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Чехословацкий математический журнал, т . 8 (83) 1958, Прага 

ON APPROXIMATION OF CONTINUOUS FUNCTIONS 
ь 

IN THE METRIC f\x(t)\dt 
a 

VLASTIMIL PTÄK, Praha 

(Received November 22, 1957) 

The paper is devoted to the investigation of approximation of 
continuous functions by elements of a finite-dimensional space of 
continuous functions E, if the distance is measured by the norm 
ъ 

f\x(t)\ dt.lt may happen tha t the best approximation of a continuous 
a 
function need not be unique. We investigate those spaces E which 
enjoy the following property: for every continuous function x, the 
best approximation of x by means of elements of E is always unique. 

Let T be an interval of the real axis (i. e. a set of real numbers such tha t 
tx e T, t2€ T and tx 5^ t ^ t2 implies t e T). We shall consider the linear space 
of all continuous real-valued functions defined on T and such tha t j\x(t)\ àt 

T 

exists. This space, equipped with the norm f\x(t)\ d£, will be denoted by B. 
T 

Further, let a finite dimensional subspace E of В be given. 

In the present paper we intend to examine those spaces E which enjoy the 
following property: for every x0 e B, the best approximation of x0 by means 
of elements of E is unique. 

The paper is divided into four parts. The first two sections contain some 
auxiliary results and remarks. In the fourth section we give a necessary and 
sufficient condition tha t the best approximation of any x0 e B by means of 
elements of E be unique. In the third section we present a strengthened version 
of a sufficient condition due to D. JACKSON [2].1) This, of course, could be made 
to follow from the general theorem of the fourth paragraph; since, however, 

1) The work of D. JACKSON treats the case where E is the set of all polynomials of de­
gree ^ n. Later, N. I . ACHIEZEB [1] obtained the same result for any subspace E fulfilling 
Haar ' s condition. The theorem 1 of the present paper shows tha t a weakened form of 
Haar ' s condition is sufficient for the unicity of approximation. 
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there is a much simpler way of obtaining it directly we feel justified in including 
another paragraph devoted to this particular question. The author wishes to 
express his gratitude to the referee J . K R Â L for his valuable comments. 

1. General remarks 

In this section, let us consider a fixed normed linear space X and a fixed 
finite-dimensional subspace E of X. 

Definition 1. Let x0 e X be given. We say tha t the point x0 e E is a best 
approximation of x0 by means of elements of E if \x0 — e0| ^ \x0 — e\ for every 
eeE. 

(1.1) To every x0 e X there exists at least one best approximation of x0 by means 

of elements of E. 

Proof . A simple argument based on the compactness of the unit sphere 
in a finite-dimensional linear space. 

Definition 2. We say tha t a point 2 e l i s perpendicular to E if z Ф 0 and 
|z| ^ \z — e\ for every eeE. If z is perpendicular to E, we shall write z _]_ E. 

(1.2) Let x0 e X, e0 e E. The point e0 is a best approximation of xQ by means of 
elements of E if and only if x0 — e0 _[_ E. 

Proof . Obvious. 
(1?3) Suppose that both ex and e2 are best approximations of a point x0. Then 

every point of the segment joining ex and e2 is a best approximation of xQ as well. 
Proof . Let 0 fg A ̂  1 and let eeE. We have \x0 — ex\ t=*'\%o — e| and 

\xQ — e2| ^ \xQ — e\. Hence \x0 — {Xex -j- (1 — A) e2)| = 
= \Цх0 — ex) + (1 — X)(x0 — e2)| ^ Цх0 — e\ + (1 - - A)] x0 ~ e\ = \x0 — e\ 
which proves our proposition. 

Suppose now tha t there exists a point v e X which has two distinct best 
approximations ex and e2. Let us put x0 = v — (\ex + |e2) , e0 = Jej— Je2. We 
have thus ж0 ф 0, e0 e JS/; e0 ф 0. Clearly ж0 -(- ae0 J_ JS7 for every number G ful­
filling | cr | ^ 1. We shall denote by V the set of all x0 e X with the following 
property: there exists an e0 e Ey e0 Ф 0 such tha t x0 — cre0 is perpendicular 
to E for every о e < — l7 +1> . We have just seen tha t the set V is nonempty 
whenever there exists at least one point v e X with a non-unique best appro­
ximation. 

2, Notation and auxiliary results 

Let T be an interval of the real axis (i. e. a set of real numbers such tha t 
txe T, t2e T and tx f£ t 5j t2 implies t e T). We shall consider the linear space 
of all continuous real-valued functions defined on T and such tha t §\x(t)\ &t 

T 
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exists. This space, equipped with the norm f\x(t)\ dt, will be denoted by B. 
T 

The end points of T will be denoted by a and b. 

