. Lemma. Let J be a functional continuous from below, let 2J be an f-lattice.
Then there exists a unique functional J continuous from below such that J - J
and DJ = {h; fo 7/ h, [, € DJ}.

Proof. Put

Jf = lim Jf, , (5.5.1)

if feDJ, {f}2.1C-2J, |, 7 f. We shall show that this definition is independ-
ent of the choice of the particular sequence {f,}. First we remark that con-
tinuity from below implies monotony. Now let f,, € 2J, g, € 2J, g, /[, fo 7 f.
We have f, = f, A gu, 7 gn, and thus lim Jf, = Jg, . Making n, — oo we get

n—co

lim Jf, = lim Jg, and from symmetry lim Jf, = lim Jg,. It remains to prove

n—00 n—>00 N—0 n—o0

the continuity from below of J. Let f,; 7, f,.%) fui € 27, fu / f. Put g, = f1a V

3) The index 7 in 7, is used with the obvious meaning for preventing misunderstand-
ings.
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ViwmV.-Vfu Then g,e2J,g, 7 fand g, < f,. Thus Jg, < Jf, < Jf and
Jg, # Jf.Consequently Jf, 7 Jf.
5.6. Notation. If J is a functional satisfying the conditions of Lemma 5.5,
then we denote by J the functional defined by (5.5.1).
5.7. Lemma. Let J be a functional continuous from below, let 2J be an f-lattice.
Then
(5.7.1) DJ is an f-lattice, (2J),, C D7,
(5.7.2) non megativity of J implies non negativity of J,
(5.7.3) subadditivity of J implies subadditivity of J,
(5.7.4) if J is additive, (2J), C 2J, then J is additive, (2J), C 2J,
(5.7.5) if J is homogeneous, (2J) . C DJ, then J is homogencous and (2.J) . C D.J.
Proof obvious.

5.8. Theorem. Let J be a non negative, homogeneous, subadditive and from
below continuous functional, let 2J be an f-lattice, let E,, H and p* be defined
as follows:

AC@”J:>E {(Jg;c, = ge2J}, (5.8.1)
={A; A C 2, B, + 0} (5.8.2)

and
AeH= pu*(A) =inf E, (5.8.3)

Then u* is an outer measure.

Proof. H is obviously a hereditary o-ring, p*(0) = 0, p*(4) < u*(B)
whenever A C B, B ¢ H. It remains to prove the o-subadditivity. We observe
that every E, is down oriented. Let {4}, C- H and let £ be a pseudopro-
bability inducing (V,V,) = (q%J, q,%J). Then there exist sequences (see Theo-
rem 3.13)

(M C B, (=12 ..;m=12..)
such that
o N op*(Ay)
and such that there exist sets ﬂlm, M;, satisfying the following relations:
Mo e [65°17H({+ o0}], M, e [u¥(A)]H({+ o)),

1
1Mim3ﬂ[i,m+1, §(M1m_ Ml) <% .

We ol;tain E(U ﬂlim——U M1~)<l and &N U M, — U M,) =

m=14¢=1

Accordingly, we may suppose after modifying the sets M ;;, M by substractlon
of aset in ¥, that n U Mlm = U M,. Defining N,, = V— U M,,, we obtain

m=14¢=1 i=1

UV—GNm=6Mi. (5.8.4)
m=1 i=1
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Now, fix an index m and denote «{;” = «,;. Then P, ,; are elements of the
regular K-space
Ym = n(va, vao)

and Py oy NPy p*(4,) for every ¢ =1,2,... (see 3.15, 3.16). Now the
regularity of Y,, implies (see [5], Chapt. V, Theorem 1,25) the existence of
a o eY,, satisfying the following condition: for every ¢ > 0 there exists a
sequence of integers n,, n,, ... such that

Po,in, = P i*(A) + 0, i=1,2,.... (5.8.5)
However, for every 7 there exists a g, such that

O‘ini = jgz > Y = cAi 5

thus J(V g,) e B3 ,, . Therefore, since J is subadditive and continuous from
i=1 i-1
below,

o

(UA)<J V.q é% =izlam,.-
We get (Lemma 3.15, Theorem 3.16)

ﬂ*('q 4,) =Py, iami - il Py in, - (5.8.6)
Thus, using (5.8.5),

U A) S 3P pd) + oo
As ¢ > 0 was arbitrary, we get, using (3.15) and (3.16),
WU A4) Py, 3 0 (5.8.7)
foreverym =1, 2, ... W
Hence it is easy to see that

Pu*(U 4,) =P, > u*(4,) (5.8.8)
-1 21

where N =y N,. f UV — N ¢V,, then (5.8.8) holds for N = UV and the
m=1

Theorem is proved. In the contrary case it follows from (5.8. 4) that

Py V?;L (4;) = + oo. This together with (5.8.8) gives u* (UA )= z,u (4,)

and agam the Theorem is proved.

5.9. Definition. We say that u* is #-induced by J, if u* and J satisfy the
conditions of Theorem 5.8. We say that u* is x-induced by a non negative
o-additive set function u, if u* is x-induced by J and Jc, = p(4) for every
A eDu, 2J = cDu.
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5.10. Definition. If x* is an outer measure, then any set 4 ¢ 2u*, for which
BeQu* = p*(B) = u*(BNA) + p*(B— 4),  (5.11.1)
is called p*-measurable.
5.11. Definition. y is a complete measure, if it is a measure and if B C 4 € Qu,
u(A) = 0= BeDpu.
5.12. Theorem. If u* is an outer measure, S the system of all p*-measurable
sets, then S is a o-ring and ug 1s a complete measure.
Proof. The Theorem can be proved in a way formally identical with that
of [4], § 11.
5.13. Theorem. Let u* be an outer measure x-induced by an additive functional
J, let DJ be an f-ring. Then c, € 2J implies the u*-measurability of A and
u*(4) = Je, . (5.13.1)
Proof. (5.13.1) follows immediately from (5.8.3) and it remains to prove
the p*-measurability of 4. Let B ¢ Qu*. Theorem 3.13 implies the existence
of {31 C- E, such that f, \ u*(B). Choose a sequence M, D M, D ... such
that M, e f; {({+ oo}). Fix an integer m. Denote (V, V,) = (q%J, q,%J), put
N, =UVY — M, and denote Y, = n(,V, V). Then {P,f}",C Y,
and Y,, is a regular K-space. Thus, according to [5], Chapt. V, Theorem 1.24,
there exists a g, € Y, satisfying the following condition: for every ¢ > 0 there
exists an index n, such that Py f, =P, u*(B) + ¢ . g,.
We have f, = Jg, where g =c,, ge%J. Since ¢, belongs to 2.J too,
there exist {g,}n.1C- DJ, {h,}n_1C- 2J such that
Gn 7 G =C5, hy ey
Thus also g, A b, 7 gAcy, J(gn ARa) 7~ J(g Ac,) and
P, (Gn A n) 7, Py (g Ac,) .

This is again the convergence in ¥,, and thus there exists a g, € Y, satisfying
the following condition: for every 6 > 0 there exists an integer k such that
Py, J(GAC) =Py TG Alu) 46 . 05
Thus Py p*(ANB) =Py J(ge Au) + 6.9, for ¢,z =gAc, But ¢, , =

<g—9gAC, =g — g Alye2J. Thus
Py, [1*(BO A) + u*(B — A)] = Py y*(BO A) + Py y*(B — A) =
= sz,,,{(gk/\ by) 46 . 05 + P, J(g —gcA hy) =
=Py Jg+0.0, =Py u*B)+0.0,+¢.0-
Making first 6 — 0 and then ¢ — 0, we obtain P, (u*(BN A) + u*(B — 4)) =
= P, u*(B) for every m and thus

Pg »u*(BOA)+u*B—A)]=Pg ,u*B).
m=1

m=1
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Finally

Poy §wu*B)=+® or UV—UDN,cV,
m=1 m=1

and thus p*(BN A4) + p*(B — 4) < p*(B). Since u* is subadditive, (5.11.1)
holds and the proof is finished.

5.14. Definition. Let x be a measure. Then y is called the completion of u, if u
is a complete measure, u » u, and if to every A e Pu there exist M C M, e Dy,
N C N, e Du, A, € 2u such that

A=A, —M)UN, wM,)=pN,)=0.

5.15. Theorem. Let p be a non negative o-additive set function, let Du be a ring,
u* the outer measure *-induced by u, S the o-ring of all u*-measurable sets,
v = us.

Then v is a measure and v  u.

If, in addition, u is o-finite and v, is a measure defined on sQu, v, ¥ p, then
v 18 the completion of v, and v is o-finite.

Proof. The first assertion of the Theorem follows from Theorem 5.8, if
we put Je, = u(A4) for every 4 € Du, from Theorem 5.12, which shows that
v is a measure, and from Theorem 5.13, which shows » - u. The other assertions

are easy to prove in a way commonly used for the case of real measure ([4],
Sec. 13).

5.16. The following two Theorems are easy consequences of Lemmas 4.2
and 4.4.

Theorem. Let & be a basic system or let B = cC, where C is a pseudolattice.
Let J,, J, be two non megative, linear and from below continuous functionals
defined on m*k% and finite on B. Let J, and J, agree on B.

Then J, = J,.

Proof. Let o = {f; J,f =J,f}. ThenZ/ DA, ,, C A, A . CH. H O], <

Zfh=fe®B, fiesd, fyesd, then J\f, = J.f,, Jif, = J,f, and both these
random variables are finite, since J,f is so. Thus J,(f, — f,) = J,(fy — f,) +

+ Jify — Jif = Jufs — Jifs = Jofs — Jofs = J5(fa — f1); we obtain o/ _(B)C .

We may apply Lemma 4.2 (if Z = cC) or Lemma 4.4 (if & is a basic system).
We get o/ DmikZ, i. e. J, = J,.

5.17. Theorem. Let #; be a basic system or let B, = cC,, where C; is a pseudo-
lattice (i =1, 2). Let #, D B, and [#,],. = m k%,.

