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Чехословацкий математический журнал т. 16 (91) 1966, Прага 

NOTES ON MEROMORPHIC DYNAMICAL SYSTEMS, III 

OTOMAR HÂJEK, Praha 

(Received January 24, 1964) 

This note is connected with a preceding paper [2] ; the notation and terminology is 
preserved as far as possible. In particular, the object studied is a meromorphic 
system 

with / meromorphic in an open G с Ŝ  (the 2-sphere); the singular points of (1) 
are the critical points (zeros of/) and the poles of/. In the present paper, however, 
we will occasionally relax these assumptions, requiring (i) / to be a continuous maps 
G -> Ê  (thus "poles" are proscribed), and (ii) the system (1) to have unicity of 
solutions; in this case (1) will be called a continuous system. 

We begin with an example. 

Example 1. Consider the orthogonal pair of meromorphic systems 

in G = E .̂ There is a unique singular point, a zero of multiplicity 2 at the origin. 
The characteristic solutions are, respectively, 

I 1 
1/z -в 1/z - i9 

(for z Ф 0, in some neighbourhood of Ö = 0). 
Now, start at a point z Ф 0, move along the trajectory to the first (second) system 

to a point with parameter в (or т), and thence along the trajectory to the second 
(first) system to a point with parameter т (or 6). One obtains 

/ l / z - 0 

\ 1 . 

(1/z - 0) -
1 

JT 

1/z - it (1/z - IT) - в 
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Two consequences may be pointed out here. First, the result is a holomorphic 
function of 0 + ZT near 0; and second, that the same result is obtained in both 
procedures, for small \9 + ix\ ("commutativity"). Such phenomena are studied in the 
present paper; the results are that (i) two meromorphic systems commute iff they are 
isogonal, and (ii) if continuous isogonal systems commute, they are meromorphic 
(under further assumptions — theorem 2). 

W.f(e^)^W^i(ß^i) 

Z;IB^)^W^^ID) 

For definiteness, dynamical systems z' = //(^) {] = 1,2, ze G) are called isogonal 
if / i = a/2 for some complex constant a Ф 0; for a = ±i the term is orthogonal 
(sometimes also for a = ioc, oc Ф 0 real). If/i/A is non-real whenever/1/2 Ф 0, they 
are called transversal; isogonality with non-real a is a very special case of trans-
versality. 

Definition. Given, two continuous dynamical systems 

(2) ^'=/.W ( i=- i> i ) 
in an open G cz S .̂ We will say that they are integrally commutative if the following 
property obtains: For 7 = ±1 , let Zy(.) be a solution of the 7-th system, and Zi(0) = 
= z_i(0); let Oj be within the domain of definition of Zj(.), and let w/.) be the solu
tion of the 7-th system with w/O) = z_j[9^j). Then {cf. fig. 1) w^ißi) = w_i(0_i). 
If this holds only for sufficiently small \9j\ (say for \9j\ < s with 8 > 0 possibly 
depending on zj(0)), we will say that (2) are (locally) commutative. 

Remarks. Since we will mostly be concerned with local rather than integral com-
mutativity, the qualifier "local" will usually be omitted. In the preceding definition, 
it is required that Wj be defined at 9j. 
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The definition needs a trivial modification for meromorphic systems: two mero
morphic systems (2) are said to commute if they satisfy the definition in the open set 
G - {poles of/,}. 

Lemma. Assume given a meromorphic system (l), and a point p at which f is 
holomorphic. From p more along the trajectory to (1) to a point with parameter в, 
and then along the trajectory to 

(3) z' = if{z) 

to a point with parameter x. The point so obtained is a meromorphic function 
of в -\- ix near 0. 

Proof. By a classical theorem {e.g. [1], chapter I, theorem 8.1), there exists 
a meromorphic function z(.) defined near 0 and such that 

^ = / ( z ( w ) ) , z(0) = , 
aw 

Now consider z(0 + IT); obviously, for fixed т, it is a solution of (1) (by unicity, it is 
the only solution of (1) with z(0) = p)\ for fixed 0 it is a solution of (3). This proves 
the lemma. 

Theorem 1. Two meromorphic systems in a region G, neither vanishing identically, 
commute if and only if they are isogonal in G. 

