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Чехословацкий математический журнал, т. 12 (87) 1962, Прага 

SEMI-GROUPS OF POSITIVE CONTRACTION OPERATORS 

R. S. PHILLIPS, Stanford (USA) 

(Received March 28, 1961) 

The paper is concerned with the general problem of semi-groups of 
positive contraction operators in arbitrary Banach lattices. For discrete 
Banach lattices of /p-type (1 ^ p < oo), the analogue of the Kolmogorov 
differential equations is considered. 

1. Introduction. There is a voluminous literature dealing with a special class of 
strongly continuous semi-groups of positive contraction operators, namely stationary 
Markov processes. The usual setting for such a process is an L^-type Banach lattice. 
Recently, however, some probabilists (see, for example, [6] and [8]) have found 
it convenient to study Markov processes in a Hilbert space setting, treating a special 
class of processes whose members were contraction operators in both the L^ and 
the L2 nietrics. The present paper is concerned with the general problem of semi
groups of positive contraction operators in arbitrary Banach lattices. 

Without assuming positivity, G. LUMER and R. S. PHILLIPS [11] have studied 
semi-groups of contraction operators, characterizing the generators of such semi
groups by means of the notion of a semi-inner-product, previously introduced by 
Lumer. 

Definition 1.1. A semi-inner-product (5. i. p.) associates with each ordered pair 
X, у of a real [complex) normed linear space 38 a real (complex) number [x, j ] 
having the properties: 

(1.1) [x 4- y, z] = [x, z] + [y, z] , [Ях, z] = Я[х, z] , 
[ x ,x ] = | | x p , | [ x , z ] | ^ | | x l | | | z i | . 

It is clear that such a s. i. p. is defined by choosing for each 3; G 36 a functional 
PFJ/GSÉ* such that {y,Wy)— \y\'^ and \Wy\ = \y\. According to the Hahn-
Banach theorem this can always be done in at least one way. 

Definition 1.2. An operator A with domain Ъ{А) is called dissipative if 

(1.2) re [Лх, x] ^ 0 , X e ЩА), 

and maximal dissipative if it is not the proper restriction of any other dissipative 
operator. 
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We state for future reference the following result on contraction semi-groups 
proved in [11]; for convenience we use the notation ЩА) to denote the range of A. 

Theorem 1.1. A necessary and sufficient condition for a linear operator A with 
dense domain to generate a strongly continuous semigroup of contraction operators 
is that A be dissipative with 3ft(/ — Л) = 3£. 

The notion of positivity requires that we work within the structure of a partially 
ordered real vector space. As a matter of fact, we shall restrict our considerations 
to Banach lattices, defined in G. BIRKHOFF'S treatise [1] as a complete normed real 
vector lattice for which the order relation and the norm are related by 

(1.3) |xl S \y\ implies ||x|| й \\у\\ I 

here we have used the notation 

(1.4) |x| == x"̂  — x~ where x'^ ~ x v 0 and x~ = x л 0 . 

For such spaces we require two further properties of our s. i. p. (see lemma 2.1): 

(1.5) i) If X ^ 0 then [j;, x] ^ 0 for all v ^ 0 , 
ii) [x,x-^] = \\x^\\\ 

We now describe the essential property exhibited by generators of semi-groups of 
positive contraction operators. 

Definition 1.3. An operator A is called dispersive^) if 
(1.6) [Ах,х^]йО, хеЦА), 

In terms of this concept we can now state 

Theorem 2.1. A necessary and sufficient condition for a linear operator A with 
dense domain to generate a strongly continuous semi-group of positive contraction 
operators is that A be dispersive with Ш{1 — A) = ^ . 

For discrete Banach lattices of the /^-type (1 ^ p < oo) we consider the analogue 
of the Kolmogorov differential equations solved by W. FELLER [2] for the case 
p = \. To help formulate this problem it is convenient to introduce the following 
concepts. 

Definition 1.4 Let X)o denote the set of all vectors having only a finite set of 
non-zero components. Then corresponding to the matrix (a^j) we define the minimal 
operator AQ with domain "DQ as 

K/)(0 = L«o-/(i). /e2)o; 
and the maximal operator A^ with domain 
T)̂  = [ / ; / G 36 , g{i) = J^j aijf{j) converges absolutely for each i and g e 96], 

^) Bounded dispersive operators in 12 spaces were previously considered by W. J. FIREY in 
a paper entitled "On ballistically closed regions", Applied Math, and Statistics Lab., Stanford 
University Technical Report No. 19, 1954, 68 pages. 
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In order that AQ make sense it is clear that the column vectors of [a^j) must each 
belong to 36. Employing a method of proof which combines ideas from the work of 
W. FELLER [3], T. KATO [7], and W. LEDERMANN and G. E. H. REUTER [10], we are 
able to establish 

Theorem 3.1. Let AQ be a dispersive minimal matrix operator. Then there exists 
a strongly continuous semi-group of positive contraction operators [F(r)] with 
generator A such that AQ с A cz A^^. 

It is shown that the semi-group [F(f)] is minimal with respect to all semi-groups 
of contractions with generators A' з AQ or A' с A^. Actually [F(t)] is even minimal 
with respect to all semigroups of positive contractions \_S{t) = (^^/ф] for which 

For the case p = I, these results are well-known and are found in each of the above 
mentioned papers ([2], [3], [7], [10]). Moreover, W. B. JURKAT [5] has estabHshed the 
existence of a minimal solution to a generalized Kolmogorov equation in a much 
more general setting than ours; however, his development requires the a priori 
existence of some positivity preserving matrix solution to the giyen equations. 
What is novel in this part of the present work is the characterization of those matrices 
for which a solution exists in the form of a semi-group of positive contraction 
operators in the given (discrete) Banach lattice. 

When 36 = I2 äi^^ ^0 is symmetric as well as dispersive, we show that the generator 
A of [F(r)] is the Friedrichs' self-adjoint extension of AQ. Another result (and a 
somewhat disturbing result) is that for 3Ê = Ĵ , (1 < p < 00) the only honest process 
(i. е., ||S(^) x|| == ||x|| for all x ^ 0 and all ^ ^ 0) is the trivial semigroup [S(t) = / ] . 

The previous theory can be used to shed some light on the existence of a generator 
Л of a semi-group of contraction operators when it is required to be both an ex
tension of a given dissipative minimal matrix operator AQ and a restriction of the 
corresponding maximal matrix operator A^. 