Let F; (for j =1, 2) be a transformation defined on m*k®, X m* k%, For
every [f, gl e m kB, x m*k%B, let both F(f,.) and Fy.,g) are non negative,
linear and from below continuous functionals. Let F be finite on B, X &,.
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Let Iy and F, agree on B, X &,.

Then F, = F,.

Proof. The proof consists in a repeated application of the preceding
Theorem.

Let g € #, be fixed. Then F(.,9), Fy.,g) are two non negati\}e, linear and
from below continuous functionals which agree and are finite on #,. Thus
according to the preceding Theorem, (., g) = F,(., ¢); in particular F'; and
F, agree and are finite on @1 X AB,y.

Now let f, e §1 be fixed. A new application of the preceding Theorem shows
that F(f, .) = F,(/, .) and thus F,, F, agree on %, X m*kZ,.

Tinally let [f, g] e mTk#, X m*k%,. Then there exists a sequence {f,}7 , C-
C- 4, such that f = > fa- Thus from the additivity and continuity from below
n=1

@

it follows that Fy(f, 9) = > F1(fs 9) = > Fulfa, 9) = Fsf, 9) and the Theorem
n=1

n=1
is proved.

6. The weak integral

6.1. In the whole section let x be a measure.

6.2. Lemma. There exists a unique linear functional J such that 2J consists
of all Du-simple functions and such that Jc, = u(A) for every A e 2Qu. The
functional J is non mnegative, linear and continuous from below; if a;e E .,
A; e Du, then

J>a;. ¢, =>a;.ud,). (6.2.1)

i-1 -1
Proof. From additivity of x it follows that J can be unambiguously defined
by (6.2.1). Then J is non negative and linear. Conversely, if J is linear and

Je, = u(A) for every 4 e Zu, then J must be of the form (6.2.1). It remains
to prove that J is continuous from below.

k
Let f; be Qu-simple, f; 7 h = 3 a;.c,,a;e B, A;e Ju. We may suppose
1-1
k
1
that 0 < a, < a, < ... < a;. Fix an m > C—:—and put A, = Z (ai — %) . Cay-
1 i-1
k
Clearly h,, is simple too. If Q, = {z; 2 ¢ U 4, f,(x) > h,(%)}, then
i-1

k
Q’negltt’ QnCQn+1—>UAz
i-1
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Thus
< 1
angJCQ".fngJ(z (ai”“"—).CQ”nAi)z
1 m

k k
1 1
= i21 (ai - E) (@A) A, izl (a’i - ;;L) -u(4y) = Jhy, .
It follows that lim Jf, = lim J#&,. On the other hand

N—c0 —>00

lim Jh,, = lim >, (af — E) Ay = 2 a; . w(A;) = Jh.
11 i-1

Mm—> 0

Thus lim Jf, = Jh and, since Jf, < Jh for every n, we get Jf, # Jh.

6.3. Definition. Let J be defined by (6.2.1). We define, for every f ¢ 2.J, the
weak integral of f with respect to u by the relation

[fdu=Jf. (6.3.1)
6.4. Theorem. The weak integral [ .du is a non negative, linear, continuous
from below functional defined on m’ Du.
Proof. The Theorem is a consequence of Lemmas 6.2, 5.7 and 5.5.
6.5. Theorem. Let J be a non negative, linear and from below continuous
functional defined on a basic system 2.J. Let u* be -induced by J, let p = g, ;.
Then y is a measure and
[odu v (6.5.1)
If J is finite, then u is the unique measure on k2J satisfying (6.5.1).

Proof. Putting 2J = % and using the notation of Lemma 4.3 we obtain
k2J = sF. Let S be the system of all u*-measurable sets. From Theorem 5.13
it follows that F C S; as S is a o-ring, we have k2J = sF C S. Hence and from
Theorem 5.12 it follows that u is a measure. Using (5.13.1) we obtain

A e F= pu(d) = p*A4) = Je, . (6.5.2)
Now let fe 2J. For every ac E, the set M, = {x; f(x) > a} belongs to
F, ¢y, € 2J (Lemma 4.3) and Jc,, = u(M,) ((6.5.2)).
Put

@
’ In = A Ium -
m=1

We have cun € 2J and, for 2.J is a basic system, g,,, € 2J, g, € 2J ((5.7.1),

0

(5.7.5)). Further g, = Z L . ¢xn and, from the linearity and continuity from

m=1
below of J and of [ . du (Lemmas 5.5 and 5.7),
0 1 20
2, #(Mm) = [g, dpe .

jgn = Z jCM

1
— - —
n m=1 a n
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Again, since gy 7 f, Jf = lim Jg = lim [g,» du = [f du. The unicity of the
k—o k—o0

measure y in the case J is finite follows easily from Theorem 5.16. Indeed, if
w and » are measures defined on k2J and [fdu = [fdv = Jf for every
fe2J, then [ .du = [ .dv; hence it follows that u = ».

6.6. Definition. We say that a measure p is induced by a functional J, if J is
non negative, linear and continuous from below, if 2J is a basic system,
Iu =k2J and [.du »J.

6.7. Theorem. Let u be a measure, let {f,}x o C-miPu, A € Du, u(4) finite,
gemiDu, [gdu finite. Then

fu-Co—fo.c, uniformly = [f,.c,du— [fo.c, du; (6.7.1)
fngg,n:1,2,...,fn—>f0:>ffnd/4—>ff0dﬂ. (6.7.2)

Proof. The Theorem is a consequence of the linearity and continuity from
below of [.du .

6.8. Definition. A functional J is called o-finite, if for every fe 2J there

exists such a sequence {f,}n ; C- 2J that Jf, are finite and f, 7 f.

6.9. Theorem. Let 1 be @ measure. Then the following three propositions are
mautually equivalent:

w118 o-finite (6.9.1)
[ du is o-finite , (6.9.2)
u is induced by a finite functional . (6.9.3)

Proof. Let J be a finite functional inducing u, let 4 ¢ Zu. Then u(4) =
=inf E,, B, + ¢, where E, is defined by (5.8.1) (see Theorems 5.8 and 6.5).

Thus there exists a non-decreasing sequence {g,}» 1 C.- 2J such that V g, =
n=1

=c, If we put B, = An{z;g,(x) > %}, then Y B, = 4. For, if xe 4,
n-1
then there exists an index n, such that g, (x) > %; thus ¢ B,. Now u(B,)

are finite. Indeed,
#(By) = p({@; gu(@) > 3}) = [2 . gudu = 2. Jg, .
We have proved (6.9.3) = (6.9.1).

Let u be o-finite, let f e m* Zu; then there exists a sequence of sets B, in
Zu the measure of which is finite and the union of which is equal to
{z; f(x) > 0}. Then the sequence f, = n A f.c, has the properties required
in Definition 6.8. Thus [ . du is o-finite and (6.9.1) = (6.9.2).

If [.du is o-finite and if & is the system of all such f e m, Dy that [fdu is
finite, then % is a basic system and [[ . du], induces u. Thus (6.9.2) = (6.9.3).
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7. The strong measure

7.1. Notation. If §; and S, are o-rings, then we denote
5,08, ={A X B;AcS,,BeS,}, §,xS5,=5(5,08,).
If 4 is a measure, V a o-ring, we denote V, = Zu x V.

7.2. Notation. If f is a function, Q is a set, then by f° we denote the function
defined on 2f X Q by the relation °(x, w) = f(x) for every z ¢« Zf, w € Q.

Similarly by “f we denote the function defined on Q X Zf and such that
fw, x) = f(z) for every w ¢ Q, x ¢ Df.

7.3. Remark. The purpose of the remark is to motivate the definitions of
this section.

In the preceding section we have defined the weak integral for functions,
the values of which are real numbers. But since the values of our measure
are random variables, it seems to be natural to define an integral for functions,
the values of which are random variables, too. Unfortunately this way leads
to an integral with little useful properties, as we shall see in (7.17). Thus we
shall proceed in a somewhat different way, which will be shown to be more
successful.

To fix the ideas, let 12 be a measure, Zu C n*(V, ¥); we shall try to extend
the domain of the weak integral to the class M with the following properties:
1. The elements of M are functions defined on Y Zu with values in m*V. (If
feM xzelUQu,ve UV, then fx em:’iV, fave Ei‘.) 2. M contains all non negative
(2 1y measurable real-valued functions, the values of which are regarded as
constant functions. (We note that constant functions are (¥) measurable for
Vis a c-algebra.) 3. M, CM; if feM, ge M, f — g has @ meaning, then
(f—9) eM 4. gem*V, f e M, & is a function, Zh = U Zu, ZhC m*V, hav =
=gv.fev=rheM. 5 M is the smallest class satisfying the conditions al-
ready listed.

The conditions 1., 2., 3. and 5. have an obvious meaning. The condition 4. cor-
responds to the fact that, if S is a o-ring, then fem*S, ge B* =g .fem’S.

Now it is easy to see that instead of considering a function f such that
2f = U 2 and Zf C m¥V it is possible and less complicated to consider the

real valued function f defined on U Zu X UV and satisfying the relation

f~(x, v) = fev. In this language it is easy to see that the class IM (or, more
precisely, the image of M) is equal to the class m* (Zu x V).

Now in the extension of the domain of the weak integral (which may be
supposed to be m*(Zux{UV,0}) to mi(ZuxV), the following homo-
geneity condition will be essential. If g e m*V and f e m* (Zu x V), X = U 2y,
Q=UYV, then J(*g.f) =g .Jf, where J denotes the integral and g is the
random variable containing g. Thus starting with the definition Jc,, , = u(4)
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for A € Zu, we have by the homogeneity condition Jc,,, = J%c,.c,, o0 =
= 5, . #(4) and the further extension from c(Zu o V), if it is possible, is de-
termined by additivity and continuity.

Perhaps it is convenient to say something else about the meaning of the
homogeneity condition. If we notice that in the analogy between our measure
and the real measure the random variables and (V) measurable functions
play the role of the real numbers, we may regard our homogeneity condition
as analogical to the usual homogeneity.

