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YexocaoBanknii MaTeMaTHIecknii xypHaua, T. 8 (83) 1958, Ilpara

ON APPROXIMATION OF CONTINUOUS FUNCTIONS
b
IN THE METRIC [la(t)| dt

VLASTIMIL PTAK, Praha
(Received November 22, 1957)

The paper is devoted to the investigation of approximation of
continuous functions by elements of a finite-dimensional space of

continuous functions ¥, if the distance is measured by the norm
b

f lz(t)| dt. It may happen that the best approximation of a continuous
a

function need not be unique. We investigate those spaces £ which
enjoy the following property: for every continuous function z, the
best approximation of z by means of elements of % is always unique.

Let 7' be an interval of the real axis (i. e. a set of real numbers such that
tieT, t,eT and ¢, <t < t, implies t € 7'). We shall consider the linear space
of all continuous real-valued functions defined on 7' and such that [l|a(t)| d¢

T

exists. This space, equipped with the norm [|x(¢)| df, will be denoted by B.
T

Further, let a finite dimensional subspace E of B be given.

In the present paper we intend to examine those spaces £ which enjoy the
following property: for every x, e B, the best approximation of z, by means
of elements of E is unique.

The paper is divided into four parts. The first two sections contain some
auxiliary results and remarks. In the fourth section we give a necessary and
sufficient condition that the best approximation of any x,e B by means of
elements of E be unique. In the third section we present a strengthened version
of a sufficient condition due to D. JAacksox [2].1) This, of course, could be made
to follow from the general theorem of the fourth paragraph; since, however,

1) The work of D. JACKSON treats the case where K is the set of all polynomials of de-
gree =< n. Later, N. I. AcHIEZER [1] obtained the same result for any subspace E fulfilling
Haar’s condition. The theorem 1 of the present paper shows that a weakened form of
Haar’s condition is sufficient for the unicity of approximation.
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there is a much simpler way of obtaining it directly we feel justified in including
another paragraph devoted to this particular question. The author wishes to
express his gratitude to the referee J. KrRAL for his valuakle comments.

1. General remarks

In this section, let us consider a fixed normed linear space X and a fixed
finite-dimensional subspace £ of X.

Definition 1. Let x, e X be given. We say that the point zye F is a best
approximation of , by means of elements of E if |z, — ¢,| =< |x, — e for every
eel.

(1,1) To every x, € X there exists at least one best approximation of x, by means
of elements of E.

Proof. A simple argument based on the compactness of the unit sphere
in a finite-dimensional linear space.

Definition 2. We say that a point z € X is perpendicular to £ if z 4= 0 and
lz| = |z — e| for every e e E. If z is perpendicular to E, we shall write z | E.

(1,2) Let xye X, ey € E. The point e, is a best approximation of x, by means of
elements of E if and only if xy — e, | K.

Proof. Obvious.

(1,3) Suppose that both e, and e, are best approximations of a point x,. Then
every point of the segment joining e, and e, is a best approximation of x, as well.

Proof. Let 0 <1 =1 and let ee . We have |r, — ¢;] = |a, — ¢| and
[ty — ;] = |2y — e|. Hence |x, — (Je; + (1 — 1) ey)| =
=A@y — €) + (1 — (@ — e)| = Ay — €| + (L — )| 2y — €| = |z, — ¢
which proves our proposition.

Suppose now that there exists a point v ¢ X which has two distinet best
approximations e; and e,. Let us put ¥y = v — (3¢, + 1e,), € = Le;— Le,. We
have thus @, #+ 0, ¢, € K, ¢, + 0. Clearly , -+ oe, | £ for every number o ful-
filling |o| < 1. We shall denote by V the set of all z, ¢ X with the following
property: there exists an e, e E, ¢, + 0 such that x, — oe, is perpendicular
to K for every oe (—1, +1>. We have just seen that the set V is nonempty
whenever there exists at least one point » ¢ X with a non-unique best appro-
ximation.

2. Notation and auxiliary results
Let 7' be an interval of the real axis (i. e. a set of real numbers such that

e, t,eT and ¢, < ¢ < t, implies ¢ € 7'). We shall consider the linear space
of all continuous real-valued functions defined on 7' and such that [l|x(t)| d¢
T
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exists. This space, equipped with the norm [|a(t)| df, will be denoted by B.
T
The end points of 7" will be denoted by @ and b.