If x is a function continuous on T, we shall denote by Z(x) the set of all 
t € T for which x(t) — 0. The complement of Z(x) in T will be denoted by 
D(x). 

If I is a real number, we put sign f = 1 if £ > 0 sign £ = — 1 if £ < 0. 
If | = 0, the symbol sign | will not be defined. If Ж is a measurable subset 
of the real line, we denote by mes (M) the Lebesgue measure of M. 

(2Д) Let x0 € B, xQ =t= 0. Let f be a linear functional of norm one on В which 
fulfills the relation (xQ, /> == \x0\. Then there exists a 'measurable function m de­
fined on Z(x0) with the following properties: 

1° \m(t)\ fg 1 for every t e Z(x0), 
2° <xy / ) = J x(t) sign x0(t) dt -f J #(£) m(£) d£ for every x e B. 

D(x0) - Z(x0) 

Proof . There exists a measurable function p defined on 1\ fulfilling the 
inequality \p(t)\ ^ 1 on T and such that <#, /> = fx(t)p(t)dt for every 

f 
x € B. Let us put m(£) = p(£) for £ € Z(x0). Suppose now that 2° is not fulfilled 
for every x e B. Then there exists a measurable subset M с D(#0) of positive 
measure such tha t p(t) + sign x0(£) for £ € Jf. I t follows tha t there exists a 
measurable set А с I f of positive measure and two positive numbers oc and 
г such tha t x0(t) has a constant sign on Ay \x0(t) | ^ s on J., |p(£) — sign x0(£) | ^ a 
on A. We have than 

/ x0(t)p(t)dt ^ / |ж0(*)| dt 
T-A T~A 

and for t e A 

xQ(t)(sign x0{t) ~ p(t)) ^eoc, 
so tha t 

fx0(t) p(t) dt = J\x0(t)\ dt - fx0(t) (sign x0(t) - p(t)) dt S 
À A A 

^ f\x0{t)\ dt — EOC\A\ < f\x0(t)\ dt. 
A À 

From these two results it follows tha t 

Jx0(t)p(t)dt<f\x0(t)\dt, 
T T 

which is a contradiction. The lemma is thus proved. 

Let us consider now a fixed finite-dimensional subspace E of B. We shall 
investigate the best approximation of continuous functions by means of 
elements of E. 
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(2.2) Suppose that a point x0e В has two distinct best approximations еъ 

e2 € E. Then 

(x0(t) - ex(t))(xo(t) - é,W) ^ 0 
for every t e T. 

Proof . According to (1,3), every point of the segment joining ex and e2 is 
a best] approximation of x0 as well. Let us consider now the points 
z± = \(XQ — ej), z2 = -|(a;0 — e2). We have then 

pi l 2̂1 :=: pi I "T p2| 

which is impossible unless z^t) z2(t) ^ 0 for every t e T. 

(2.3) Let x0 e B, e0e E. Suppose that x0 _L Ey x0 ^ e0 _L J?. T%ew ж0(£) = О 
implies e0(t) = 0 /or ег>еп/ £ e В(ж0). 

P roof . According to the preceding lemma, we have x0(t)(x0(t) -^ e0(£)) ^ 0 
for every teT.lt follows tha t |a?0(J) e0(f)| ^ W*))2 for every « e 5Г. If « в D(x0), 
we have |e0(£)| fg |#o(0|- This inequality may be extended, by continuity, to 
all points t e D(x0). NOW if x0(t) — 0 and t belongs to D(x0), we have eQ(t) = 0 
by the above inequality. The lemma is established. 

3. A necessary condition 

Theorem 1. Let E be an n-dimensional subspace of В and suppose that there 
exists a b e В the best approximation of which is not unique. Then there exists a 
nonzero point e0 e E and n distinct inner points tt of T such that e0(^) = 0. 

P roof . Let us denote by V the set of all x0 e X with the following property: 
There exists an e0 e E, e0 + 0 such tha t x0 — ae0 _[_E for every a e < — 1 , -f-l>. 
According to our assumption, the set V is not empty. 

