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Чехословацкий математический журнал, т. 15 (90) 1965, Прага 

AN INEQUALITY FOR TRACES OF MATRIX FUNCTIONS^) 

CHANDLER DAVIS, Toronto (Canada) 

(Received October 3, 1963) 

1. M. FIEDLER recently gave an inequality for traces of matrices [1]. H. SCHWERDT-
FEGER, reporting 0П this paper at the University of Wisconsin, suggested that, in 
Fiedler's theorem, the inverse function might be replaced by an arbitrary non-
constant matrixmonotone function [2]. I found to my surprise that the function may 
be still more general. The result is as follows: 

Theorem 1. Let A, H be n-by-n hermitian matrices, and [а,Ь] a real interval 
containing the spectra of A and A + И. Let f be a real-valued function on [д,Ь] 
such that the divided differencef^^\t, u) = [/(^) — /(^)]/[^ — w] (f ф и) satisfies 

(1) m й f^\t, и) й M 

for t,uE [a, b]. Then the hermitian matrices f(A) and f(A + H) satisfy 

(2) miiH^ S tr {H{f{A + Я) - f{Ä))} й M tv Н\ 

I v îll prove this theorem in § 2. Then in § 3 I will discuss some particularly useful 
special cases: Fiedler's original theorem, and a Lipschitz condition for matrix 
functions which is applicable to matrix analysis. The final section concerns weakening 
of the restrictions on Л, Я, a n d / . 

2. I will write x* for the hnear functional determined by any vector x. The inner 
product of X with у will be written x*j^; whereas yx* means an operator, namely, 
(jx*) z = (x*z) y, for any z. 

Thus the spectral decomposition for A and A -{- H may be written 

(3) A==thXixt, A+H = tu,y>yf, 
i=l 1 = 1 

where {xj and {yj are orthonormal bases, while the ti and the u^ are numbers 
between a and b. By definition. 

' ) Research supported in part by N. S. F. Grant No. GP-249. ^ 
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I will occasionally use the notation ЦвЦз = (tr(ß*J5))^. The notation ||В|| will 
mean the "bound norm" of B. 

The proof of the theorem is very short and follows familiar Hues [2]. Define 
numbers hij = xfHyj (note these are not the usual matrix elements in either represen
tation). Since H = Y^^jyjyt ~~ Yj^i^i^J' w^ compute 

(4) h,j = {uj-~t,)xtyj. 

In a similar manner, we obtain 

xt{f{A + Я) - f{A)) y J = ifiuj) - fit.)) xfyj. 

Now we must estimate 

tr {H{f{A + H) - f{A))} = ^yj Hx,x*{f{A + H)- f(A)) yj = 
ij 

(substituting (4)). In the last Hne the summation is extended over only those pairs (i,j) 
such that Uj 4= ti. Each such term is \hij\^ times a difterence quotient which, by the 
hypothesis (l), lies between m and M, But terms with ti = Uj have also h^ = 0 by (4), 
so (5) is between m ̂  |/i,j|^ and M ^ \hij\^'. Since H is hermitian, tr Я^ = ^ \hij\^ = 
= Hit 

This proves the theorem. 
3. In particular, suppose / is the function f{t) = — t"^ for te [0, Ь]. lî A and 

A + H are both positive-definite then the theorem applies. Let us discuss only the 
first inequality. For t^ and Uj as above, ^̂  G ]0, ||Л||] and м^е]0, \\A + Я||]. Hence 
/f^i(f,, uJ) = {t,u;)-' ^ \\A\\-' . \\A + H\\-\ This gives 

tr {H{f{A + Я) - f{A))} ^ \\A\\-' \\A + H\\~' \\H\\l, 

which is Fiedler's result in different notation, except that it does not include conditions 
for the equality to hold. Thus, with this reservation, Fiedler's theorem is a special 
case of Theorem 1. By slightly modifying the proof, the following theorem is obtained, 
which seems to be the most natural generaHzation of Fiedler's Corollary 2. 