Definition 1.5. A minimal matrix operator AQ with elements (а^у) is said to he 
majorized by the matrix operator MQ with elements (m^^) i /(i) MQ is a dispersive 
minimal matrix operator, and (ii) 0 ^ m^ ^ re [a^^] and |a^y| ^ mijfor all i ф j . 

In terms of this concept we are able to prove 

Theorem 4 . 1 . / / Л 0 is a dissipative minimal matrix operator which is majoriz-
able, then there exists a dissipative generator A such that AQ a A cz A^. 

Although this theorem is applicable in all discrete complex Banach spaces of the 
/^-type (1 g p < 00), it is only for the case p — 1 that all dissipative minimal matrix 
operators are majorizable (lemma 4.1). Hence it is only for p = 1 that we obtain 
a complete solution for the above posed problem. 

2. General theory. The principal result of this section is theorem 2.1 which 
characterizes the generators of strongly continuous semi-groups of positive con-
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traction operators. Before proceeding to the proof of this theorem, we shall verify the 
fact that there exists a s. i. p. with the properties (1.5) in a Banach lattice. Since 
x^ A ( —x~) ~ Ofor any X G $ , it is clear that it suffices to prove 

Lemma 2.1. Given x ^ 0, there exists an F E 36* satisfying a) F is positive, 
b) Fx = | | xp = \\F\\^. and c) Fy = 0 for every y such that x A \y\ = 0. 

Proof. Setting Я = [y; X л l̂ l == 0]; it can be shown that iV is a closed linear 
subspace and that if |z| ^ \y\ for yeN, then ZGN. Moreover ||x - y\\ ^ ||x|| for 
all у e N. In fact, according to [1; p. 220] 

\x~-y\=XVy~XAy 

and since x v у '^ x and x л у ^ x л |з;| = 0, we see that |x — j;] ̂  x and hence 
the assertion follows from (1.3). By the Hahn-Banach theorem there exists an F e 36* 
such that IIFII = ||x||, Fx = ||^||^. and F(N) = 0. Next we decompose F into its 
positive and negative parts (cf. [1; p. 245 and p. 248]): f = f+ — f- where for 
>̂  ̂  0, F'^y = sup l^Fz; 0 ^ z ^ y]. It is clear from the above stated properties 
of N that ^^{N) = 0. Further for arbitrary z G 36, we have 

JF^zj - |F-^z^ + F-^z-j S max(|F+z + |, JF+z-j) ^ | |F | | max(|lz-^[|, ||z"||) ^ 

^ ll̂ ll И 
so that IIF "̂  II ^ IIFII. Finally for the given x 

Fx ^ F-̂ x й \\F'^\\ \\x\\ S \\F\\ \\X\\ = f|xf = Fx 

and consequently F"^x = Fx = Hx^and ||F"^|| = [|F||. It follows that F'^ satisfies the 
assertion of the lemma. 

The following lemma is essential to the proof of theorem 2.1: 

Lemma 2.2. / / T is a linear positive operator contractive on positive elements, 
that is \\TX\\ S II^II (f ^ ^ 0, then Tis a contraction operator. 

Proof. Since |z + 3̂1 ̂  jzj 4- \y\, we see that 

|Tx| = JTx-" + T x - | ^ JTx-^j + |Tx-~| = T(x-^ - x " ) = Tjxj 

and hence by (1.3) 

\\T4 s \\ти\\ s \\\4\ = ll-ll • 
Theorem 2.1. A necessary and sufficient condition for a linear operator A with 

dense domain to generate a strongly continuous semi-group of positive contraction 
operators is that A be dispersive with 3t(/ — Л) = 3£. 

Proof. If A generates a semi-group of positive contraction operators ['S(t)], 
then Ш{1 - Л) = 3Ê by the Hille-Yosida theorem [4; theorem 12.3.1]; and further 

(2.1) [ x , x - ] = \\x-r ^ \mx-\\ \\x-\\ ^ [S{t)x-,x-] 
^ [S{t) x + , x+] + [S{t) x~, x+] = [S{t) X, x^] 
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so that for X e Ъ{А) 
d _ .. ._l 

й 0, dr 0 

which proves that A is dispersive. 
In order to prove the converse assertion, let us suppose for the moment that 

Ш,{Х1 — Л) = 3£ for some Я > 0. Then for fixed / > 0 in $ there is an x e Ъ{А) such 
that kx — Ax = / . Making use of the dispersive property of A we see that 

X\\x-f = A[- x , ( - x ) - ] й A[-x,(-x)^-] - [ л ( - 4 ( - х ) - ] = 
= [-/,(-^Г]^о 

consequently x ^ 0 and 
l | |xf = X\x, x+] ^ Я[х, x+] - [Лх, x^] = [/, x^] й Il/Il ||x|| . 

Thus 
(2.2) Щ\й\\А\. 
Since 0 is a non-negative element, the relations (2.2) implies that {kl — Ä) is one-to-
one. Hence (2.2) together with lemma 2.2 implies that 

ЯЯ(АМ) = Я(Я - Л)" ' 
is a positive contraction operator. Now according to [4; corollary 2 to theorem 5.8.4] 

jR(/i; A) = R{X\ A) [I - {ix - Я) R(A; А)У^ 
holds for 1̂  -- X\ < 1Д. In particular then, К(/|/ ~ Л) = 36 for |/г -- Я| < 1/Я 
and the dispersive property shows as above that /ijR(ju; A) is a positive contraction 
operator in this range. This permits us to extend the result by analytic continuation 
to all /X > 0 once it is known that Ш{11 — Л) = 36 for some Я > 0. However this 
is precisely what is assumed in the hypothesis to the theorem. The Hille-Yosida 
theorem [4; theorem 12.3.1] therefore applies and establishes the fact that A is the 
generator of a strongly continuous semi-group of contraction operators [S'(t)]. It 
is evident from the proof of the Hille-Yosida theorem that 

(2.3) S(0 X = lim exp ( - Xt) fj ^ [Я R{k; Л)]" x 

and it follows from this expression that S{t) is a positive operator if Я R{X\ Ä) is 
positive. 

Combining theorems 1.1 and 2.1, we obtain 

Corollary. If ^ is a Banach lattice and A is a dispersive semi-group generator, 
then A is also dissipative. 