Now we are not able to prove in general the existence of an integral with the
properties mentioned above. Moreover, the g-algebra Vin the above considera-
tionsis not uniquely determined by the measure x (and it would be unreasonable
to put V = q%u). Thus if x is given, we shall consider the extension of the
weak integral to the system m*(Zu x W), where W is a s-algebra of subsets
of Q = U qZu. Let us rewrite the homogeneity condition: if f e m* (Zu x W),
gem*W, then J(*¢.f) =g .h, where g is the random variable containing
g. However, we must define what it means ‘“the random variable containing
9" and what is the meaning of the multiplication g . Jf. This can be made, if
we require that there exists a measurable space (V, V,) such that 2.J C n(V, V)
and such that WC V. Then we can define g by the relation g eg en®(V, V,),
which has a meaning, since g ¢ W C V. Further we can define the multiplication
g . Jf as the multiplication in n*(V, V,). We note that V, = q,%u, since the
hereditary o-ring V, is determined by the random variable JO = x(9). Thus
the relation g € g e n™(V, V,) for a function g ¢ W does not depend on the parti-
cular choice of the measurable space (V, V,) (i. e., on the particular choice of
the o-algebra V), since it holds if and only if g is the class of all functions
measurable {s(WUV,)}, which are (V,) equivalent with g. If ¢ is finite then
g=1{9+ 60;0cu®)}

7.4. Definition. A functional J is called a W-integral with respect to a measure
u, it W is a o-algebra, UW = U qZu, J is non negative, linear, continuous
from below, defined on m* W, and if the following conditions hold (we denote
X =U%u 2=UW):

There exists a measurable space (V, V) such that ZJ C n* (V, V,), WC V; (7.4.1)

AeDu=Jc = u(d); (7.4.2)
gemiW, gegen*(V,V))=J("g.f)=g.Jf. (7.4.3)

f'smjw‘u,

7.5. Remark. If W= {0, U qZu}, Jf°¥ = [fdu for f em’ Dy, then J is
the unique W-integral with respect to u.

Further we note that, if W is a o-algebra, UW = U qZ%u, WC Z and a
Z-integral with respect to the measure u exists, then a W-integral with respect
to u exists, too. For, if J is a Z-integral, then Jm*w, is a W-intégral.
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Finally we remark that if J is a W-integral with respect to a o-finite measure
u, if (Z, Z,)) is a measurable space such that Zu C n*(Z, Z;) and W C Z, then
#J Cn%(Z, Z,). This can be proved as follows. Let ./ denote the system
of all such functions f which belong to 2J and for which Jf e n*(Z, Z).
Then from (7.4.2) and (7.4.3) it follows that o/ D <[Zu o W] D c[S o W], where
S is the system of all such sets 4 ¢ Zu for which u(4) is finite. An appli-
cation of Lemma 4.2 gives the desired result: ./ = m¥s[S o W] = m*[Zu x
xW] = 2J.

7.6. Theorem. If u is a o-finite measure, W is a c-algebra, then there exists at
most one W-integral with respect to . s

Proof. Let J, and J, be two W-integrals with respect to u; denote Q =
= UW. Let S be the system of all such sets A ¢ Zu for which u(4) is finite.
Let AeS, BeW. Then Jic,, ,=y,-J:¢ = x5 u(4d) =Jy,,, where
25 = {65 + 050 € u(0)}.

Thus J, and J, agree and are finite on c[S o W].

But S o W is a pseudolattice, m*ke[S o W] = 2J, = 2J,. From Theorem
5.16 it follows that J, = J,.

7.7 Definition. 1 is a strong measure, if there exists a measurable space
(V,V,) such that Zu C n*(V,V,) and such that there exists a V-integral with
respect to u. ’

Remark. From Remark 7.5 it follows that p is strong if and only if a
qZu-integral with respect to u exists.

Remark. The rest of this section is devoted to give sufficient conditions
for a measure to be strong. We do not know if there exists a measure which
is not strong.

7.8. Definition.%) A system «/ C f(X), where X is a set, has the property LK,

if
Um0 C- A, fu /1 fo= sup lfn(x) - fo(x)l - 0.
XeX

‘A o-ring § is said to be an LK-¢-ring, if there exists a basic system 7
with the property LK such that o C f (U S) and ke/ = §.

A measure y is an LK-measure, if there exists a basic system &/ C f (U Zu)
with the property LK such that ke/ = Zyu and f e o/ = [f dpu is finite.

7.9. Lemma. Let u be a measure, W a c-algebra, Zu C n*(V,V,), WCV, X =
= U%u, 2 =UV=UW. Suppose there exists a non negative, finite, linear
and from below continuous functional J defined on such a basic system 2.J that
k2J = Dpux W. Let G and % be basic systems,

W=k%, Qu=k%. (7.9.1)

4) See also Remark 7.16.
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Let
ge9, he#, gegenV,V)="g. 0% 2], J[*¢ .11 =g. [hdu. (7.9.2)

Then u 1s o-finite and the (unique) W-integral with respect to p exists.

Proof. From Theorems 6.5 and 6.9 it follows that there exists a o-finite
measure » defined on Zu xW such that [ .dv - J. The weak integral [ . dv is
defined on m* (Zu x W) = m’ W,; we shall prove that it is the W-integral
with respect to x. The conditions to be verified are contained in Definition
(7.4); the only nontrivial among them are (7.4.2) and (7.4.3).

For every g e m* W let g denote the random variable in n7 (¥, V,) containing
g. Let us denote, for g em W, hem* 7y

Fi(g,h) =g .[hdu, Fyg, h)= ["g.h"dv. (7.9.3)
(We note that *g.A” is (Zu x W) measurable although *g may not be so.)
Put B, =9, B, =%, #, = m_W. The functionals F,(g, .), F,(., k) are non
negative, linear and from below continuous; F,, F, are defined on m’ k%, x
X m*k#,. We shall show that F, is finite on %, X %&,. Let he B, = A.
Since W is a c-algebra and k¥ = W, we can choose a sequence g, ¢ 4 such
that @ = U M,, where M, = {w; g,(w) > 0}. According to (7.9.2) the in-

n=1

tegrals J[*g, . A1 = ¢, [k du are finite, which yields the finiteness of [A du.
Hence F, is finite on B, x #,. Now I, agree with ¥, on #, X %, (see (7.9.2)).
From Theorem 5.17 it follows that F, = F,. In particular, we get, for every
A e Du,
wA) = Fy(1,¢,) = Fy(1,¢,) = [ci dv; (7.9.3)

thus (7.4.2) is satisfied.

Now,ifgem W, A e Zi, Be W, then
g- fc.«i.xﬂd’u =g. f.‘.cx C? dv =g . Fycsc,) =g . Filca c,) = g '»63 'chd/“:

= Fl(g'cch) = F2(g 'CI;:CA) = fx(g'cﬁ) 'Cfdv = fxg.()‘_led’V .

Now we beg the reader to forget the former definitions of ¥, F,, %,, %#,,

%,. We define, for every gem W, femi W,

Fit,9) =g [fdv, Fyf.9)= [Tg.fdv.

We have proved that F (g, f) = Fy(g, f) for gem W, fe c[Zn o W]. Denote
by C the pseudolattice of all sets €' in Zu o W for which »(C) is finite. As » is
o-finite, sC = V,. Again the assumptions of Theorem 5.17 are satisfied, if
we put B, =B, =m W, #,=cC. Thus F, = F,, i. e., (7.4.3) is satisfied.
Thus [ . dv is the W-integral with respect to .

The o-finiteness of u follows from the o-finiteness of » and from (7.9.3). The
unicity of the W-integral follows from the o-finiteness of ¢ and from Theo-
rem 7.6.
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7.10. Theorem. Let u be a o-finite measure, let Zu C n*(V, V,) and let W be
an LK-o-algebra, WC VYV, UY=UW = Q.

Then the W-integral with respect to the measure u exists.

Proof. Denote X = U Du, let 9 be a basic system with the property LK,
such that k¥ = W. Let further B = {4; A ¢« u, u(4) finite} and let # be the
system of all B-simple functions.

If A,eB, ¢,¢9, gleﬁlen(v v,) (i=12,.. n), put
Jz g;.C Zgz w(dy) . (7.10.1)

From the additivity of p it follows that the relations

m

St =3h;.c2, he¥, BieB, hiech;en(V,V,)
-1

i-1
imply
Z u(A;) = Z hi - p(By) 5
thus J is unambiguously defined. Since in (7.10.1) we may always suppose

that the sets A, are disjoints, it is easy to see, that 2J is a basic system.
Further obviously kZJ = Zu xW; k% = Du;

ge9, gegenV,V,), feB="9.{°c2J, J'g.{?=yg.[fdy

J is non negative, finite, linear. Thus, if J is continuous from below, then
all the assumptions of Lemma 7.9 are satisfied and the W/ . du exists.

We shall prove the continuity from below of J.

Let f; /' fo {f:}2.0 C- 2J. Put h,, — [0 _ _7%] _

+
We have {f,(x, .)};° o C- ¥ for every z ¢ X and ¢ has the property LK. It
follows that for every x e X and m > 0 there exists an index n such that

fal, ) = folz, ) — % and hence f,(z, .) = (fo(x, ) — ;nl—) VO=h,.).

Fix an m and denote @, = {z; x ¢ X, f,(, .) = h,(z, .)}. Clearly @, C @,.1,
U @, = U Du. Since f, e 2J, we can write

3
=23, .c, A;eB, A;NA,=0fori+j, g%,

i1
E
Q
and % 2 ( E)Jrc"' .
1
% is a basic system and thus (gj — ;ﬁ) =g; — (gj A %) € 9 . Consequently
+
k

kX
1
Jf, = Jh,, . c?ﬂ = Jz (g,» — ;ﬁ) . cfmqn Z (_qJ — _) uw(d;NQ,)
=1 +
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and thus

. A | ko
lim Jf, = Zl (gj — %) - pu(4;) ﬂ:anIgj Cu(Ay) = Jfy .

n—oo J=
Since Jf, < Jf, we get Jf, 7 Jf,.
7.11. Theorem. Let y be an LK-measure, Zu C n* (V, V,). Then the V-integral
with respect to p exists; thus u is a strong measure. .