Theorem 2. Let A, H be hermitian matrices, and [a, b] a real interval containing 
the spectra of A and A -b H, Let f be a strictly monotone increasing real function 
on [a, fo]. Then 
(6) tr {HifiA + H)-f(À))} ^Q, 

with equality only i/ Я = 0. 
Again, Fiedler's case is f(t) = — t"'^ and a = 0. 
To prove (6), one again uses (5). Each term in the last sum in (5) is ^ 0, so (6) is 

immediate. For equahty to hold in (6) - that is, in (5) -- h^ must be 0 for all the 
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terms with Uj Ф ti. But if this is assumed we conclude that H = X!^ü^'-^i must be 0, 
for we know by (4) that h^ is zero for the other terms, those with Uj = f,. The proof 
is complete. 

Thus the function need not have divided differences bounded strictly above zero, 
and it need not be matrix-monotone. The latter circumstance seemed less surprising 
to me when I reflected that if Я ^ 0 and / is monotone (not necessarily matrix-
monotone) then t r / ( ^ + я ) ^ tr f{Ä). This more-or-less famihar theorem is an 
immediate consequence of Weyl's theorem on monotonicity of eigenvalues. 

Note that conditions for equahty in Theorem 1 can also be supplied easily. 

As noted in the introduction, there is a Lipchitz condition of a sort which results 

form Theorem 1. 

Corollary. Let A, H, a, b be as in Theorem 1. Let f be a real-valued function 
on [a, b] satisfying the Lipchitz condition \f(t) — f{u)\ ^ M .\t — u\ there. 
Then 

|tr {H{f{A + Я) - f{A))}\ ^ M tr Я ^ 

Proof. Take m = — M in Theorem 1. 

4. Here is a more general version of the theorem; the restrictions on A, H and 
on / have both been relaxed, but the statement of the theorem has become more 
clumsy. A and Я are no longer required to be hermitian, or even diagonable. I use 
the notation a(A) for the spectrum of any A. 

Theorem 3. Let A, H be n-by-n complex matrices, Я Ф 0. Let f be a complex-
valued function such that f{^A) and f(A + Я) are defined. Assume, for a suitable 
closed convex subset Ж of the complex plane, that f^^\t, и)ЕЖ for all tGa[Ä) 
and и 6 a[A + Я), t Ф u. Then 

(7) \\H\\^^ tr {H*{f{A + Я) - f{A))} еЖ . 

First let me deal with the case where both A and Л + Я are diagonable, that is, 
are similar to normal matrices; for in that case all goes as in Theorem 1. 

In place of the spectral decomposition (3) we now have this weaker s t a t e m e n t : 
There exist bases {x j , {x\}, {y j , {y\} and numbers {r,}, {wj {i = 1, ..., n) such that 

(8) ^r^j-à^j, yTyj = à,j, 

(9) Л = Хг,х,х;*, A + H = Yß,y,yT', 

by definition f{A) = Y.AQ ^f^i*' ^^c 
Every closed convex set JT of complex numbers is characterized by a real function h 

in the following way: a complex number С is in J T if and only if, for all G, Re {e~ '®C) è 
^ h{S). Thus the hypothesis involving jT in the present theorem may be expressed 
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Re(e '®f*\t,u))^ h{©). The argument involving (5) is essentially unaltered: 
if h,j = x'l* Ну J, then h^j = у'/Н*х^, and so 

,-iB tr ^^^*(д^ ^ j j) _ д^^)^ ^ ^-io ^з;;*я*х,х;*(/(Л + Я) - f{Ä)) у J = 

dividing by ^ |/2,y|̂  = \\Н\\1 and taking real parts, and using the same argument as 
above for the terms with ti = Uj, shows that the number С in (7) satisfies Re (e~'®C) ^ 
^ /г(б>), which was to be proved. 