We do not know whether an arbitrary dispersive operator is dissipative. However, 
as the following lemma shows this is the case for the familiar Banach lattices: 

Lemma 2,3. / / 36 is a Banach lattice with s. i. p. satisfying the condition 

(2.4) [y, x] = a[b x^] - ß[y, (^x)-^] , у e 36 
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for some (X, ß ^ 0 (^depending on x), then each dispersive operator on 36 is also 
dissipative. 

Proof. For X e ЩА), the relation (2.4) implies that 

l^Ax, x~\ = a\_Ax, x^~\ — ß\_Ax^ ('~^')^] > 

and since A is dispersive, we have \_Ax, x"^] ^ 0 and [^(•-^), ( - ^ ) ^ ] й 0 from 
which \_Ax, x] ^ 0 follows. 

3. Generalized Kolmogorov differential equations. In this section we study the 
analogue of the Kolmogorov diiferential equations for a general class of discrete 
Banach lattices. More specifically we suppose that Ж is a function space, that is a 
class of real-valued functions [/(i); i e 3 ] on an abstract set 3 , satisfying the usual 
algebraic relations and in addition 

(3.1) (i) The set 25o of all functions with only a finite set of non-zero compo
nents belongs to 36; 

(ii) f ^ g is. taken to mean that/(i) ^ g(j) for all i G 3 ; 
(iii) Any monotone increasing directed system of positive elements [Д] 

which is bounded in norm is a Cauchy sequence and converges to V/TC-
As a consequence !So is dense in 36. In fact, for / e 36 let n denote any finite 

subset of X, order the ^'s by inclusion, and set fjj) = f{i) for i en and = 0 
otherwise. Then for n, g я^, | A j ^ |Л, | й \f\ and | / - Л | = | / | - j / , ] ; hence 

II/. ~ / l U | l l / . | - I/Ill 
which converges to zero by property (iii) above. It also follows that if / 6 36 and 
\Q\ й | / | , then g e?è. It is clear that the Ip spaces (1 g p < oo) over sets of any 
cardinality are examples of such spaces, as are product spaces such as Ip x lq{l й P^ 
q < oo). 

Any operator A with domain containing X)o can be represented on ©o as a matrix 
operator: (Af) (i) = X/ ^ufij)^ / ^ ^o-

Lemma 3.1. / / A is a dispersive operator with ЩА) => X)o, then a^ S 0 and 
dij ^0 for i Ф j . 

Proof. Suppose Xj is defined as x / i ) = 0 for i Ф j and x / j ) = 1. Then it is clear 
that [/, x J = ll^jll^/0*)- Hence [Axj,Xj] S 0 implies ajj й Ö. Likewise setting 
X = BXi - Xj, i Ф j and e > 0, the relation 

[Ax, x"-] = efxif {FMU - uij) й 0 

for all e > 0, implies a^ ^ 0 

R e m a r k 1. If 36 = li{w) with norm \\f\\ = 5]wi|/(i)| (here the w^ are positive 
weight factors), the notion of a dispersive minimal matrix operator and a Kolmo
gorov matrix operator coincide. In fact for a fixed finite subset n of 3 , suppose 
i 6 n and define x(i) = 1, x(j) = e > 0 for j e тг, j Ф i, and x(j) = 0 otherwise. 
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Then 
О ^ [Ax, x] = \\x\\[Y, M^ki + £ E ^/c;)] 

]Ф1 

for all г > 0 and n implies 

(3.2) E w ^ j ^ O 

which is the KolmogorofF condition when combined with ац ^ 0 and a^ ^ 0 for 
i Ф j . It is easy to see that this condition also suffices to make the minimal matrix 
operator dispersive. 

R e m a r k 2. Let 36 = lp{w) with norm | | / j | = Ен^,|/(ОП^^''- Then if У4 is a dis-
sipative minimal matrix operator such that a^ S ^ and a,y ^ 0 for / Ф j , then A is 
necessarily dispersive. In fact given XEX)O and setting y{i) = w{i) x{i)^~'^j\\x'^\\^~^' 
for x(f) > 0 and = 0 otherwise, we see that 

[Ax, x^] = Y Œ « u < i ) ) y{i) = [Ax^^ x^] + X a..,x(j) y(0 ^ [ Л x ^ x^] ^ 0 , 
x(i)>0 j x(j)<0 

x{i)>0 

since üij ^ 0 if i Ф 7 and x(j) y{i) < 0 for x(i) > 0 and x(j) < 0. 
We include for completeness the following generalization of a lemma due to 

G. E. H. REUTER [15; lemma l . l ] (cf. W. FELLER [3; theorem 3.1]): 

Lemma 3.2. In order that a family of linear bounded operators [R^; À > Ö] he 
resolvent operators for the generator of a semi-group of (positive) contraction 
operators it is necessary and sufficient that 

(i) R, - R^ = (M - Я) R^R, , Я, // > 0 , 

(ii) XR^ is a (positive) contraction operator for each X > 0, 

(iii) lim ÀR;^x = x , x еде . 
Я-* 00 

Proof. The necessity is clear from well-known properties of the resolvents of 
generators of semi-groups of (positive) contraction operators (see [4; theorems 5.8.1, 
11.7.1, 11.7.2, and lemma 12.2.1]). On the other hand, operators î ^ satisfying the 
above properties must be one-to-one. For if Ĵ ;X = 0, then by (i) R^x — 0 for all 
fi > 0 and (iii) implies that x = 0. According to [4; theorem 5.8.3] the jR '̂s are 
resolvent operators for some closed linear operator, say A. Since 35(Л) == SR[JRJ it 
follows from (iii) that ЩА) is dense. Hence (ii) together with the Hille-Yosida the)-
rem ([4; theorem 12.3.1]) implies that A generates a strongly continuous semi-group 
of (positive) contraction operators. 

Corollary. The lemma remains valid if condition (iii) is replaced by 

(iv) R;^{ÀI - Ao)x = X, xe X){Ao) , 

for some Я > 0 where X)(^AQ) is dense in 36. In this case the generator A is an extension 
of Ao. 
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Proof. It suffices to show that (iv) implies (iii). However, for xe2)(^o) , we see 
from (ii) and (iv) that ЦЯЯ̂ х - x]| - ||i^A^o-^|| = 0{уХ}. Thus (iii) holds for all 
.X in T){AQ) and since this set is dense, condition (ii) allows us to assert (i) for all x 
in Ï . 

We now establish the existence of a semi-group solution to our generalized Kol-
mogorov equations and in deference to Feller we denote this solution by [F(r)]. The 
minimal properties of this solution will be verified afterwards. 