Proof. Let # be a basic system with the property LK, k# = Qu, f e # =
= [fdp is finite. Denote F = [[ . du]s.

Put J > ¢, . [f = Zx,, Ff; for B;eV, f,e® (1=1,2,...,n).
-1

Let % be the system of all V-simple functions. Clearly 2.J is a basic system,
k2J =V, (7.9.1) and (7.9.2) hold. J is non negative, finite and linear. We

”

shall prove the continuity from below of J.
Let {f}7 o C-2J, f: / fo

Put &, = (fo — E)J Q. = {w; fu(., ®) = h,(., ©)}. As in the preceding
proof, we have @, C @,., C ..., U@, = UV
If f, = i ey, - g7, where
o B;eV, B,NB,=¢ for¢ +74, g;¢%#,

Q

2 1
then A, = Z ‘e, (gj — —) and
i=1

+

' 1
Ifp = Jhy, . *co, = J Z €8N0, - ( ) Z 100, - (9:‘ — %) .
N

1\2
Thus lim Jf, = Z 15 - (g]- — —) A Z 25 - Fg; = Jf, . Finally Jf, < Jf,
+ ji-1

I m

implies that Jf, / J fo- Thus the conditions of Lemma 7.9 are satisfied for
W = V and the V-integral with respect to u exists.

7.12. Definition. J is called a degenerate functional if:
(7.12.1) J is a non negative, linear and from below continuous functional,
(7.12.2) there exists a ce £, such that fe 2J, f < 1= Jf <o,
(7.12.3) there exists a transformation Z from 22J into Uq#.J such that

0=gegeR], [eDI=[.9Ze¢DJ, J(f.9Z2)=9g.Jf.

7.13. Lemma. If u is a measure induced by a degenerate functional J, then

the weak integral [ . du is degenerate and p 1s finite.

Proof. Without loss of generality we may suppose that the functional
J is finite. (In the contrary case we may putJ, = J ,, where .# is the system
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of all bounded functions in 2J. Clearly®) # = 2J, is a basic system and J,
induces y, since, as it is easy to see, J = J,. From (7.12.2) it follows that J,, is
finite.)

Let Z be the transformation satisfying (7.12.3). We shall prové that

0=geg= [hdu, hemiPu, fem*Iu=
=>f.gZemiQu, g.[fdu= [gZ . fdu.
Let 7 e 2J and let /" denote the system of all such f e m* 2y, for which (7.13.1)
holds (the function % being fixed). We have «/"*C 2J, 2 C o, A" C o,
A" (2J) C . Lemma 4.4 applied, we get o/ Dm’* Zu and thus (7. 13 1) holds
for every he 2J, f em* Du.

Let % be the system of all fem* 2y such that [fdyu is finite. Let fe % and
let €7 be the system of all such A that (7.13.1) holds for the fixed function f.
We have 47D 2J; since g . [fdu is finite for every geZJ, we see that
€ (2J) C 67; the inclusions €7, C €7, €/, C ¢’ are obvious. A new application
of Lemma 4.4 gives 47 D m* Zp.

(7.13.1)

Thus (7.13.1) holds for every h e m*Zu, fe #. From the continuity from
below and from the o-finiteness of [.du it follows that (7.13.1) holds for every
f and h.

Thus it remains to prove the existence of a ¢ ¢ £, such that
fem Zu, [=1= [fdu=c. (7.13.2)
From the assumptions it follows that there exists a ¢ € £, such that (7.13.2)
holds for every f e 2J. Putting 2J = % and using the notation of Lemma 4.3,

we see that 4 € F= u(4) < c. For there exists a sequence {f,}n.1C- 2J,
fo 7/ ¢,. Thus f, <1, Jf, = ¢, u(d) =lim [f,du = lim Jf, < c. We have

N—so0 n—sc0

sF = k2J = Zu and F is a lattice. Let B ¢ Zu. Thus there exists a sequence
{C.}%_1 C. Fsuch that U C, DB ([4], § 5, Theorem D). As Fis a lattice, U C,eF

for every m =1, 2, ... a,nd thus

u(B>§M(610)~llmﬂ<u0)<c

m—o0 n

Thus B e 9p = u(B) < ¢ and hence
fem, Zu, [<1= [fdu=c,
which accomplishes the proof.
7.14. Lemma. Let p be a measure induced by a degenerate functional,
v, V,) = (q%u. q2p) - (7.14.1)

5) From Definition 6.6 it follows that 2.J is a basic system.
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Then there exists a transformation Z from U Zu into YV such that
0 égeﬁenj(v, Vo), femj@,u:

P 2
=f.9Zem*Du, [f.gZdp=yg. [fdu. (7.14.2)

Proof. From the preceding Lemma it follows that [ . du is degenerate. Thus
there exists a transformation Z from U Zu into U qZu = U V such that
0 §g€§eﬂ[f Ldud, fem*,.r@lu?
= f.gZemiZy, [f.gZdu=g. [fdu.
Now let £ be the system of all bounded functions measurable (2u). Put
Jf = [f. du — [f_du for every f e Z; this is possible because there exists

(for [.du is degenerate) such a constant ce B, that fem, Pu, f<1=
= [fdu = ¢; obviously

feZ, [f|£1=Jf = 2.

(7.14.3)

From there we proceed by a method essentially due to Moy [8]. Let us denote
by &, the system of all bounded functions measurable (V). Let % be the system
of all such g ¢ &, for which

heZ, gegenV,V)=>h.gZe¥, Jh.gZ)=g.Jh.
Denoting Z = {g; 0 =< g eg e Z[ . du]}, we obtain, according to (7.14.3),
COPNY,. (7.14.4)
Clearly 1 €% and

{993 CC =9, +9,¢€, 91— 9s¢€, ¢,.9:¢%, (7.14.5)
the last inclusion being a consequence of
Jh . (9.9 Z) =J(h .9, Z . 9,Z) = g, . T (h .9, Z) = g, .92 - T .
Thus if A is a polynomial, g ¢ €, then Ag ¢ ¥%.
Let {gu}n-1C €, |g.| <aforn=1,2,..,ac¢E,, g,—g. Thenge%.
For if » € Z, then, by assumption, % .¢,Z e &; thus h.9Z em*Zyu and

h .gZ e & because |h.9Z| < alh| e £. Further from |k . g,Z| < a . |h| and from
Theorem 6.7 it follows that J(h .gZ) = lim J(h .g,Z) = limg, .Jh =g . Jh,

where g, € g,,, ¢ € g. Similarly we can prove, using (7.14.3), that if {g,}7 , C- %,
gn — ¢ uniformly on UV, then g ¢ %.

Let @ be a continuous real-valued function defined on E, let g € €; we shall
prove @g ¢ €. Indeed, ¢ is bounded and thus %y is contained in a finite interval.
Thus there exists a sequence of polynomials A, such that 4,9 — @g uniformly
on UV, what gives @g ¢ €; thus if g € €, then |g| ¢ . Hence and from (7.14.5)
it follows that # = {g; g € €; g = 0} is a basic system. From (7.14.4) it follows
thatk# = qZu = V.
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Let f e m, Py and let o7 denote the system of all such g e m*V that f.gZ ¢
em*Pu. We have o DB, oA, , C A, A C A, A4 _(#)C . From Lemma
4.4 it follows that & Dm*V. Thus f.gZ emi Dy for every f em,Zu, gem’V
and, obviously, for every f e m¥Zu, g e m*V, too.

Now let #, be the system of all bounded functions f em, Py, let #, = 4%,
B, =m. V. Put F(g,f) =g . [fdu, Fyg,{) = [f.9Z du for every | em* Dy,
0 =<gegeni(V,V,). Then all the assumptions of Theorem 5.17 are satisfied
and thus F, = F,, which completes the proof of (7.14.2).

7.15. Theorem. Every measure p induced by a degenerate functional is sirong.

Proof. Let (V,V,) and Z satisfy (7.14.1) and (7.14.2). Let us denote X =
=U%u, 9=mV, Q= V. Let Z be the system of all Du-simple functions.
For

0=g;eg;en,(V,Vy), [ &

we put
I3 00 =290 [lidn = 392 A, (7.15.1)

where the last equality follows from the preceding Lemma.

Clearly (7.9.1) and (7.9.2) hold, J is a non negative, finite and linear function-
al, 2J is a basic system, k2J = Qu x V. The only non trivial property is
the continuity from below. Thus let

u, _
]li:.zxgji-fﬁ" fiieB, 0=g;ecgen.(V, V), f:f

ji=1
and put fz = z 952 i v e U QDp, then [z, Zx]e UDu X UV and thus
i-1

filw) = fu(w, Zw) 7 fyla, Zo) = jo(a) -
Thus f~z A ]‘~0. Further from (7.15.1) it follows that

Tho= Jfidp 7 flo A = Jfo -
J is continuous from below, and the application of Lemma 7.9 yields, if we
put W =V, the desired result: ¢ is strong.

7.16. Remark. Although we do not know whether every measure is strong,
Theorems 7.10, 7.11, and 7.15 give sufficient conditions for a measure to be
strong, which are often satisfied. For example, it is easy to see that the o-ring
of all Borel (or Baire) sets in a locally compact Hausdorff space is a LK-o-ring.