If z is a function continuous on 7', we shall denote by Z(x) the set of all
t e T' for which z(f) = 0. The complement of Z(z) in 7' will be denoted by
D(x).

If & is a real number, we put sign & =11if £ > 0sign &= —11if £ < 0.
If £ = 0, the symbol sign & will not be defined. If M is a measurable subset
of the real line, we denote by mes (M) the Lebesgue measure of M.

(2,1) Let zye B, xy = 0. Let | be a linear functional of norm one on B which
fulfills the relation {x,, fy = |x,|. Then there exists a measurable function m de-
fined on Z(x,) with the following properties:

10 |m(t)| <1 for every t e Z(x,),
20 Lz, fy = [ a(t) sign a,(t) dt + f x(t) m(t) At for every x e B.

D(xy) Z(@,)
Proof. There exists a measurable function p defined on 7', fulfilling the
inequality |p(f)] =1 on 7' and such that <z, f) = fx p(t) dt for every

x e B. Let us put m(t) = p(t) for t € Z(x,). Suppose now that 29 is not fulfilled
for every x ¢ B. Then there exists a measurable subset M c D(x,) of positive
measure such that p(t) #+ sign x,(t) for ¢t ¢ M. It follows that there exists a
measurable set 4 ¢ M of positive measure and two positive numbers x and
e such that x,(¢) has a constant sign on 4, |x(t)] = eon A4, [p(t) — sign z,(t)| = «
on A. We have than

A Fop®) dt = [ ()
andforte 4
o(t)(sign zo(f) — p(t)) = ex,
so that
Af%(t) p(t) dt =Aflx0(t)|dt. —Afxo(t (sign z,(t) — p(t)) df =

= [lao(t)| dt — ex|A| < [|ay(t)| dt . -
4 4

From these two results it follows that

fxo dt<f|x0 )| dt,

which is a contradiction. The lemma is thus proved.

Let us consider now a fixed finite-dimensional subspace £ of B. We shall
investigate the best approximation of continuous functions by means of
elements of K.
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(2.2) Suppose that a point xye B has two distinct best approximations ey,
e, e E. Then

(o(t) — ey(t))(o(t) — ex(t)) = 0

for every teT.

Proof. According to (1,3), every point of the segment joining e; and e, is
a best: approximation of x, as well. Let us consider now the points
2, = 3z, — &), 2, = L(x, — ¢,). We have then

1 + 22| = [2] + |24

which is impossible unless z,(t) z,(t) = 0 for every t ¢ 7'.

(,3) Let xye B, ey e E. Suppose that x, | B, xy + ey | E. Then xyt) = 0
implies ey(t) = 0 for every t e D(z,).

Proof. According to the preceding lemma, we have xy(t)(zo(t) =4 €4(f)) = 0
for every t e T'. It follows that |zy(t) ey(t)] = (%,(f))? for every t e T'. If t € D(x,),
we have |e,(t)| < |ay(f)]. This inequality may be extended, by continuity, to

all points t € D(z,). Now if x,(f) = 0 and t belongs to D(x,), we have eyt) = 0
by the above inequality. The lemma is established.

3. A necessary condition

Theorem 1. Let E be an n-dimensional subspace of B and suppose that there
exists a b € B the best approximation of which is not unique. Then there exists a
nonzero point e, € B and n distinct inner points t; of T such that ey(t;) = 0.

Proof. Let us denote by V the set of all z, e X with the following property:
There exists an e, € K, e, + 0 such that x, — oe, | E for every o e {—1, +1).
According to our assumption, the set V is not empty.

We shall distinguish three cases:

1° For every x e V, the set Z(x) contains a nondegenerate interval. Let us
take a point x, € V. There exists a nonzero ¢, € £ such that we have x, — oe, | £
for every oed(—1 +41)>. It is easy to see that =z, — ge,eV for every
oe(—1, +1). It follows that, for every 1 e (—1, 1), there exists a nondege-
nerate interval S(1) c Z(x, — Aey). There exist, consequently, two numbers
A, and A,, different from each other, such that the intersection S(4,) n S(4,)
is a nondegenerate interval. Clearly we have then ey(f) = 0 for every
t eS(4,) n S(4,).