Theorem 3.1. Let AQ be a dispersive minimal matrix operator. Then there exists 
a strongly continuous semi-group of positive contraction operators [F(f)] with 
generator A. such that AQ cz A cz A^. 

Proof. Let 71 denote a generic finite subset of "̂ ^ The class of TI'S, ordered by in
clusion, forms a directed set. Corresponding to each n we define the matrix operator 
Q = (c^j) where c"y = a^ if /, j en and / Ф j , and c^ = 0 otherwise; then c'^j ^ 0 
for all i, j . Since C^ has only a finite set of non-zero elements it is well defined with 
S)(C^) = 3E. Next we define В = (bij) where bij = a^ for / = j and bij = 0 other
wise; then bij S Ö for all /*, j . As to its domain, we set 

S (5 ) = [ / ; / a n d { a „ / ( 0 } 6 3Ê]. 

We now approximate the desired operator by 

(33) A,, = B + C, with ЩА^) = ЦБ). 

Finally we decompose 36 into 36̂  and 36̂  where 

(3.4) Эе, = [/;/(() = 0 if 1фж], 
Ï ; = [ / ; / ( 0 = O if ien]. 

It is clear that A^ leaves 36̂  and 36̂  invariant and that A^ restricted to Ж^ (in symbols 
AJ^^) is the same as AJ^é^ as concerns the dispersive relation. Hence AJ?^^ is 
dispersive and since 7/36^ - (AJ^^) is one-to-one (by 2.2)) and 38̂  is finite dimensional 
we have ЩЩ,) - {AJ?èJ] = 36,. On the other hand AJ^', is diagonal with 
non-positive elements and hence dispersive and it is readily verified that 3fl[(//3EJj) -
- (^д/Зе;)] = Зе;. Again Ьу (2.2) we see that for Я > 0, Я Я(Я; A^) exists and is 
a positive contraction operator when restricted to either 36„ or 36 ;̂ consequently it 
is positive and of norm ^ 2 on Ж itself. 

For a given / ^ 0 in ©o, we consider only those к which contain the support of 
/ . In this case x„ = К(Я; Л ^ ) / Е 36, and ЯЦх^ й ||/||. For n^ S n^, it is clear that 
C,^ ^ C,, so that 

К(Я; Л , J ~ К(Я; Л, J = Я(Я; ^ J (C,, - C, J R{X; A^) ^ 0 . 

e may conclude from (3.1) that { 
LndA||x|| g ] | / | | . SinceDoisden 

XR^ ^ strong limits Я R{X\ A^ 

Thus 0 ^ x̂ ^ ^ x^2 ^1^^ ̂ ^ ^^y conclude from (3.1) that {x^} for a Cauchy sequence 
with lim^ x^ ~ X = V r̂t and Я||х|| g ] | / | | . Since DQ is dense in 36, we see that 
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exists, that it is positive and contracting on positive elements, and hence by lemma 
2.2 that it is a positive contraction operator. Further the strong limit of resolvent 
operators satisfies the first resolvent equation and thus condition (i) of lemma 3.2. 
Finally for each x e ©o ^ ^{^n) we have 

К ( Я и , ) ( Я / - Л,)х = х 
and 

lim^ A^x = AQX . 
Passing to the limit we then obtain R^i^J — AQ) X = x. It follows from lemma 3.2 
that î Д is the resolvent of a generator Л of a semi-group [i^(^)] of positive contraction 
operators and that A z> AQ. 

It remains to show that A с A^. It clearly suffices to consider only elements in 
X)(A) of the form x = R(À; A)ffoTf ^ 0. In the notation of the previous paragraph 
X = lim^ x̂  where (M — Л )̂ x„ = / ; in particular 

Jen 

The sum on the right consists of non-negative terms each of which is monotonie 
non-decreasing in n. The monotonicity which was proved only for positive / in 
T)Q holds for all / ^ 0 by continuity. Since the equality is termwise convergent, it 
follows by Fatou's lemma that the equation holds in the limit; that is 

(Я - Ui,) x(i) - / (0 + X «ii 4 i ) ' ^ ^ 3 . 

Transposing the infinite sum to the left hand member we see that ^ j aij x(j) is ab
solutely convergent for each i e 3 and that 

(Ax) (0 = (Ax - / ) (i) = I , a,j x{j), J 6 3 . 
This concludes the proof of theorem 3.1. 

Remark. For any / ^ 0 and x^ = R{2,; Л^)/е ©(Л^) = ЩВ), it is clear that 
Ax̂  - Бх^ = / + C^x^ 

so that 

X, = R{1; B)f + R{X; B) Qx , = J К(Я; В) [С, R{X; B)ff + [К(Я; В) Cj"^^ x,. 

Hence 
00 

Ou'ZR{^;B)[C,R{X;B)ffux^ 
k = 0 

and it follows that the infinite series converges in norm for / ^ 0 and hence for 
arbitrary / G 3£. In particular then [R{À; B) Cj^"" R{À; B)f-^ 0 and consequenctly 
[jR(A; B) С J" z -> 0 for all z e ЩВ). Therefore 

00 

(3.5) R{l;A^)f=l^R{X;B)[C^R{X;B)Jf. 
k = 0 

We now consider the minimal properties of the proceSiS [i^(0]-
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Theorem 3.2. Let ÄQ be a dispersive minimal matrix operator, let A^ be the cor
responding maximal matrix operator, and let A be the generator of the process 
[F(r)] constructed in theorem 3.1. Suppose that A' is the generator of a semi-group 
of positive contraction operators [^(r)] and either A' с A^ or A' з AQ. Then 
F{t) S S{t)for all t^O, 

Proof. In order to prove that F{t) ^ S{t) for all ^ ^ 0, it suffices to show that 
К{А; A) й R{k Ä') for all 1 > 0. For in this case [Я(Я; Л)]" й [R{^; Л')]" for all 
Я > 0 and integers n ^0 and it follows from (2.3) that F{t) ^ S{t). Suppose first 
that A' 3 AQ and le t / ^ 0 belong to S Q . Then in the notation of the proof of theorem 
3.1, we have JR(A; A^)feX)o and since A' — A^ = AQ ~ A^ on X)^ (and hence has 
only non-negative matrix elements as an operator on ©o)» ^^^ second resolvent 
equation yields 

R{X; A')f - R{1; A,)f = R{X; A') {A' - A^) R{X; A,)f ^ 0 . 