7.17. Remark. We keep the promise from (7.1) concerning the possibility
of defining the integral for functions the values of which are random variables.
Let £ be the Lebesgue measure on (0, 1), let (V,V,) be induced by &, let
w(d) = g, en(V,V,) for every 4 e Qu = V. Let M be a system of functions
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defined on (0, 1) the values of which are elements of n(V, V,). Let I contain

all functions of the form > «;.c,, where «;en.(V,Vy), 4,¢ Du. Let J be
1
a linear functional on M, let

AePDu, xen (V,V)=J(x.c,) =«.ud).
Let g, = > y(u 1) .C(i_l z) . Then Jyg, = 1 for every n = 1, 2, ..., although
i=1 n’n

n’'n

go» 0 € M ¢) and the functional J is not continuous from below.

8. The W-and the WI-integral

8.1. Conventions. In this section u denotes always a o-finite measure,
(V,V,) a measurable space such that Zu C n*(V,V,). We shall suppose that
W is such a o-algebra that W C V and that the (unique, according to Theorem
7.6 and the assumed o-finiteness of u) W-integral with respect to u exists:
we shall denote it by W/ . du. If 4 is a strong measure, then there exists a o-al-
gebra Z such that Zu C n*(Z, V) and that Z[ . du exists; in this case we shall
assume the c-algebra V has been chosen is such a way that V[ . du exists, too.
Finally we denote X = UY%pr and Q =UW=UV.

8.2. Definition. Let us write (for {f,, f,} C- f£ (U W,))) f, = f, [, W], if and only
if there exist functions g;emiW, (1 = 1, 2) such that g, < f, < g, (j = 1, 2)
and W(g, du = W/g, du.

Let us define i(u, W) = {f; f = f [, WI}.

8.3. Theorem. Let A = i(u, W). Then M,, C M, M C M, #_(f (UW,)C
CcCA.

Proof. Obvious.

8.4. Definition. The Wi-integral with respect to p is defined on i(u, W) by
means of the relation

f=gluWl, gemiW,=> WIffdu= W/[gdu.
8.5. Theorem. The WIi-integral with respect to p ts mon negative, W-linear

and continuous from below.
Proof. Obvious.

8.6. Theorem. Let v be a real-valued function, v = Du X Q. For every
w e Qletv(.,w) be a measure. For every A e Du let

(4, .)eu(d). (8.6.1)
Then: If f em*W,, then
h(w) = [f(., w) d¥(., ®) (8.6.2)

%) I.e., for every x e (0, 1), gon (x) “{ 0 in n(V, V,).
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exists for every w € 2 and
heW([fdu. (8.6.3)

If f e i(u, W), then there exists a set V eV, such that for every w e 2 — V the
integral

hw) = [f(., w)dv(., ®)7) (8.6.4)

exists and, defining b on V in such @ way that h ¢ m*V (this can be done, e. g.,
by putting h(x) = 0 for x e V), we have

heWI[fdu. (8.6.5)

Proof. We shall prove the first part of the Theorem. We note that, for
every fem*W,, f(., w) is (2u) measurable for every o € 2 and h is measur-
able (V). Let us denote by J,f the random variable in n’ (V V,) containing % and
let us write J,f = W/[fdu.

Let S be the system of all sets 4 € Dy, for which u(4) is finite.

Let A¢S, BeW, f=c,, ,. Then h(w) = cy(w) .v(4, w) and, according to
(8.6.1), Jif = yp.u(4) =J,f. J; and J, agree and are finite on c(SoV).

From the o-finiteness of u it follows that ke(SoV) = ZuxV. Lemma 5.16
gives J; = J,; thus the first assertion of the Theorem is proved.

Now let f € i(u, W). Thus there exist two functions {g,, g.} C- mIW,, such that
g =} =g, and that W [g, du = W [g, du. We define

hiw) = [g:(.,0)dr(.,0) (=1,2).

We have {hy, h,} C- W [g, du. Thus there exists a set V ¢ ¥, such that &, (0) =

= h,(w) for every w € 2 — V. For every o e 2 we have gl(., w) Zfl.,0) <
< ¢,(., w), which with the preceding equality yields the (2v(., w)) measur-
ability of f(., w) for every m e 2 — V. But h(w) = [f(., w) dv(., ) = hy(w)
for every we 2 — V; hence we deduce easily the second assertion of the
Theorem.

8.7. Theorem. Lef 1o, py, pn, be o-finite measures, Du; = Du, X Du,. Let
UqZu; = 2, U%u; = X, (¢ =0,1,2) and

Q2us C G2ty » Qi = Qg -°) (8.7.1)
Let the W-integral with respect to u; (1 = 0, 1, 2) exist, let W D qZpu,. Let
A;eDp;, giep(dy) (6=1,2)=g;.9;€u(4, X 4,) . (8.7.2)

) Of course, »(., w) is the completion of »(., ).

8) This asymmetry has the following reason. The weakness of the condition (8.7.4) (see
Remark 8.8) is closely connected with the o-ring qo%pu,. If, for example, q.Zu, = {0},
then (8.7.4) determines in a unique way the function hy. Therefore we require qyZu, C
C qoZu, instead of q,Zu, = quZu,. On the other hand such a weakened condition for
1, leads to complications and seems to us to be superfluous.
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Let f e miwﬂo.
Then there exists a

hyemiW, (8.7.3)
such that
@y e Xy =y, ) e o)) = W [f(21, % ) duy s (8.7.4)
W [hydu, = W [fdy, (8.7.5)
and
he m’:_W”1 s

Iy, 25, 0) = h(@y, ©) = W [h . hydpy, = W [h* | f du, . (8.7.6)

Proof. Let us denote, for every g e miq%,u,i, by n,(g9) the random variable
in n¥(qZu;, ,%u;) containing g. Further denote

S, = {4; A ¢ Du,, u,(A) is finite}, B = c[S; 05,0 W].

Now let o7 be the system of all f for which the assertion of.the Theorem
holds. It is to prove that &/ = m% W, ; according to Lemma 4.2 it suffices to
prove that

1. oA, CH, A CH, 2. A_(B)CA, 3. 4DA.

1. Let {f,}7 1 C- /. Obviously i f: = f implies 3 xs (%)) = xg(x,) for every
x, € X,. Let, for every 1 = 1, 2, li? the functions';»; satisfy the assertions of
the Theorem. Then, if we put 4, = i by, we have hy(x,, .) € x4(z,) for every
x; € X;, and (8.7.4) holds. (8.7.3) isholbvious. Let h emiW, or k= 1; then,
by assumption, W [k . h; du, = W [h* . f, du, and thus

W (B By duy — flwm oy, dppy = ﬁlwyh* i due = W [R* . f dpy .

Hence (8.7.5) and (8.7.6) are satisfied. Thus f ¢ &7, i. e., we have proved that
o, C . The relation o/, C &/ can be proved in an analogous way.

2. Let {f;, fo} C- o, fo € B, f, = fs = [y, let hy, h;, satisfy (8.7.3) to (8.7.6).
Let
M, = {[2;, o]; [#, 0] € X; X 2, by (2, 0) = + o0},
M, = {[z,, 0]; [z, w] e X; X 2 —M,, h;(,0)— hy (2, 0) < 0} .
We note that
W [ey, - by duy = ch;k,i.fi duy = W [fo duy -

where the last integral is finite according to (8.7.2). Hence it follows, in the
first place, that

W fcy, du, =0.
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For in the contrary case the integral n,(+ o). W fc, du, = W, [, . Car, dpiy
is infinite, which is impossible.
In the second place, according to (8.7.6),

n,(0) = no(0) = W [ei . [fo — fildue = W feir . fodug — W [c; . fy duy =
=W ey, by duy — W [ey, by duy = — W [ey . [hy — by ] dpy < m,(0) .
Hence
W fc, du, <Tm W [n.cy, .[h, — hyldp, =0

and thus again W ¢, du, = 0.

We conclude that, if two functions in m%iW, agree on 4 = X, x Q —
— (M, U M,), then they have the same W-integral with respect to u,. Put
by _; =c,.hy —c, . h;. Clearly h;_, emiW,. Further the set P(z,) of
all such w € 2, for which [x,, w] e M, U M,, belongs to q,%Zu, according to the
relations

wffl(xla *,.) duy, = wffz(xla *, ) duy, = wffo(mn *, .) duy e n(W, q,Zu,) .
But hence it follows that A, _;(x,, .) e a; _(x,) for every wx, ¢ X,. Thus
h;, _; satisfies the conditions (8.7.3) and (8.7.4).

Finally let & = 1 or h e m*¥ 2yu,. Then

W [h.hy_; du, =LEmW [(n AR). By _; du, =

Nn—>0

—1lim [W [(n AR).c, .k, duy — W [(nAR).c, . by du] =

n—w

—lim [W [(n AR) . Fy duy — W [(R AR . Fy dpy] =
— Lim [W [(n AR)* . fydpy — W [(n AR)* . f, dpg] =

Nn—w

:}Limwf(n/\k)*-[fz"‘fﬂdl‘o = wfh*-[fz_fl]dﬂo

—>00

(the integrals W [(n A1) . c, . by dpu, are finite, since W [h; du, is so). Thus
Iy, satisfies (8.7.5) and (8.7.6) and f, — f, ¢ A. Thus &/_(%) C /.

3. Let f = ¢, ,a,un A1€81, Ay S,, Be W. We shall show that the function
by, defined by h; = c, 5. "¢, 9 € ps(45), g = 0, satisfies the conditions (8.7.3)
to (8.7.6). First, since g e q%Zu, C W, we have h;e W, and (8.7.3) holds. Further

os(x;) = wch‘(xl) «Cuyxn du, = 0‘11(‘751) cn(Cy) - pa(4y) 5
thus A,(z,, .) € &;(x,) and (8.7.4) holds.

We shall prove (8.7.6). Let us define, for every h e miW,,

Jh =W [h.h;dp,, J.h=W/[h*. fdy,.
If h=cyuy MeS,, NeW, then

Jih =W e, nmepam - 79 Ay = ny(9) - ma(Csnn) - (410 M)
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From (8.7.2) and from the assumption q,%Zu, = q,%Zu, it follows that n,(g) -
(AN M) = (4,0 M) X A,). Since n,y(Cxn5) = M9(Csnx), We obtain

Jh = no(cxnzv) (A, 0 M) X Az) = wfc(A,ﬂM)anx(BmN) dpy = Jh -
Thus J, and J, agree and are finite on c[S; o W]. From Theorem 5.16 it fol-
lows that J; = J, and (8.7.6) is satisfied. In particular, if ¥ = 4,, N = B,
we have b . h; = h;, h* . f = f, and thus (8.7.5) holds, too.