We shall distinguish three cases: 
1° For every x e V, the set Z(x) contains a nondegenerate interval. Let us 

take a point x0 e V. There exists a nonzero e0e E such tha t we have x0 — oe0 J_ E 
for every a e ( — 1 -f-l>. I t is easy to see tha t x0 — ae0 e V for every 
a € ( — 1 , + 1 ) . I t follows that , for every X в ( — 1 , + 1 ) , there exists a nondege­
nerate interval S(X) с Z(x0 — Ae0). There exist, consequently, two numbers 
Лг and A2, different from each other, such tha t the intersection S^) n £(A2) 
is a nondegenerate interval. Clearly we have then e0(t) = 0 for every 
teSfa) n S(À2). 

2° There exist points x e V such tha t Z(x) is nondense in T. Suppose first 
tha t there exists &n x eV with nondense Z(x0) such tha t Z(x0) contains at least 
n inner points of T. There exists a nonzero e0e E such tha t x0 ± e0 J_ Ü/ as 
well. According to lemma (2,3), we have then Z(e0) э £(я0) a n ( l the assertion 
of our theorem is proved. 
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3° Every x в V with nondense Z(x) has at most n — 1 inner zero points. 
Let us choose an x0 e V with at most n — 1 inner zero points. If we put t0 — a, 
£n = fr7 we may find points tQ < ^ < . . . < t.n_x < ^ such tha t #0(£) Ф 0 for 
every £ different from the t{. Since #0 J_ E there exists a linear functional 
/ on В such tha t |/| = 1, (E, /> = 0 and <#0, /> = |ж0|. I t follows from lemma 

n 
(2,1) that / may be expressed in the form / = 2 ^ 7 * where ft are defined by 

г 1 
h 

(x, Д-> — f x(t) dt. If e b . . . , en is a basis of Ey we may form the matrix <ег; /,•>. 
Ч-г 

Since / vanishes on E, the columns of this matrix are linearly dependent so 
tha t the rows are linearly dependent as well. I t follows tha t there exists a 
nonzero e e E such tha t <e7 /г> = 0 for every i. Since f e(t) dt = 0; there exist 

4-х 
points Si such tha t ^г„1 < s{ < ti and tha t e(s{) = О. This concludes the proof. 

4 . Sufficient and necessary conditions 

Theorem 2. Let E be a finite-dimensional subspace of B. There exists а Ъ е В 
with a nonunique best approximation if and only if there exist two disjoint sets 
Gx and G2 open in T and a measurable function m defined on T — (Gx и G2) 
with the following properties: 

1° \m(t)\ ^ 1 for every t e T — (Gx и ö8), 
2° fe(t) dt — fe(t) dt + / e(t)m(t) dt = 0 for every eeE, 

G1 G2 r-(G1 и Gt) 
3° £Aere ea '̂ste a nonzero e0e E vanishing on T — (G^ и 6r2). 
P roof . Let x0 e V. There exists a linear functional f on В such tha t |/| — 1, 

(E, /> = 0 and <;r07 /> — |ж0|. Let us denote by Gx the set of all t e T where 
x0(t) > 0; by G2 the set of those t eT where x0(t) < 0. I t follows from lemma 
(2Д) tha t there exists a measurable function m defined on Z(x0) such tha t 
\m(t)\ !g 1 for t e Z(x0) and tha t 

<x, /> = fx(t) dt — fx(t) dt + J x(t) m(t) dt 
Gt G2 Z(x0) 

for every x e B. Conditions 1° and 2° are thus fulfilled for Gl9 G2 and m. 
Now there exists a nonzero ex e E such tha t #0 — aex _J_ i? for every 

a e < — 1, +1> . For г = ± 1, let us denote by Jf(e) the set of all numbers 
о e (0; 1) for which mes (D(x0) n Z(x0 + го^)) > О. Suppose tha t M(e) is 
uncountable. Then there exist two distinct numbers аъ a2 e (0, 1) such 
tha t the set 

M = 2)(ж0) п £(#0 + £(yiei) n ^(^o + ecr2ei) 

has positive measure. I t follows tha t ex(t) — 0 for t e M. Hence x0(t) = 0 for 

£ e Ж which is a contradiction with M с D(x0). Hence both M(+ 1) and 
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M(— 1) are countable so tha t there exists a a e (0, 1) which does not belong 
to either of them. Pu t e0 = аег. We have thus 

(x0(t) - eQ(t))(x0(t) + e0(t)) * 0 
almost everywhere on D(x0). Since x0 ± e0 J_ i£ we have, according to (2,3) 
|e0(£)| fg |#0(0| f ° r every £ e D(x0). Hence sign (x0(t) ± е0(0) = sign x0(£) almost 
everywhere on D(a;0). 