Now S)o is dense in ï"^ so that R{À; A')f ^ R{À; A^)f for all / ^ 0, and passing 
to the limit with n we obtain JR(1; A')f ^ jR(A; A)f, which was to be proved. 

Next suppose that A' c: A^ and take / ^ 0. Setting x' = R{À; A')f and x^ = 
= jR(l; A^)f, we see that 

(3.6) (Я - a,0 x'{i) = / ( /) + X a,j x{j) ; 

(Я - a,,) x,(o( /;̂  

For i ^ n it is clear from these relations that x{i) ^ x^i) ^ 0. On the other hand 

[Я(7/Зе„) - (^,/Зе,)] {x'{j) - x{j); i 6 я} = { E a,j x'{j) ; i e я} 
jnoncTt 

has a unique (positive) solution because of the dispersive property of Ад/дс^, = 
= AJ?è^; thus x\ï) ^ x„(i) for all i e тг. Consequently x' ^ x^ and passing to the 
limit with n we conclude that R{X; A')f ^ JR(A; Л ) / . 

The [jF(f)] process is minimal with respect to an even larger class cf semi-groups 
which can be associated with the matrix (a^j) by means of the following resuh due to 
W. F. JuRKAT [5]: Let [(Pij(O)] denote a semi-group of positive matrices satisfying 
the condition Pij{t) -> <3,.y as r -> 0^; then 

t-^0+ t 

exists but may be infinite, and 
a,i = lim p^j{t)lt ^ 0 

exists and is finite for all i ф j . In particular this applies to any strongly continuous 
semi-group of positive contraction operators. 

303 



Lemma 3.3. Let [^S{t) = (s,-/^))] be a strongly continuous semi-group of positive 
contraction operators and set a^ = s\j{0). If the column vectors of the matrix 
(ац) belong to ЭЕ, then the minimal matrix operator AQ associated with (a^j) is 
dispersive. 

Proof. Let yeX)o and suppose that the support of 3; is contained in the finite 
subset n of 3 . Then the s. i. p. functional associated with у as in lemma 2.1 vanishes 
for all z with z[i) — 0 for all i in n. Consequently \ß{t) У, У^~\ depends only on the 
\sij{t)\ i, j e 7г] portion of S[t) so that its derivative at Г = 0 exists and depends only 
on the [a,y; i, j e 71] portion of AQ. Applying the inequality (2.1) we obtain 

at 

which was to be proved. 
It should be emphasized that the above lemma does not require the infinitesimal 

generator A' of [5'(^)] to be an extension of AQ, nor, for that matter, a restriction of 
the maximal matrix operator A^. Never-the-less we have the following result: 

Theorem 3.3. Suppose [S'(f)] is a strongly continuous semi-group of positive 
contraction operators with the column vectors of (ciij = ^i/O)) i^ 3E and let \F(t)\ 
be the process associated with (aij) as in theorem 3.1. Then S{t) ^ F(?) for all 
t^O, 

Proof. Let A' denote the infinitesimal generator of [S{ty] and suppose that 
X ^ 0 belongs to T){A'), Then 

(A'x) (0 = lim {t-%,{t) - 1) x(0 + X r "s.-XO xij)}, 
f->0+ jФi 

so that by Fatou's lemma we have 

(3.7) ( Л ' х ) ( 0 ^ а „ . х ( 0 + 1 а у х О - ) . 

Now let / ^ 0 be given and set x = Я(Я; A')f and x^ = R[À; A^)f, where again 
we use the notation of theorem 3.1. Then Xx ~ A'x = / implies 

{X-au)x{i)^f{i) + Y.^iAJ)-

Comparing this with the corresponding relation for x^ namely (3.6), we obtain 
precisely as in the proof of theorem 3.2 the fact that R[À; A') ^ R(A; A), where 
A is the generator for the [F(r)] process. As in the proof of theorem 3.2, this impHes 
the assertion of the theorem. 

R e m a r k 1. It is interesting to note that when [5(/)] is a strongly continuous 
semi-group of positive contraction operators with generator A' and when A' :=:> AQ • 
or A' cz Ai, where as before AQ and A^ are minimal and maximal matrix operators 
associated with (a^y), then s[j{0) = a^. This is obvious when A' => AQ for in this 
case X, = {x,(i) = ô^j} e ©0 c= ЦА') and s\j{0) = (A'xj) (i) = (AQXJ) (i) = a,j. 
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On the other hand when Л' a A^ then theorem 3.2 applies and we see that S{t) ^ 
^ F{t). Thus if we set a ĵ = ^̂ (̂O), then it follows from this that 

(3.8) a,j^a,j 

and in particular that a^ > - o o . Moreover for x ^ 0 in 'ЩА') с ЩА^) we have 

J 

whereas by Fatou's lemma we have as in (3.7) 

J 

Consequently Yu^'u ^j) ^ Z^ü ^0) ^̂ ^̂  combining this with (3.8) we see that a^j = 
= aij provided x(j) Ф 0. However for any / ^ 0 Д К(Я; A')f ^ 0 and converges to 

/ as Я =^ 00. Thus for each j there is an x ^ 0 in T>{A') such that x(j) > 0, and there
fore a и = Œij for all i, j . 

R e m a r k 2. The preceding theorems can be extended so as not to require the 
column vectors of (a^^) to lie in 36. In this case the notion of a minimal matrix opera
tor may not be meaningful. Never-the-less the operators AJ^^ are well defined and 
we can require that each of these operators be dispersive. We can then proceed to 
construct the process \F{t)] as in the proof of theorem 3.1. The argument showing 
that R^ = strong limit R(A; A^) exists and satisfies the first resolvent equation for 
Я > 0 remains valid. The relation R;^(XI — ^o) x = x, x e X)o, no longer makes 
sense. Instead we can prove that Hm Ш;^/ = / for all / G $ , provided we further 

Я - ^ 00 

assume that 96 is a uniformly monotone Banach lattice. As defined in [1, p. 248] 
this means that given e > 0 there is a ^ > 0 such that for f, g ^ 0 and | j / | | = 1, 
then | | / + , |̂| й \\f\\ + ^ implies ||6f|| й £• Now f o r / > 0, 

\\{XRJ - Я К(Я; A,)f} + Я R{1; Л , ) / | | = \\mj\\ ^ \\f\\ 

and since ЯК(Я; Л ^ ) / - > / , the uniform monotonicity of the norm implies that 
\\ARJ ~ Я R{X; A^)f\\ -> 0 and hence that XRJ-^f. 