2° There exist points z ¢ V such that Z(z) is nondense in 7'. Suppose first
that there exists an « ¢ V with nondense Z(x,) such that Z(x,) contains at least
n inner points of 7'. There exists a nonzero e, e B such that xy ¢, | E as
well. According to lemma (2,3), we have then Z(e,) > Z(x,) and the assertion
of our theorem is proved.
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3% Every 2 ¢ V with nondense Z(z) has at most » — 1 inner zero points.
Let us choose an z, e V with at most n» — 1 inner zero points. If we put t, = a,
t, = b, we may find points £, < ¢, < ... <{,_, <, such that x,(¢) == 0 for
every t different from the ¢,. Since x, | K there exists a linear functional
f on B such that |f| = 1, <&, {5 = 0 and {z,, [> = |z,|. It follows from lemma

(2,1) that f may be expressed in the form f = > ¢;f, where f; are defined by

i-1

la, f> = f t)dt. If e, ..., e, is a basis of £, we may form the matrix {e, f;>.
tl b

Since f vanishes on E, the columns of this matrix are linearly dependent, so

that the rows are linearly dependent as well. It follows that there exists a
t;

nonzero ¢ € K such that e, f,> = 0 for every 4. Since [ e(t) dt = 0, there exist
t;—

points s; such that ¢,_;, < s; < t, and that e(s;) = 0. Th1s concludes the proof.

4., Sufficient and necessary conditions

Theorem 2. Let E be a finite-dimensional subspace of B. There exists a b e B
with a nonunique best approximation if and only if there exist two disjoint sets
@G, and G, open in T and a measurable function m defined on T — (G, u @)
with the following properties:

10 \m(t)| = 1 for every t e T — (G5 L Gy),

20 [e(t) dt fe(t ydt 4+ [ e(t)ym(t) dt = O for every e e E,

G, —(6,U G,

30 there emsts a nonzero eo(e E va)nishing on T — (Gy U Gy).

Proof. Let x, ¢ V. There exists a linear functional f on B such that |f| = 1,
(E,f> =0 and <z, f) = |x,|. Let us denote by &, the set of all { ¢ 7' where
Z,(8) > 0, by &, the set of those t € T' where z,(t) < 0. It follows from lemma
(2,1) that there exists a measurable function m defined on Z(z,) such that
|m(t)] = 1 for ¢ € Z(x,) and that

lx, > :Gfx(t) fz t) de +Zf) t) dé
for every = e B. Conditions 1° and 2° are thus fulfilled for &, G, and m.

Now there exists a nonzero e, ¢ E such that z, — ge, | E for every
ge{(—1, +1>. For ¢ = -+ 1, let us denote by M(¢) the set of all numbers
g€ (0,1) for which mes (D(z,) n Z(z, + €oe,)) > 0. Suppose that M(e) is
uncountable. Then there exist two distinct numbers o, 6,¢€(0,1) such
that the set '

M = D(x,) n Z(zy + €0.8;) 0 Z(x + £0,¢,)

has positive measure. It follows that ¢,(t) = 0 for ¢t e M. Hence x,(t) = 0 for
t ¢ M which is a contradiction with M c D(x,). Hence both M(+ 1) and
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M(— 1) are countable so that there exists a o e (0, 1) which does not belong
to either of them. Put ¢, = ge,. We have thus

(@o(t) — eo(t))(@o(t) + €o(t)) + O
almost everywhere on D(x,). Since z, + ¢, | E we have, according to (2,3)
leo(t)| = |2o(t)| for every t e D(x,). Hence sign (x,(t) 4 e,(t)) = sign x,(t) almost
everywhere on D(z,).
Hence
%o == € :D(f )(xo(t) -+ e(t)) sign z,(t) d¢ +z(f )|€0(t)| dt =

= || = [ e(t) sign a,(t) dt 4 [ |eo(t)| dt .

D(z,) 2(z,)
Since |7, 4 ¢ = |7, we have [ |e, ()| dt = 0.
2Z(z,)
Let us denote by H the interior of the set Z(x,). It follows from [ |e,(t)| dt = 0
Z(w,)

that ey(t) = 0 for every ¢ ¢ H. We know already that |ey(¢)] = |zo(t)| for every
t e D(x,). Since Z(x,) = (Z(x,) n D(x,)) v H, we have ¢, (t) = 0 for every
t € Z(x,). The conditions of our theorem are thus fulfilled.