We have f e/ and thus & D Z.

8.8. Remark. Theorem 8.7 is much weaker then the usual Fubini Theorem,
for the relation (8.7.4) does not generally determine the integral W [k, du,.

We shall illustrate the situation by an example.

Let £ be the Lebesgue measure on (0, 1), let (W, W,) be induced by &, let
n(g) denote, for every gem*W, the random variable in n*(W, W,) which
contains g.

Let Qu, =W and 4 € Du, = u,(4) = n(c,), let u, be defined on {@, {a}},
ps({a}) = (1), pa(9) = n(0). Then Du, x D, — {A X {a}, A e Dp,} and we
may define p, by the relation u,(4 X {a}) = u,(4). The assumptions of
Theorem 8.7 are satisfied.

Let f = 0. Then «,(z,) = n(0) for every =, ¢ X; = (0, 1). Choose %(x,, 0) =
= ¢(,)(x;) for every x; € X;, w € (0,1). Then h(x,, .) € ay(x,) for every z; ¢ X,
but®) W [k, du, = n(1) + W [f du, = n(0).

8.9. Theorem. Let u be a strong measure and let & be a pseudoprobability
mducing (V, V,).

Then there exists one and only one real measure v defined on DuxV such that

A X BeQuoV=vA x B)= [u(d)dé. (8.9.1)
B
The measure v satisfies the following conditions:
i(u, V) = m* Dy (8.9.2)
and
femi%y, BeV= [(VI[fdu)dé= [ fdv, (8.9.3)
B XxB
i. e,
_ _ do,
fem*2y, d(B) = [ fdv forevery BeV=VI[fdu= a€E (8.9.4)
X xB

Proof. If we define », on r(Z2u oV) by means of the relation (8.9.1) and
by the additivity, then v, is a real-valued, non negative and additive set
function. If

23
D} = {l{ A;; X Bij}1C-r(QuoV),
e
9) See Remark 7.17.
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where (4,; X Bi;) N (A X By) = 0 for j == k, is a non decreasing sequence of
sets, the union of which is equal to D e r(Zu o V), then

(D) =3 [1(A) A = [ > 75, - p(Ay) s =

= [[V [c,, du] d& 7 [[V [c, du] dé = »y(D),
for ¢, 7 c, implies V [c, du 7V [c, du. Thus v, is o-additive; we shall prove
that it is o-finite, too. It suffices to prove that for every A ¢ Qu there exists
a sequence {D,} C.- %y, such that UD, =4 X 2 and »,(D,) < + oo for
every n. Let 4 € Zp. Then, since p is supposed to be o-finite (see 8.1), there
exists a sequence {4,}; ; C- Qu such that Y4, = 4 and u(4,) is finite. We
can choose, for every n, a finite function ¢, € u(4,). Put B, ,, = {w; g,(») < m}.
We have »y(4, X B,») < + oo for every n, m and U U (4, X B,,,) = 4.

Thus », is o-finite and there exists (Theorem 5.15) a unique measure » defined
on V, such that » » »,.

Now let us denote by C the system of all sets in Du o V of finite y-measure.
C is clearly a pseudolattice and sC =V,. Fix BeV and put J,f = [fdy,

XxB
Jof = [(V [fdpu) d& for every fem’ Py =m’V,. From (8.9.1) it follows that

B
J, and J, agree and are finite on cC C ¢(Zu o V). Theorem 5.16 gives J, = J,;
we have proved (8.9.3) for f em* 2y = m%V,.

Now let g; = ¢,, {g1, 9o} C m*V,. Then

V/fgidp=V[g,du <= [g,dv = [g,dv;
hence it is easy to see that both (8.9.2) and (8.9.3) hold.

Remark. Theorem 8.9 shows that the V [ . du can be defined as a Radon-
Nikodym derivative (see 8.9.4). It is easy to see that all properties of the
V-integral studied up to this time (if we suppose that u is strong) are easy
consequences of the relation (8.9.4) and of the properties of the Radon-Niko-
dym derivatives.

Unfortunately this method cannot be applied if x is not strong, for in this
case there does not exist the real measure » satisfying (8.9.1) and (8.9.4).

8.10. Theorem. Let u, and p, be two o-finite measures defined on a o-algebra S,
Ru; Cn*V, V), ¢=1,2
and let the V-integral exist with respect to u; for both ¢ = 1, 2.
Let

fem,V, , V/[fdu, = 0=V [fdu,=0. (8.10.1)
Then there exists a g e m’tV, such that
feiluy, V)= VI [fdu, = VI [f.gdu, . (8.10.2)
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Proof. Let & be a pseudoprobability inducing (V, V,). Let »; be a measure
satisfying (8.9.1) for u = pu; (¢ = 1, 2). Let fem,Dv,, [fdy; = 0. Then from
(8.9.3) it follows that V [f du, = 0; from (8.10.1) and (8.9.4) it follows that
[1 dvy = 0. Thus v, << 7,.

Now u and & are o-finite; this implies that », is o-finite, too. Finally both
vy, 7, are defined on the o-algebra S x V. Thus from Lemma 2.2 it follows that
there exists a g em’(Sx V) = m’V, such that

femi@y = [fdv,= [f.gdy,.
However, this implies (according to Theorem 8.9) the relation (8.10.2).1%)

8.11. Notation. If » is a measure, 7' a transformation measurable (T, 9v),
then we denote by »7T-! the measure defined on T by the relation

AeT=2TYA) =»T"14)) .

We call the attention to the vagueness of the notation just introduced.
Indeed, the measure »7'~* is not determined by », 7" but by », 7' and T. However
the o-ring T will be always marked before using the symbol »7'~1.

8.12. Theorem. Let T be a transformation measurable (T, Zu), let pT—* be
o-finite. Let us denote, for every fef(UT X 2), by f, the function defined on
X X Q by the relation x e X, » € 2 = fi(x, o) = f(T'(x), w). Then the W-integral
with respect to uT—* exists and

fei(ul W)=-f,ci(u, W), WI[fduT = WI[f,du. (8.12.1)

Proof. Let f em¥W,, .. Then clearly the (T, Zu) measurability of 7' im-
plies f, emiW,. Let us denote Jf = W [f,du for every femiW, .. Then

prt
J is a non negative, linear and from below continuous functional. Let

gemiW, femiW, ., gegen*(V,V,).
Then (g"" =g f,iand thus
TG ) =W[g® fodu=7.W[f,du=g.Jf.
Thus J satisfies (7.4.3). Further, if 4 ¢ 2uT 1, we have
Te? = W [[e2], dpe = W [y dp = uT1(4) .

Thus all the conditions of Definition 7.4 are satisfied and J is the (unique,
according to the o-finiteness of p7'~1) W-integral with respect to p7'~1.
Now, if

F=f=g¢, {9 C Wi, ngl duT—* = ng? duT—,

then
=t =gr, Wlgrdu=W [grdp;
Wi [fdul-' =W [¢*duT* =W [g; du = WI [f, dn

and (8.12.1) holds.

10) The Theorem is a generalization of a result of A. Spac¢eEx [10].
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9. Conditional probability and expectation

9.1. Definition. « is a probability, if « is a real measure, P« is a o-algebra
and x(UJ Z«) = 1

9.2. Definition. A measure u is called the conditional probability (x,V, V)
(and denoted by 2,y), if

«x is a probability, V is a c-algebra, (9.2.1)

V is a transformation measurable (V, Du) , (9.2.2)

In = Dx, RuCn*lV1) (V= 9«V1), (9.2.3)

BeV, AeIx=a(ANVYB)) = [u(d)dxV 1. (9.2.4)
B

9.3. Definition.'?) If 1 is the conditional probability (x, V, V) then the weak
integral with respect to u is called the conditional expectation (x, V, V) and de-
noted by e,y .

9.4. Theorem. The necessary and sufficient condition for a measure p to be
a conditional probability («x,V, V) for some x,V,V is that u is induced by a de-
generate functional and that Y Pu e Zu, pn(U Zp) = 1.

Proof. The necessity follows from the known properties of e,y which is
a degenerate functional inducing u.

Conversely, let u be induced by a degenerate functional and let (V,V,) =
= (q%p, G, %u). Then according to Lemma 7.14 there exists a transformation
V from QJZn into YV such that

femiTu, 0=gegeni(V,V,)=
=f.gVemiZu, [f.gVdu=g.[fdu.
Putting f =1, g =c, we get BeV=TV"YB)eZpu, i. e., V is measurable
(V, Zu). Putting f =c¢,, g =c,, We get 4 X BeDuoV=u(ANV-YB)) =
= 25 - u(4).

Thus let us define « on Zu by the relation 4 € 2u= x(4) = [u(4)d¢,
where & is a probability inducing (¥, ¥,) (such a probability exists for u(U .@,u) =
= 1 and thus V + V,; in addition, «(U Qu) = 1 implies that « is a probability,
too). We have

BeV, AeTu= [p(A)dé= [y5.pu(4)ds = [w(ANV-(B))dé =
’ — MANT(B))
and thus (9.2.4) holds if only &=aV"1 But
BeV= aV-YB) = [u(V B)) d¢ = [u(U 7p) ds_fdg_s(B)

Thus . = Py y-
Remark. Theorem 9.4 is closely related to the results of Moy [8], who,
however, assumes the measure « to be given in advance.

1) Obviously our definition coincides with the usual one.
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9.5. Theorem. For every conditional probability p = p,,y the V-integral
exists; therefore p is strong.