Lemma 3.2 now shows that î ^ is the resolvent of a generator A. of a semi-group 
of positive contraction operators. Finally one shows as in the proof of theorem 
3.1 that A. с A^. The proof of theorem 3.2 shows that [F(^)] is minimal over all 
semi-groups of positive contraction operators having generators A' a A^. For an 
arbitrary semi-group of positive contraction operators \B{î)\ with a^j ̂  s'̂ /O) 
finite for all i, j , one proves as in lemma 3.2 that AJ^^ is dispersive and the proof 
of theorem 3.3 shows that F{t) й S{t) for all Г ^ 0. 

Theorem 3.4. Suppose 36 = h^'^) ^^^ ^o ^^ ^ symmetric dispersive minimal 
matrix operator. In this case the generator A of the minimal process \_F{t)] con
structed in theorem 3.1 is the Friedrichs' self-adjoint extension of AQ. 
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Proof. It will be recalled that R(À; A) is the strong limit of the approximating 
resolvents R(/i; A^) where A^ is defined as in (3.3). Now A^ is obviously self-adjoint 
and hence so is R{À; Л J and R(À; A) for Я > 0, and finally so is A. 

We next show that the Friedrichs' extension, which we denote by A\ is dispersive. 
The Friedrichs' extension is defined as follows: Let 
(3.9) <x, y} = -{AQX, y) + (x, y), X, ye ©o . 

Condition (2.4) is satisfied in Izi^") so that AQ is also dissipative, that is (AQX, X) ^ 0 
for all X e DQ. AS a consequence (3.9) defines a new inner product on ©o- If ®i 
denotes the completion of ©o ^ith respect to this new metric, then it can be shown 
that 25i с l2{w). In terms of these notions, the Friedrichs' extension is given by 

A' с Л* and ЦА') = ®i n D ( ^ * ) . 

Now for X e 2)o5 (̂ 5 •̂ ) = (x"*", x"̂ ) + (x~, x~) and 

{AQX, X) = ( ^ 0 ^ ^ . •^" )̂ + (̂ o->-'" .̂ ^~) + (^0-^"". ^^) + {^o^~, ^'~) • 

Each term on the right in this last expression is non-positive; the first and last be
cause of the dissipative property, and the middle two because a^j^O for / Ф j 
so that 

j c ( i ) < 0 x{i)>0 
xU)>0 xiJ)<0 

Therefore we can assert 
(3.10) <x, x> ^ <x+,x + >. 
Suppose next that x e X)(A'), Then there exists a sequence {x„} с X)Q which converges 
to X in the <. > norm. By (3.10) the sequence {x^} will be bounded in the <. > norm. 
Hence there is a subsequence, which we renumber as {x,^}, converging weakly in 
both the <.> and the (.) metrics. It is clear that {x„"̂ } converges to x^ in the (.) 
metric since this was true of the original sequence. Moreover since 

and since Do is dense in ©i, we see that {x;"̂ } converges weakly to x"̂  in the <.> 
metric. Further 

the first term on the right converges to 0 uniformly in m and the second term con
verges to 0 uniformly in n. Hence the double limit exists and in particular 
lim (̂ oX„, x^) exists. Now 
n,m 

(A'x, x^) = lim (Л'х, x,̂ ) = lim (x, AQX^) 
m m 

= lim lim (x„, AQX;^) = lim {AQX^, X„^) ^ 0 . 
m n n 

It follows that A' is dispersive. 

306 



Once we know that A' is dispersive as well as dissipative and self-adjoint, theorem 
2.1 implies that A' generates a semi-group of positive contraction operators. Accord
ing to theorem 3.2 

(3.11) R{X; A') ^ R{1; Л) , A > 0 , 

since A' =) ^0- On the other hand, M. KREIN [9] has shown that the Friedrichs' 
extension is minimal among all self-adjoint extensions of Л о in the sense that 

(3.12) {R{X; A')fJ) й ( 4Я; A)fJ), A > OJ e /,(iv) . 

The relations (3.11) and (3.12) together imply 

(3.13) {R{l;A')f,f)^{R{X;A)f,f), f^O. 

Replacing/ by / + ô̂  in (3.13) for / , g ^ 0 and using the symmetry of the resolvent 
operators, we see that 

{R{X; A')f, g) = (i^(A; A)f, g) and from this we infer that 

R{1; A')f = jR(A; A)f first for a l l / ^ 0 and then for a l l / G l^iw) . 

This establishes the identity of A and A'. 

In the theory of Markov processes on L-^-spaces the honest processes play a very 
important role. It is therefore somewhat surprising to find that there are no non-
trivial honest processes in /p(w), 1 < p < oo. 

Theorem 3.5. For 36 = lp(y^), 1 < p < со, the only honest process is [S(^) ™ / ] . 

Proof . If/, g ^0, then 

lim гГ'[\\/ + ê ll̂  - i|/||-] = p TJV, g{i) [f{i)T' , 
e->0 + 

as can be readily verified by using a termwise Taylor series expansion (two terms 
plus a remainder) of the expression on the left. Suppose that [S(r)] is honest, that 
is suppose it consists only of positive contraction operators which are isometric on 
positive vectors. Then for x̂  = {xlj) = ^,-J and £ > 0, we have 

e-^[ | |S(0(x, + sxj)\\^ - \\S{t)x,\\q = 8-^[\\x, + ex,l|^ - ||x,]k] , 

and passing to the limit as e -> 0 + we obtain 

(3.14) Zw, s,j{t) [s,lt)f' == Zw, ô,lô,,Y-' = О 

for i Ф j . Now S(r) ^ 0 impHes s^/r) ^ 0. Further 

Sii{t + T) = Yk^ikit) Ski{^) ^ Silt) Silt) , 

and since Sii{t) -> 1 as Г -> 0, we may conclude that Si^t) > 0 for all t ^ 0. Thus 
(3.14) implies Sij{t) = 0 for all i Ф j . Finally since \\S{t) x |̂| = \\xi\\ we conclude that 
Sii{t) = 1; in other words S{t) = / for all t ^ 0. 

4. On the extension of dissipative matrix operators. The problem of extending 
a dissipative minimal matrix operator AQ to a dissipative generator A (of a semi-group 
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of contraction operators) so that A is at the same time a restriction of the correspond
ing maximal matrix operator yl^, is not in general solvable. However, by utihzing 
the previous dispersive theory we obtain a complete solution in /i(w) spaces and a 
partial solution in the case of some other discrete Banach spaces. 