Now let A and ^ + Я be allowed to be non-diagonable. To use the customary 
definitions of /(Л) [4,3] we must assume that, for each t G a (A), a value has been 
assigned not only to / ( t ) , but also to / ' ( 0 ' •••»/^^"^^ (0 ' where к is the degree of 
(Я — t) in the minimal polynomial m{X) of A. Similarly for each и e (T(A + H). 
If/(s) was given values for any other points s of the complex plane, they would not 
affect hypotheses or conclusion of Theorem 3. We can suit our convenience, accor
dingly, by supposing/is a polynomial having the assigned values (with its derivatives 
up to the orders which enter) at the points of the spectra of A and A + H. Also, if 
there is a point s, common to the spectra of A and A + H, at which /'(5) is not yet 
assigned, we can require our interpolating polynomial to satisfy /'(5) G J T . The 
reason we want to do this is so that we can assert f^^\t, u)e Ж for all cases when 
t G a{A) and и e o[A + Я); for the polynomial f^^^ is extended to equal arguments 
by f'\s,s)=r{s). 

We can now assert that f{B) has been defined as a continuous function of JB, using 
the usual topology for the space of matrices. 

With these understandings I proceed to extend Theorem 3 by continuity. 
For any e > 0 let Ж^ denote the set of all complex С at distance e or less from Ж; 

it is a closed convex set. Because/'^^^ is now continuous and everywhere defined, and 
because f^^\t, u)e Ж ïov te G{Ä) and и G а{А + Я), there is а neighborhood of A, 
say ^ „ such that, for В G ^ „ we have f^\t, u) G Ж, for t G а{В) and uEa{B + Я) . 
That is, all Be%^ satisfy the hypotheses of the theorem for Ж ̂ , 

Now ^g is a manifold. The subset of matrices with all n eigenvalues simple, is an 
open dense set. Hence the set of non-diagonable В in 'Ш^ is nowhere dense; likewise 
the set of В with В + H non-diagonable is nowhere dense; hence so is their union. 
But for В and В + H diagonable. Theorem 3 is already estabhshed; it gives the con
clusion that the number 

\\H\\-Hv {H*{f{B + H) - f{B))} 

is in JTg for a set of В dense in 'Ш^. But then it is in Ж^ for all В G ^g. In particular 
for Б = Л, it is in (\Ж^ = Ж, which was to be proved. 

It would be interesting to find a more "elementary" proof — perhaps to avoid 
continuity arguments altogether. 

Corollary. Theorem 3 remains true if the word "closed'' is omitted from its 
statement. 
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Proof. Every convex set is the union of an increasing sequence of closed convex 
sets; the rest is easy. 

Added in proof: G. MINTY has called my attention to his definition of numerical 
range of non-linear functions on vector spaces. The result of the present paper may 
be regarded as a theorem about such numerical ranges. 

If Ф is a non-linear operator in a Hubert space with vectors X. У,..., then Minty 
defines its numerical range as the set of all complex numbers 

Х%Ф{¥+ X) - Ф(7))Д*Х 

for all X,y (ХФ 0), Let in particular the Hubert space be that of all п-Ъу-п matrices, 
under the norm || II2; and let Ф be the non-linear operator obtained by extending 
a numerical function / to matrix arguments. Then Theorem 3 and Corollary above 
say that the numegical range of Ф is contained in the convex hull of the range off^^^. 
To be exact, they say more, for they allow for the case whe re / is not defined on 
the whole complex plane and Ф has a correspondingly restricted domain. 
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Р е з ю м е 

ОДНО НЕРАВЕНСТВО ДЛЯ СЛЕДОВ ФУНКЦИЙ МАТРИЦ 

ЧАНДЛЕР ДЭЙВИС (Chandler Davis), Торонто, Канада 

Главным результатом работы является следующая т е о р е м а : 
Если А и H — симметричные матрицы, а f — действительная функция, 

определенная на некотором открытом интервале, содержащем спектры матриц 
А, А + H и такая, что на этом интервале имеют место неравенства 

,,^/(0-/(")<:д^ (,Ф„), 
t — и 

то справедливо соотношение 

m tr Н^ ^ tr {H{f{A + Я) - . f{Ä))} ^М ÎYH^ . 

Приводятся некоторые следствия этой теоремы, а также некоторые резуль
таты более общего характера. 
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