Hence 

|#o ± eo\ = f (xo(t) ± e№) s i g n ^o(0 d£ + / \eQ(t)\ dt = 

= Ho| ± / e(0 s i g n a l ) d£ + / \e0(t)\ dt . 
D(a„) 2(OJ0) 

Since \x0 ± во I ™ W? w e have j * |e0(£)| d£ = 0. 
Z<«0) 

Let us denote by H the interior of the set Z(x0). I t follows from f \e0(t) | d^ = 0 
Z(x0) 

tha t e0(t) = 0 for every t e H. We know already tha t \e0(t) | f£ \x0(t) \ for every 
t € D(x0). Since Z(x0) = (Z(x0) n D(x0)) и H, we have e0(£) = 0 for every 
t € Z(xa). The conditions of our theorem are thus fulfilled. 

On the other hand, suppose tha t we have two disjoint sets Gt and G2 open 
in T, a measurable function m defined on T — (G1 и G2) and a nonzero 
e0e E fulfilling the conditions of our theorem. 

Let us define a function x0 on T by the relations 
x0(t) = ' 2|e0(*)| for £e 6^ , 

- — 2|во(*)| for teG2, 
= 0 for £ e Î7 - (©! U ö2) . 

I t follows tha t x0 is continuous on T and different from zero. We have now 
x0(t) — e0(t) ^ 0 for t e Gl9 x0(t) — e0(t) ^ 0 for t e G2 and x0(t) = e0(t) = 0 for 
teT - (Q1 и G2). 

Let us denote by / the linear functional on В defined by the relation 
(x, /> = fx(t) dt - fx(t) dt + J x(t) m(t) dt ; 

Gx G2 r-(GlLjG2) 
We have clearly (xQ, /> = \x0\, |/| = 1 and <i£, /> = 0. At the same time 

\xo - eo| = /(«o(0 - eo(0) d* — /(^o(0 - eo(0) ^ = 

= <ж0 — e0, /> = <#o> /> = ко | ; and, for any e e E, 

|#o "~ e I = <A ~~ e; / ) — No I? s o tha t both 0 and e0 are best approximations 
of x0. The proof is complete. 

In the rest of this section we shall subject the subspaces E considered to 
the following condition: 

(F) Let e e E, e ф 0. Then there exists a finite set К с T such tha t e(t) Ф 0 
for every t e T — K. 

Under this restriction, a simple sufficient and necessary condition for the 
unicity of the best approximation may be given. 
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/ 
Let p be a natural number. A sequence t0 < tx < . . . < tp of points will be 

called a subdivision of T if t0 = a and tv == 6. Let D be a subdivision of I7. 
We shall denote by f(D) the linear functional on В defined by the relation 

<*,/(/))>= 2 (-l)'/*(*)d*. 
We may state now the following corollary of theorem 2. 
Theorem 3. Let E be an n-dimensional subspace of В with property (F). There 

exists a b € В with a nonunique best approximation if and only if there exists a 
subdivision D of T and a nonzero e0 e E with the following properties: 

1» < Я , / ф ) > = 0 , 
2° e0(t) = 0 in the inner points of D. 
Proof . Suppose first tha t there exists a b e В with a nonunique best appro­

ximation. According to the preceding theorem, there exist disjoint sets Gx and 
Ga open in T and a nonzero e0 e E with properties 1°, 2° and 3°. 

The function e0 vanishes on T — (Gx и 6?2). T — (G^ и G2) is finite. I t 
follows tha t Gx n G2 с Î7 — (Gx и G2) is finite as well. Let i ) be the sub­
division of T consisting of the points a, b and the points of Gx n G2. Condition 
2° of theorem 2 reduces then to (E, f(D)} = 0. The other implication being 
obvious, the proof is complete. 

A d d e d in p r o o f s : For another proof of theorem 1 see the article of M. К р е й н , 
-L-проблема в абстрактном линейном нормированном пространстве, in the book on the 
Moment Problem by N. Achiezer and M. Krein, Moscow, 1948. 
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Р е з ю м е 

ь 
ОБ АППРОКСИМАЦИИ В НОРМЕ f\x(t)\dt 

а 

Властимил Птак (Vlastimil P t âk ) , Прага 
(Поступило в редакцию 22/XI 1957 г.) 

В работе исследуется приближение непрерывных функций при помощи 
элементов некоторого конечномерного пространства Е, если расстояние 

ь 
измеряется нормой $\x(t)\ At. Исследуются те пространства Е, для которых 

а 

наилучшая аппроксимация каждой непрерывной функции при помощи 
элементов пространства Е всегда однозначна. Помимо прочего в работе 
дается усиление одного результата Н. И. А х и е з е р а . Метод исследования 
является геометрическим. 
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