In the present section we deal with Banach spaces of the type ?9 = 36 x $ , where 
36 is a discrete Banach lattice satisfying the conditions (3.1). Thus a generic element 
of Ф is of the form [x^, X2} with x^, X2E^ and for real a, Ь we have 

(a + ib) (xj, X2} = {ciXi — bx2, bxi + 0X2} • 

We employ the notation Цх^, ХзЦ for the variation of {x^, X2} e Ч) where 

(4.1) |{х„х,}|(0-[К(0Г + К(0Г]*. 
From the fact that X)Q is dense in ЭЕ, it is easily verified that j{xj,, X2}| e ï . Finally 
we assume that 

(4.2) \M = l\y\\\ 
as given in 3£. It is clear that the familiar complex /^(w) spaces are of this type. 

The notion of majorizing as defined in Definition 1.5 plays the central role in this 
section. Not all dissipative operators are majorizable. For instance, for ф = /2 
(complex) of dimension 2 and 

4 i\ 
^ 0 = 1 - 1 

it is easy to see that (A^y, y) ^ 0 for all y. According to the second remark following 
lemma 3.1, in order that a majorizing operator MQ be dispersive, it suffices that it 
satisfy conditions (i) and (ii) of Definition 1.5 and be dissipative. However, in the 
case of AQ this requires that 

è m,,m22 ^ { - ^ ^ ^ ^ 1 , 
4 V 2 

which is impossible. Never-the-less for li{w) we have 

Lemma 4.1. For Ч) = /^(w) a minimal matrix operator AQ is dissipative if and 
only if 

(4.3) w,-re[a,J + X > ^ > i / N O , i e S -

Such an operator is always majorizable by MQ ~ (mij) where Шц = re [а,^] and 
mij =-- \aij\ for i Ф j . 

Proof. For у e Т)ОУ the s. i. p. is defined as 

In particular, for a finite subset я of 3 and for fixed i e 71, if we set y[i) ^ 1, y(j) = 
= e(sgn aji) for J e n, j Ф i', and y(j) = 0 otherwise, then 

re [ЛоУ, у] = !|>'|| [wi re [ ац] + E ^^М + 0{s)] ^ О . 
кФ'1 
ксп 
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Since this holds for all s and n we see that (4.3) holds. Conversely if (4.3) holds and 
y e ©0 with carrier тг, then we have 

^^ЫоУ,у] = \\у\\ ^^[H^iy(ölKOI"'Z^ij-yij)] ^ 
is к Jen 

è Ы lli^'i re [«,-,•] + X n | a , , | } IXOi] й 0 . 
кек 

Setting Шц = re [a^/], rrifj = |a^j| for i Ф j , it is clear from the first remark following 
lemma 3.1 that MQ is dispersive and hence that it majorizes AQ. 

The principal result of the present section is 

Theorem 4.1. Let AQ be a dissipative minimal matrix operator which is major-
izable. Then there exists a dissipative generator A. such that AQ a A a A^, where 
Ai is the corresponding maximal matrix operator. 

Proof. Let MQ = (m^y) be a majorizing minimal matrix operator for AQ. Fol
lowing the approach employed in the proof of theorem 3.1, we define the operators 
N and P^ on the discrete Banach lattice 36 and В and C„ on ф = 36 x 36 (TI being a 
finite subset of 3) as follows: 

{Nx) (0 = шн x{i), Ъ{М) - [x; [m,, x(i)} e 36] ; 

/ = Z ^iAJ), ï' e 71, 

(M(Ox ^t: 
^ = 0 , iфn, Î)(P,) = 36 ; 

(4.4) {By){i)=^any{i), ЦВ)=^[у;{а,,у{{)}еЩ; 

(O)(0( itn 

Setting A, = В + C,, M, = N + JP„ where ЩА,) = Х){В) and ®(M,) - ©(N), 
and defining ф^ and Wn as in (3.4), it is readily verified that AJ4)^ and AJ% are 
dissipative and that the equations 

{U~A,)y,=f, ( Я / - М , ) х , = = | / | , / е ф , 

have unique solutions for Я > 0. Since MQ is dispersive, the resuhs established for 
AQ in the proof of theorem 3.1 apply. In particular the relation (3.5) holds and we 
have 

(4.5) x„ = К(Я; MJ 1/1 = i R{X; N) [Р^^; N)f Щ 

and lim„ [R{X; N) P J " z = 0 for all z e ЦЫ). On the other hand, {XI - B) y^ = 
= / + C^j;^ so that y^ = 1̂ (Я; ß ) / + К(Я; ß) C^y^. Iterating this relation gives 

n - l 

fc = 0 

y. = I K(A; ß) [Ся R(A; ß)]V + № ; в) с.]" j , . 
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Now the elements of Ĉ  are dominated in absolute value by those of P„ and the 
elements of R{À; В) are dominated in absolute value by those of R(X; N), 

It follows that 
\[R{A;B)Cj-y,\u[R{kN)P„f\y^\. 

Since у J, G 3)(Б) implies \y\^e 2)(iV), we can assert that 
||[R(A; B) C,]" j ; , | | й | | № ; N) P,]" {y^j - . 0 

as /Î -> 00. As a consequence 
00 

(4.6) y^ = R{A; Л , ) / = X R{^; B) [С,К(Я; B)ff. 
/c = 0 

We now wish to show that {y^} defines a convergent system. To this end we note 
that for Til g 712 we have 

R{M B) [ Q , К{Л; B)Yf - R{X; B) [ Q . /?(!; B)ff = 

= i {R(A; 5) [ Q , Ä(A; B)Y [ Q , К(Я; В)]^" ' / -
1=1 

- J?(A; В) [С,, R{X; В)]'-' [С,, 7?(Я; 5)]"- ' +V} = , 

= I К(Я; В) [ Q , iî(A; ß) ] ' - ^ (е . , - С J R{X; В) [ Q . R{X; B)J-'f. 
ï = l 

It is readily verified that the i-th term of the left member is majorized componentwise 
by replacing all matrix elements by their absolute value majorants and by replacing 
/ by |/|. Since P^^ S Рп2^ we find that 
\УП2 ~ Ущ\ S 

00 к 

^ E Z И(Я; ß) [ е . . Чк В)У-' ( Q , - е..) R{1; в) [е . , Rix; B)f-'f\ й 
к = 0 1 = 1 

e t i {К(Я; N) [Р,, Р(1; JV)]'-i (Р,, - Р„.) Ä(l; JV) [P., Р(А; iV)]*"' |/ |} = 
к=0 1=1 