Proof. p is induced by a degenerate functional (Theorem 9.4), is therefore
strong and the q%p-integral with respect to p exists. Thus it suffices to prove
qZp = V. It A eV, then V-1(4) e Zu and p(V-1(4)) = y.. Hence VC qZp; the
contrary inclusion follows from (9.2.3). Thus V = q%p.

9.6. Theorem. Let  be a strong measure, U Qu e Zp, (U Qun) = 1. Then
there exists a conditional probability p = p, .y (for some x,V,V) and a trans-
formation T' measurable (Zu, Zp) such that p = pT 1.

Proof. Let & be such a probability that Zu C nﬁ& and such that the 2¢-in-
tegral with respect to u exists. Then according to Theorem 8.9 there exists
a measure » satisfying (8.9.1), if we denote 2& = V. Let us define

p(D) =V [c,du forevery DeZuxV,
T, w) =2, Vi, w)=w forevery xelU%u, welV.
Then 7' is (2u, 2p) measurable, V is (V, Zp) measurable and, for every 4 ¢ Zu,
B eV, we have
pT 1 A4) = foAxxz du = u(d),
WWAB) = (U Zp X B) = [n(U Zp) d§ = &(B) .
B

Finally, if D e Zp, B eV, X = UZyu, we have (see (8.9.3))
Y(DOVYB) =v(DN(X X B) = [ ¢, dv = [(V [c,du)dé =
B

XxB

— ;fp(D) V-1,

Thus p is the conditional probability (v, V, 2&), p = pT~%, q. e. d.

9.7. Theorem. Let u be a measure, U Zu € Ju, (U Zp) = 1, Zp Cn*(V, V),
Let the V-integral with respect to u exist. Then there exist o and V such that V, =
= Do and the V-integral is the conditional expectation (x,V, V), 1. e.,

fe mivﬂ = fo dp = e(,’,.)vf .

Proof. Regarding the proof of the preceding Theorem, we see that V [ . dyu
is the weak integral with respect to the conditional probability p. Thus it is
the conditional expectation.

10. Further properties of eonditional expectation

10.1. Remark. In this section we shall give some generalizations of the
results of [3].

We recapitulate the problem. Suppose that « is a probability, 7' and V are
two (2«) measurable functions and that A is a non negative real-valued function
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defined on £ X E such that A(T, V) and A(7, v) (for every v e E) are (P«)
measurable functions. Now let gee,, wh(T,V), g,€e,,sh(T,v) (for every
v e E). If the set {v} has a positive «V~!-measure, then it is easy to see and well
known that ¢,(v) = g(v); roughly speaking, if «V~%({v}) > 0, then the con-
ditional expectation given V = v of the function A(T, V) equals to that of
the function (7', v). The paper [3] and the following section are devoted to
sumlar considerations in the more general case without the assumption
“({v}) > 0.

10.2. Assumptions. We assume that « is a probability, 7" and V are two
transformations measurable (T, Z2x) and (V, 2x) respectively, (V,V,) is the
measurable space induced by «V-'. Let [T, V] denote the transformation
measurable (TxV,2x) defined by the relation [7,V] (z) = [T(z), V(x)] e
ceUT X UY forevery x e UZx. We denote by p the conditional probability
" Pury> Dy e the conditional expectation e, y; we denote Y Zx = X, UV = Q
if fef*(UT X 2) then by f, we denote (as in Theorem 8.11) the function
defined on X X 2 by the relation f,(z, ) = f(T'z, ) for every [z, w] e X X £.
By », we denote the probability satisfying (8.9.1) with x = p7'~! and & =
= «V -1 The probability »,, which is closely related with the V-integral with
respect to p7'~1, has now a self-reliant meaning. For, if 4 ¢ T and B €V, then

v(A X B) = [pTY(A)daV ! = x(T"YA)NV-YB)) .
B
Thus v, = «[7, V]! (for preventing misunderstandings we recapitulate that
DT, V]t =TxV).

If, in particular, 7" is the identical transformation, then we write v, = ».
Finally let us denote

D={x0];zeX, we, Ve =0}, D, ={w o], we}.
10.3. Lemma. Let v* be the outer measure -induced by the measure v. Then
v¥(D) = 1.
Proof. {4,}7,C D«, {B;}1C-V, U A, X B, 3D:>Zv(A,- X B)) =
2 i=1
Z (4:0V-YBy)) = OC(U (4:0V74(By) = «(X) = 1.

i=1
10.4. Lemma. If D, e VxV, then D e Zxx V.

Proof. If we define U(z, w) = [V, o] for every [x,w] e X X £, then U is
(YxV, DQx x V) measurable and thus D = U~Y(D,) e Zx x V.

10.5. Theorem. Let f e m*D«, h e i(pT =1, V), f(x) = h(Tx, V) for every ze X.
Then ef = VI [h dpT 1.

Proof. From ke i(pT~?, V) and from Theorem 8.11 it follows that A, € i(p, V).
Hence and from Theorem 8.9 we obtain that %, e m* %». Further A, and f° agree
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on D, v¥(D) = 1 and {h,, {°} C m’ 9v; it follows that A, = f? [v]. Thus h, =
= f?[p, V] and
ef = [fdp=V[f?dp =VI [h,dp = VI [hdpT-1,

which is the desired result.

10.6. Corollary. Let D e ZxxV or D; e Vx V. Let f em’ D, h e f.(X X Q),
f(x) = h(z, Vz) for every z ¢ X.

Thenef = VI [hdp.

Proof. The measurability of D implies »(D) = 1 (Lemmas 10.3 and 10.4);

thus f? = R[] and & ¢ i(p, V). The assumptions of the preceding Theorem are
satisfied for the identical transformation 7' and thus ef = VI [4 dp.

10.7. Theorem. Let the assumptions of Theorem 10.5 hold. Let P be a function
defined on T X Q such that P(., w) is a probability for every w € 2 and P(4, .)€
e pT~Y(A) for every A eT. Then, if gef*Q, gw) = [h(.,w) dP(., ) [«V 1],
then g e ef.

Proof. From Theorem 8.6 it follows that g e VI [k dpT ' and VI [hdpT ! =
= ef according to Theorem 10.5.

10.8. Definition. 7" and V are x-independent, if

AeT, BeV= a(T-Y(A)NV-YB)) = aT-Y(A) . aV-1(B).

10.9. Theorem. Let the assumptions of Theorem 10.5 hold, let T and V be
o-tndependent.

Then if g € %2, g(w) = [h(., w) daT "t [«V 1], then g € ef.

Proof. If we define P(A, w) = «T~1(A), then the conditions of the preceding
Theorem hold, since the relation «7'-(4) e pT'~1(4) is an easy consequence

of the independence of 7' and V. (We note that the Theorem can be also proved
by a direct verification of the relation B e V =~ f gdaV-1= [ fd« by the use

V“(B)

of the Fubini Theorem.)

10.10. Remark. In all Theorems in this section we have assumed that
h e i(pT-1, V). This condition is necessary for the integral VI [A dpT~1 to have
a meaning and thus it is necessary in Theorem 10.5. However in Theorems
10.7 and 10.9 the integrals [%(., ) dP(., ») and [k(., ®) dxT~' are defined
for an ampler class of functions that i(p7~1, V). Nevertheless we shall show
that the condition A e i(p7'~1, V) is essential. For simplicity we shall assume
that 7' and V are x-independent and that % is a characteristic function. We
remark that i(pT-1, V) = v, = 9«[T, V]

10.11. Theorem. Let T be a o-algebra; let ACUT X 2; h=c;h(.,w)e
emIuaT~1 for every we Q@ — Vo, VoeVo; f=hT(.), V(.))em Za;
hnon'e 2x[T, V]~1. Finally, let T and V be x-independent.
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Put g(w) = [h(., w) daT~? for o e 2 —V, and define g(w) for w eV, in an
arbitrary way. .

Then there exists a probability f with the following properties: T and V ar
B-independent and measurable (T, 2p) and (V, DB) respectively, oT~1 = BT1,
oVl =BV, femi2p but gnoneey,,f although obviously g(w) =
= [(., w) BT [BV1].

Proof. If gnonee,,,f, then the Theorem holds. We shall consider
the case gee,,yf. Since it is assumed % non e i(p,,vI'~% V) = m} Dy, =
= m*9«[T, V], b = c4, we have 4 non ¢ Zx[T, V] Put

S={B;B=[T,V]"Y(B), BeTxV}

and denote x, = xg. Then «, is a probability, too, and obviously Anon e D,
where A = [T,V]"Y(A4). Hence if follows that there exist infinitely many
measures  defined on s{S u{fi}} and such that § » «,. (See for example
[4], Sec. 16, Ex. 2.) Choose § in such a way that ,B(ff) * m(fi) (we note that
A ¢ D since f e m2x). Since?) B[T, V]~ = «[T', V]7* all the assertions of the
Theorem are obvious, except possibly the assertion g non e ¢;, f.

We have gee,,,f and thus, since V-1 = V-1, fe,, fdaV ™t = [fda,
we obtain [gdpV-1= [gdaV-1 = [fdx = &(4) *+ f(A) = [fdf. Thus
fg dpV-1 % [fdp, which gives g non € ¢;, f.

10.12. Examples of non regular conditional probabilities. Theorem 10.11
together with Theorem IIT of [3] enables us to construct many examples of
non regular conditional probabilities. (A conditional probability p,,y = p
is regular, if there exists a function P defined on Zp X £ such that P(., »)
is a probability for every w € 2 and P(4, .) e p(4) for every 4 ¢ Zp.)

Suppose that the conditions of the preceding Theorem are satisfied and that
in addition the c-algebras V and T possess countable bases, i. e. that there
exist two countable systems S, S, such that sS; =V and sS, = T. Finally
let V contain every set {&}, where w e U V.

Now if f satisfies the assertions of the Theorem, in particular if gnon e eﬂ’v,vf,‘
then p; , vy cannot be regular. Indeed, if p; , y is regular, then according to Theo-
rem I1I of [3] g € ¢, f, which is impossible.