On the other hand, suppose that we have two disjoint sets G4 and G, open
in T, a measurable function m defined on 7' — (G, u (,) and a nonzero

e, € K tulfilling the conditions of our theorem.
Let us define a function x, on 7' by the relations

zo(t) = 2ley(t)] for te @,
= —2e,(t)] for te@,,
= 0 for teT — (G, v G,) .

It follows that x, is continuous on 7" and different from zero. We have now
Zo(t) — eo(t) = 0 for t e Gy, xy(t) — ey(t) = 0 for ¢t e G, and zy(t) = ey(t) = 0 for
teT — (G, U Gy).

Let us denote by f the linear functional on B defined by the relation

Lz, [ —fx t) dt — [x dt+ [ a@)m(t)di;
T—(6,UGy)

We have clearly <z, f> = |7, [f| = 1 and <E, {5 = 0. At the same time
ey — o] = f(xo(t) — ey(t)) dt — f(xo — eo(t)) di =
= {& — &, f> = (@, ) = [w], and forany ec |

lzg — €| = <z, — e, > = |x,|, so that both 0 and ¢, are best approximations
of x,. The proof is complete.

In the rest of this section we shall subject the subspaces  considered to
the following condition:

(F) Let e ¢ B, ¢ & 0. Then there exists a finite set K c 7' such that e(t) + 0
for every te 1 — K.

Under this restriction, a simple sufficient and necessary condition for the
unicity of the best approximation may be given.
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Let p be a natural number. A sequence §, <t < ... <‘ t, of points will be
called a subdivision of 7" if {) = a and ¢, = b. Let D be a subdivision of 7'.
We shall denote by f(D) the linear functional on B defined by the relation

@ (D)) = 3, (= 1) [ =(t)at.

ti—a

We may state now the following corollary of theorem 2.

Theorem 3. Let E be an n-dimensional subspace of B with property (F). There
exists @ b e B with a nonunique best approximation if and only if there exists a
subdivision D of T' and a nonzero e, ¢ E with the following properties:

19 (B, f(D)y = 0,

20 ¢4(t) = 0 in the inner points of D.

Proof. Suppose first that there exists a b ¢ B with a nonunique best appro-
ximation. According to the preceding theorem, there exist disjoint sets ¢, and
G, open in 7" and a nonzero e, ¢ B with properties 19, 2° and 3°.

The function e, vanishes on 7' — (G, u @,). T — (G, v G,) is finite. It
follows that G, n G, c T — (G, u G,) is finite as well. Let D be the sub-
division of 7' consisting of the points @, b and the points of &, n &,. Condition
2° of theorem 2 reduces then to <{Z, f(D)) = 0. The other implication being
obvious, the proof is complete.

Added in proofs: For another proof of theorem 1 see the article of M. Kpeiin,
L-npobiema B aGeTPaKTHOM JIMHEAHOM HOPMHPOBAHHOM TpocTpanctie, in the book on the
Moment Problem by N. Achiezer and M. Krein, Moscow, 1948.
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Peswowme

b
OB AIINPORCUMALINN B HOPME [l|a(t)] d¢

Buacrumua Iltak (Vlastimil Pték), IIpara
(ITocrynuio B pegakuuio 22/X1 1957 r.)

B pabore uccaenyercss npubimikeHne HenpephIBHLIX (YHKIUN IPU HOMOIIH

9JIEMCHTOB HEKOTOPOTO0 KOHCYHOMEPHOTO IIPOCTPaHCTBA E, €CJIM paccTosAHNe
b

usmepsiercss mopmoit [|x(¢)| dt. Uccmemyiores te mpocrpanersa B, 11 KoTOpPHIX
a

HAWJIYYIIasi allIPOKCHMALMS KajKIOH HeNpepBHBHOM (YHKIUH NP IHOMOIIU
9JIeMeHTOB IlpoctpaHcTBa B Beerpma onnosnauxa. [lommmo mpodvero B pabore
naercst yewsieHue ofHoro pesyibrara H. M. Axwuesepa. Meroy ucciemoBanus
SIBIISIETCS I'eOMETPIYECKUM.
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