= Ê {«(Я; N) [Рпг к(я; ^ ) ] ' |/| - «(Я; ^) [̂ .. к(я; N)f |/|} = х,, - х... 
Consequently Ц j ^ ^ — y^J| ^ Цх̂ ^ "" ̂ nt\\- It was shown in the proof of theorem 3.1 
that {x„} forms a Cauchy system and therefore the same is true of {y^}. Thus 
R;^f = lim^ JR(1; ^ ^ ) / exists for all fe4). Moreover comparing (4.5) and (4.6) we 
see that 

я||]?я/|1^я||Р(А;м)|/|||^ 11/11, 
where M is the dispersive generator of the [F(r)] process corresponding to MQ. 
It is further clear that jR̂  satisfies the first resolvent equation for Я > 0 along with 
the approximating resolvent operators R{1; A^). Finally for у еТ)о we have 
lim^ (XI — A^) у = (XI — AQ) У and hence 

R,(XI^Ao)y^lim,R(X;A;)(M-^A,)y = y. 
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By lemma 3.2 we conclude that JR^ is the resolvent of an operator A which is the 
dissipative generator of a semi-group of contraction operators and that A з AQ, 

It remains to show that A <= A^. Again comparing (4.5) and (4.6), we see that 
|y^| ^ x^ ^ X = R[À; M) | / | . Consequently \y\ ^ x and since X'^,7^(j) converges 
(i. е., M с: М^), it follows that YJ^U УО) converges absolutely for each i e 3 . Finally 
(1 / - A^) y^=f implies that 

^ yn{i) - Z 0,7 УпО) = ДО ' '̂ ^ ^ ' 

and the dominated convergence theorem can be used to show that 

for all / G 3 . Since (Я/ — Л) y = / , this proves that 

Without the assumption that AQ is majorizable, theorem 4.1 is no longer valid as 
the following example shows. Let ф = /2 ^^^ consider the triangular matrix (a,j): 
Uij = 0 for i > j \ a il = —1, and иц = —2 for j > i. It is readily verified that 
AQ ÏS dissipative; we need only note that for у eX)Q V^Q have 

re {Аоу, у) = re [ I , { - X O - 2 E УШ Ж 1 = " Е К О Г ^ « • 

Now the smallest closed extension of AQ, namely AQ, exists (by [12; lemma 1.3.1]) 
and is actually maximal dissipative so that AQ generates a semi-group of contraction 
operators. In fact, because of the triangular property of (а,^) the equation 
(/ — AQ) У = f has a solution j e ®o for each f EI)Q given by y(i) = | [ / ( 0 — 
- f(i + 1)], i e 3 . Thus Щ1 - AQ) is dense in Ч) and since ||(/ - ^ o ) " ' || ^ 1, it 
follows that AQ is a maximal dissipative generator. On the other hand for 
f{j) = {-ly j ~ \ the equation (^I - AQ) у = f has the solution y{j) = (-1)-^ (2j + 
4- 1) [2/(j + 1)]"^. Consequently YJJ^U УО) ^^ convergent but not absolutely con
vergent. Furllier all of the above properties except the convergence of Zj^o" -^'0) 
are independent of the ordering of the integers 3- Thus by a suitable reordering of 
3 we see that there exist у in ®(Ло) such that Y^u УО) ^^ ^ot even convergent. In 
this example there is only one dissipative generator A extending AQ, namely AQ, 
and AQ is not a restriction of A^, even if we modify Definition 1.4 so as to allow me
rely the convergence of YJJ^U УО) (î'^ther than its absolute convergence) to qualify 
y to be in ЩА^). 

In the case ^ = I2 it is known that any dissipative operator with dense domain 
has a maximal dissipative extension which generates a semi-group of contraction 
operators (see [12, theorem 1.1.1]). It is also known (see [13]) that if both the rows 
and columns of (aij) lie in I2, then there exists a dissipative generator A such that 
ylo c= /1 с Л^. It is not known whether either of these results hold in the other 
/p spaces 1 < p < 00. 
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Резюме 

ПОЛУГРУППЫ СЖИМАЮЩИХ ПОЛОЖИТЕЛЬНЫХ ОПЕРАТОРОВ 

Р. С. ФИЛЛИПС (R. S. Phillips), Станфорд (США) 

В работе исследуются полугруппы сжимающих положительных операторов 
в структуре Банаха 3£ общего типа. В такой структуре всегда можно ввести 
полу-скалярное произведение [х, у], обладающее свойствами (1Л) и (1.5). 

Определение 1.3. Оператор А называется дисперсионным, если 
[Лх, х""] й О, ХЕЪ{А). 
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Теорема 2.1. Для того, чтобы линейный оператор со всюду плотной об
ластью определения был производящим оператором сильно непрерывной полу
группы сжимающих полож:ителъных операторов, необходимо и достаточ
но, чтобы оператор А дыл дисперсионным и чтобы имело место равенство 
9i(/ — л) = 3£ fSR — область изменения). 

Пусть Э£ — банахова структура вещественных функций [ДО^^^З] на аб
страктном множестве 3 с обычными алгебраическими операциями, которая 
удовлетворяет соотношениям: 

(i) Множество ®о всех функций, имеющих лишь конечное число ненуле
вых составляющих, входит в Э£. 

(ii) f S g означает /(i) ^ g{ï) для всех Ï G 3-
(iii) Каждое монотонное направленное множество неотрицательных эле

ментов [/„], являющееся ограниченным по норме, сходится к V/я-
Каждой матрице (а,^), столбцевые векторы которой входят в 36, можно 

поставить в соответствие минимальный оператор AQ с областью определения 
Х)о, определенный при помощи соотношения 

а также максимальный оператор А ̂  с областью определения 
X)i = [ / ; / G 36 , g{i) == Y^JÜIJ f{j) сходится абсолютно для всякого i к g е 36], 
определенный при помощи соотношения 

(^,/)(0 = Е.«м/О% f^^i-
Теорема 3.1. Пусть AQ — дисперсионный минимальный матричный оператор. 

Тогда существует сильно непрерывная полугруппа с^жимающих пололсительных 
операторов [F(^)] с производящим оператором А таким, что AQ с: А а Ai. 

В разделе 4 приводится аналогичная теорема о расширении диссипационного 
оператора AQ при условии, что он надлежащим образом мажорируется 
дисперсионным оператором. 
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