The following example shows that the assumptions can be satisfied:

Let %, be the system of all Borel subsets of <0, 1>, let A4 be the Lebesgue
measure on X = {0, 1) X <0, 1). Choose a set 4 C X in such a way, that
A non € 24 but that for every w € (0, 1) the set {¢; (£, w) e A} belongs to %,.

Let now « be a probability such that « A and P« = s(24 U {4}). Put
T=V=%, Tt ow)=t, V(i o) =o for every ({, ) e X. It is easy to see

12) Again we put 28(T, V)™ =TxV.
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that all required conditions are satisfied (see Theorem 10.11 and assumptions
10.2). In particular &(., ®) e m*%, C m*2aT-L, h(T(.),V(.)) = h = ¢4 e m*D«.
Since [7', V]-1 = A, we have also A non e m*2«[7', V]-L. Finally 7' and V are
«-independent and T = V = %, has a countable basis and contains every set

{w}C UV =<0, 1.

Some symbols

sy, A, A _(B), A _, A p (15) S, xS, (7.1)
Ay Ay A (4.1) supy A (1.7)
<< (2.1) C, D, = (1.1)
B (1.2) inf, 4 (1.7)
> (1.3) inf 4 (3.6)
¢ (1.5) [.du (1.6), (6.3)
c (1.5) W(.dp - (8.1)
2 (1.9) WI [ .du (8.4)
9 (1.3) J (5.6)
92 (5.1) k (1.5)
E,E* B, EY (1.1) m, m*, m,, m’ (1.5)
€2,V (9.3) 2 (5.14)
Q@ of (7.2) uZ1 (8.11)
k ® *
Vi=hV..Vi (L4) I e (19
et a4 (2.3)
Afi=hA A (1.4) b (5.14)
forl- (1.4) Paz,v (9.2)
f=9[pn Wl (8.2) q 9 (1.8)
f, (1.3) r ‘ (1.2)
LR P S (1.4) 4 (1.3)
i (8.2) T, (1.3)
N (1.2) VT (1.3)
S,-80,54,5- (1.2) v, (7.1)
§,08, (7.1) Y, — % +» (3.7)
BIBLIOGRAPHY

1 R. R. Bahadur: Measurable subspaces and subalgebras, Proc. Am. Math. Soc.
6 (1955), 565— 570.

[2] A. Blanc-Lapierre, Robert Fortet: Théorie des fonctions aléatoires; Paris 1953.

3] Vdclav Fabian: A note on the conditional expectations, Czech. Math. Journ. 4 (79),
1954, 187—191.

232



[4] Paul R. Halmos: Measure Theory, New York, 1950.

[6] JI. B. Kanmoposuu, 5. 3. Byauz u A. I'. [Tunckep: OyHKUMOHAILHbI aHAIN3 B IOIY-
YyHopsAmOYeHHHIX IpocTpaHcTBax, Mocksa 1950.

[6] Jan Ma#ik: Lebesguetv integrél v abstraktnich prostorech, Cas. pro pést. mat 76
(1951), 175—194.

[7] An Mapacur: Ilpencrasienne QyHKNUOHAZA B BUJAe MHTerpana, dex. Mar. ypH,
5 (80), 1955, 467—487.

[8] Shu-Teh Chen Moy: Characterization of conditional expectation as a transfor-
mation on function spaces, Pacific Journal of Mathematics 4, 1954, 47— 64.

[9] Edward J. McShane: Order preserving maps and integration processes, Annals of
Mathematical Studies, No. 31, Princeton, 1953.

[10] Antonin Spacek: Zufillige Mengenfunktionen. Mathematische Na.chnchten 14,
1956, 355—360.

[11] A. H. Stone: Notes on integration, I, IT, III, IV; Proc. Nat. Sci. 34 (1948), 336 — 342,
447 — 455, 483—490, 35 (1949), 50—58.

Pesowme

O MEPAX, BHAYEHUS] KOTOPBIX — RJIACCHl 9KBUBAJIEHTHBIX
N3MEPUMBIX ®OYHKIOUI

BAIIJIAB ®ABHUAH (Véclav Fabian), IIpara.

(Iocrymmo B pegakiuio 13/1 1956 r.)

ITycrs & — BepoAaTHOCTH ONpesesieHHAass Ha c-ajredpe V MOIMHOKECTB MHO-
skecrBa Q2. [IpocrpancrBo Beex (V) maMepumbiX QyHKIUH paséUTO Ha KIIACCH
(YHKIMIT, TOUTE BCIOJY B3AUMHO PABHBIX. DTH KJACCHl HABEIBAEM CIIydYail HBIMIL
pesmumHEaMu. [IpocTpaHcTBo BceX HeoTpHIATENbHBIX (He 00sg3aTeIbHO KOHEU-
HHIX) CITy9ailHBIX BeJIMUMH 0G03HaumM uepes n* &.

B paGore paccmaTpumBaloTcs TOHATHS Mephl, MHTerpaja H (YHKIIOHAJA,
3HAYEHUS KOTOPHIX HE BelecTBeHHBIC 4hcila, HO ciIydaiiHble BeJamdnHEL. Jloka-
3aHa TEOpeMa O PacIpoCTpaHeHHH Mephl ¢ KOJbIA HA 0-KOJBIIO.

ITycts Mepa u omnpemesieHa Ha o-KOJbIle S TOAMHOKECTB MHO;kectBa X.
Cona6piit maTerpan [ . du onpefelieH [l HeOTPUNATENLHHX (S) M3MEPHMEIX
¢ynxmmii Tax, uro oH agmurusen u 4o f, 7 f=> [f,du A [{du. Ioxasama
TeopeMa o MpefCcTaBIeHnN INHeHHOro yHKIIOHAa B BUje ¢J1ab0ro HHTer paja.

Hast o-anre6psr W C V onpenensierca nousrne W-mHTErpasa Wf .dy naa
a6CTPaKTHEIX (YHKIMIA, ONpeIeIeHHBIX HA MHOsKecTBe X, 3HaUeHHMA KOTODHIX
(W) wmsmepumble BemectBeHHBle (yHrnum. OueBupHO, TaKume abCTPaKTHEHIE
QYHKIUM MOKHO paccMaTpuBaTh KaK BellecTBeHHBle QyHKkmmm Ha X X Q.

233



Wrax, W[ .du ompenenserca i HeoTpuuatelbHBIX (S x W) mamepnMsix
Pyrrmui. [Ipr stom (S x W) — 0-KompIio, TOPOMIEHHOE KIIACCOM BCeX MHO-
skecrB Bua A X B, Ae S, Be W.

W([.dp (a) amwmrusen, (b) fo # f= W [f, du # W [fdu u (¢), ecan
f(z, w) = f(w) mist (S x W) usMepuMoii HeoTpHIaTe bHON (YHKDuUU f, TO
W [fdu = ffd,u. Haxonen, W-unrerpas ogHOpPOJeH B cJEIYIOIEM CMBbICJIe:
(d) ecmu f m g — (S x W) usmepuMBble HeOTpHIATeNbHbIe QYHKIUN, §(X, w) =
=g(w), o W [g.fdu =g. W [fdu, rae g osuauaer ciyvaiinyo BeJudmnmy,
copepskaoman QyHkuuio g. HerpyuHo mokasarb, 4To, €cjiu 4 0-KOHEYHA, TO
W-nurerpan ounpegenserca yeiopuamu (a)—(d) OQHO3HAYHO, -HO MBI He
3HaeM, cyuecrByer-jin oH Beerga. Lemun W,;, W, — g-anre6psr, W, C W, C V
u eciu W, [.du cymecrsyer, to cymecrByer u W, [.du. Ecmn cymecrsyer
V[ .du, To MBI cKaeM, uro p — cuibHas Mepa. [Ipusegensr ofmue gocraTod-
HBIE YCJOBHs JJIsI TOTO, 4To0Bl u Obisia cuibHOI mepoit. Hanpuwmep, ecnim § —
0-KOJIBIIO BceX GOpesIeBCKUX M 63POBCKAX MHOKECTB JTOKAIbHO KOMIAKTHOTO
npocrpaHcTBa, wian ecan V — c-anreGpa BceX GOpPeIeBCKIX MHOZKECTB JIOKAIb-
HO KOMIAKTHOTO Xaycaopdosa NpocTpaHCTBa, TO 1 — CHIbHAsg Mepa. Tawske,
ecJI 4 — YCJIOBHAA BEPOSTHOCTH, TO f siBjsieTcsi cuiibHOM Mepoit. HaoGopor,
eciy w — cuiabHasg mepa, u ecan u(X) = 1, To cymecTByer ycJIOBHAS BEpOST-
HOCTH P Ha o-Koublie Q m orobpaskenne 7' muosecrsa |J Q ua maokectBo X TaK,
uro u(4) = p(T(A4)) nns Bearoro muoskectBa A e S.

Mg W-unrerpania JoxasaHbl Teopembl, aHasornunbie teopemam DyOunu
u Papona-Huropnma. Mexny W-mHTErpasioM ¥ OOBIKHOBEHHBIM WHTEI PAJIOM
JleGera rawas cBasw: Ilycrs »(4, o) pas Kamporo QURCHPOBAHHOTO o € £2
SIBJIIeTCA BEMICCTBEHHOM Mepoil Ha S, mycrb s Kamporo A e § »(4, o), Kak
QyHKOUA IIepeMEHHON w € 2, HBIAETCHA DJIEMEHTOM CJIYYaiHOH BeJIMIHHBI
u(A). Hyers cymecrByer murerpan W [.du uw mycers f -— Heorpunarenn-
masg (S X W) usvepnmasi ¢yuxnus. B rtakom cnyuae ¢ynrmus (o) =
= [f(., w) d¥(., ®) aBnseTCA DNementToM cayuaiinoil Besmunust W [f du. ‘

B xonme paboThl paccMarpuBAIOTCS IPUJIOMKEHUS, Kacamoluecs YCJIOBHBIX
BEpOATHOCTEIH.
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