Proof. First take isogonal meromorphic systems, say (1) and (a Ф 0) 

(4) z' = af(z) 

Take pe G with f{p) ф oo, and let z(0 + ix) be the function constructed in lemma 1 
(thus z(0) = p). Obviously, for small |c|, z(c + 0) is a solution of (1), and z(c + a9) 
a solution of (4). Now, for small |0 + ix\, 

/fz{e) -> z(0 + ax) 
^\z{ax) -^ z(aT + в) 

with coinciding end-points; this is commutativity. 
For the converse assertion, consider two meromorphic systems 

z' =fj{z), {j = 1,2, zeG), 

and assume they commute. Take a point pe G non-singular for both systems. In the 
now famiUar manner, denote by z(0, т) the point obtained by first moving from p 
along the trajectory of the first system to a point with parameter 0, and then along 
the trajectory of the second system to a point with parameter x (0, x real, |0 + ix\ 
small, z(0, 0) = p). In any case 

z(0, T) - z(0o, T) - z(0, To) + z(0o, To) = z(0, T) - z(0. To) - 2(00, T) + z(0o, To) 
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for small \в + ÏT[, |ÖO + ÎTOÎ  SO that 
Г Та ("(̂ ' ") - (̂̂ ' "«)) '̂ ^ = f' Г «^' )̂ - <^о, г)) dt 

By construction, z(e, z) with fixed 0 is a solution of the second system; by com-
mutativity, z(0, т) with fixed т is a solution of the first system; thus 

[ ' [/i(z(ö, T)) - A(z(ö, To))] d0 = f' [Л(2(0, t)) - A(z(öo, t))] dT 

Differentiating d^jdO дт {fj are meromophic, z(.) is C°°), one o b t a i n s / / ^ = / 2 / 1 
at z = z(ö, T); thus /1//2 Js constant on the trajectories through p. Since p is non-
critical, these trajectories have accumulation points in G, and thus /1//2 is constant 
throughout G. This completes the proof of theorem 1. 

Theorem 2. Given, two isogonal transversal continuous dynamical systems in an 
open G с S ,̂ with critical points isolated. Then, if the systems commute, they are 
meromorphic. 

Proof. Let the systems be (1) and (4) again, with non-real constant a. Take any 
pe G with/(jp) Ф 0. Construct a mapping z(.) of a neighbourhood of 0 in Ŝ  into G 
in the usual manner as follows. From p move along the trajectory to (1) to a point 
with parameter в; and then along the trajectory to (4) to a point with parameter т; 
denote the resulting point by z(9 + ax) (recalling a Ф a). 

Since (1), (4) are isogonal and p non-critical, z(.) is 1 — 1 in some disc-neigh
bourhood D of 0 in E^; obviously z(.) is continuous, so that U = z{D) is a neigh
bourhood of p (the Invariance of Domain Theorem). 

Now take any JPQ ̂ U,PQ = z(öo + <̂ fo)- ßy construction z(öo + ax) with variable т 
is a solution of (4), so that 

--z(Öo + ат)|,=,^ - af{po), 
от 

By commutativity, z(ö + ато) (variable: в) is a solution of (l) and thus 

PI 

од 
Hence 

л л 
a — z(e + ат) = — z{9 + ax) for в + ax e D , 

дв дх 

the "oblique" Cauchy-Riemann equation. We conclude that z(.) is holomorphic 
(and 1 -- 1) in D, and then 

dz dz . , Ч 

dw de '^ 
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is also holomorphic; and thus so i s / , the composition of/(z(.)) and z~^(.). Sum
marising, / i s holomorphic at any pe G withf{p) ф 0. Since/is continuous and the 
critical points are isolated by assumption, it follows from a familiar theorem that / 
is holomorphic throughout G. This concludes the proof. 

Example 2. There do exist non-meromorphic commutative continuous dynamical 
systems: a diffeomorphic but non-conformal map of isogonal meromorphic systems 
will usually have this property (however, by theorem 2, these cannot be isogonal). 

However, there exist quite simple dynamical systems which do not commute with 
any transversal dynamical system (except the trivial z' = 0). Thus, consider the 
continuous dynamical system 

z' = i\z\ z . 

Its characteristic function is z exp i\z\ в; thus each z G S ,̂ 0 4= z + oo, is on a cycle 
with period 27i/|z|. 

Now, consider any non-trivial transversal system; each trajectory then intersects 
an infinity of cycles of the former system; if the systems were commutative, then all 
these cycles would have the same period, a contradiction. 

Problems. 
1. Prove that a meromorphic system z' = /(z) (z G G) is integrally commutative 

with some transversal isogonal iff / has no poles in G. 
2. For continuous dynamical systems in S ,̂ is commutativity transitive? (From 

theorem 1 it follows that it is transitive for meromorphic systems.) 
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Резюме 

О МЕРОМОРФНЫХ ДИНАМИЧЕСКИХ СИСТЕМАХ, III 

ОТОМАР ГАЕК (Otomar Hàjek), Прага 

Пара динамических систем называется перестановочной если — грубо 
говоря — при переключительном режиме концевая точка перемещения не зави
сит от порядка переключений. Показано, что между мероморфными системами 
перестановочность эквивалентна изогональности — теорема 1; и что изого
нальные перестановочные системы (непрерывные с изолированными особен
ностями, в плоскости) обязательно мероморфны. 
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