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0

A closure space is a set P and a mapping u of the family of all subsets of P into
itself such that the following axioms are satisfied:

(Co) ud = 0.

(Cy) A = ud foreach A < P.

(C,) u(A U B) =uA U uBforeach A = Pand B < P.

The mapping u will be called a closure topology.

A topological space is a closure space (P, u) in which the following axiom is satisfied:

(F) u(ud) = uA for each 4 = P;
the mapping u will then be called a topology.

Let L be a set and let £ be a set of pairs ({x,}, X), where {x,} is a sequence of points
x,€L, neN, and x € L. The set £ is called a multivalued convergence on L if the

following axioms are satisfied:

(£,) If x, = x, neN, then ({x,}, x) € £.

(£2) If ({x,}, x) e  and n; < n;4q, i €N, then ({x,,}, x) € &.

A convergence L on L is a multivalued convergence £ on L such that the following
axiom is satisfied:

(Zo) If ({x,}, x) € £ and ({x,}, y) € £, then x = y.

Let Sbea (multivalued) convergence on a set L. Define a mapping A on the family
of all subsets of Linto itself as follows: If A = Land x € L, then x € AA4 if there is

a sequence {x,} such that ({x,}, x) e £ and U x, = 4 !). The mapping 4 is a closure
n=1

topology for L. The closure space (L, A) will be called a (multivalued) convergence

e} 0
1y The set {J (x,) will be denoted simply by {J x,, .
1 n=1

n=

=
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space and denoted by (L, 2, 2). The closure topology A will be called a (multivalued)
convergence topology. Every convergence space is a T;-closure space.

If (L, 2, 2) is a convergence space, then there exists exactly one convergence on L
such that the corresponding convergence topology is identical with A and such that
it satisfies the following axiom:

(#5) If each subsequence {x,,} of a sequence {x,} contains a subsequence {x, ij}
converging to a point x, then the sequence {x,} itself converges to x. This convergence
is called the largest convergence and it will be denoted by £*.

Throughout this paper the family of all continuous functions on a convergence
space (L, £, 2) to the closed interval <0, 1) will be denoted by F(L).

The general theory of closure spaces is developed in [1] and some basic concepts
are mentioned in [9]. In both cases the closure space is called a topological space and
the topological space in the usual sense is called an F-space.

The exposition of the theory of convergence spaces is given in [7] while the same
for multivalued convergence spaces is contained in [5]. In these papers the needed
concepts of the theory of closure spaces can also be found. The knowledge of [7] is
assumed in the following.

1

The notion of sequential regularity was introduced in [3]. A convergence space
(L, 8, %) is sequentially regular if for each point x € L and each sequence {x,} of
points x, € L no subsequence of which converges to x there is a function f e F(L)
such that the sequence {f(x,)} does not converge to f(x) (cf. [7]).

Now we are going to characterize sequential regularity in terms of the convergence
topology.

Lemma 1. Let (L, 8, 1) be a convergence space and let F(L) = {f, :acI}. Let
A < Land let x € A°*A. Then, for each acl, there is a sequence {x;} such that

G xp = A and lim f(x7) = f,(x).
n=1

Proof. Since f, is continuous on (L, &, 1), it is also continuous on (L, 2°%). Since
the topology of <0, 1) is a convergence topology, the assertion follows.

Theorem 1. A convergence space (L, 2, ) is sequentially regular if and only if
for each countably infinite set S <= L and for each point x,€ L — AS there is
a function fe (L) and an infinite set T = S such that f(x,) = 0 and f(x) =1
forxeT

Proof. I. Suppose that x, € L and {x,} is a sequence of points x, € L such that
({xn}, xo) ¢ £ for each subsequence {x,,} of {x,}. We have to prove that there is
a function f € F(L) such that the sequence {f(x,)} does not converge o f(x,).

©

Let S = U x,; clearly x, e L — AS.
1

n=
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1. If the set S is infinite, then the assumptions of the theorem imply that there is
a function f e (L) and a subsequence {x,,} of {x,} such that f(x,) = O and f(x,,) = 1
for i € N. Hence the assertion follows.

2. Suppose that S is finite. Then there is a subsequence {x,,} of {x,} such that
X, =, i € N, for some point y # x,. If y is isolated, let f(y) = 1 and f(x) = 0 for
x % y; clearly f e §(L) and the sequence {f(x,)} does not converge to f(x,). If y is
not isolated, then there is a one-to-one sequence {y,} such that ({,}, y) € € and

Yn ¥+ xg forneN. Let S = U y,; clearly x, € L — AS’. It follows from the assump-
n=1

tions of the theorem that there is a function f € F(L) and a subsequence {y,,} of {y,}
such that f(x,) = 0 and f(y,) = 1 for ieN. Since clearly f(y) =1 and x,, = y
for i € N, the sequence {f(x,)} does not converge to f(x,).

II. To prove the converse suppose that S = Lis a countably infinite set and x, €
€ L — 2S. Arrange the points of S into a one-to-one sequence {x,}. It follows from
the assumption of sequential regularity that there is a function g € g(L) such that
the sequence {g(x,)} does not converge to g(xo)- Then there is 6 > 0 and a sub-

sequence {x,} of {x,} such that [g(x,) — g(x,)| > 6, ie N. Let T= U x,, and let
i=1

f =min [(1/8) |9 — g(x,)|, 1]. The set T and the function f clearly have the desired
properties.

Note 1. Theorem 1 clearly also holds if we assume that the set S is infinite and that
the set T'is countably infinite. It follows from Lemma 1 that if x, € A°'S — AS, then
the set S — Tis always infinite.

Now let us turn to the relation between convergence spaces and sequentially
regular spaces.

Lemma 2. Let (L, 2, %) be a sequentially regular convergence space. Then
({x.}, x) € * if and only if the sequence {f(x,)} converges to f(x) for each f € F(L).
The easy proof is omitted.

Lemma 3. Let (L, £, 1) be a convergence space. Let M be the set of all pairs
({xa}, x) such that the sequence {f(x,)} converges to f(x) whenever f € F(L). Then:

(a) (L, M, p) is a multivalued convergence space.

(b) (L, M, ) is a convergence space if and only if the space (L, 2, 2) has the
following property:

(P) If x + y, then there is a function f € F(L) such that f(x) * f(y).

Proof. The easy proof of (a) is omitted. To prove (b) observe that ({x,}, x) € M

and ({x,}, y) e M if and only if f(x) = lim f(x,) = f(y) for each fe F(L).
The multivalued convergence space (L, IR, ) will be said to be generated by & (L).
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Example 1. Let L= U U x,, U (x) U (). Let ({z},z)e £ for each zeL,
1

m=1 n=
({Xpum,}> X) € £ for each m € N and each subsequence {n;} of {n}, and ({x,,,.}, y) € &
for each n e N and each subsequence {m;} of {n}. This is a well-known example of
a convergence space which is not separated. The multivalued convergence space
(L, M, 1) generated by (L) is not a convergence space.

Note 2. M. DoLCHER has defined in [2] several successively weaker forms of the
axiom (%,):(%,) = FKT,, FKT,, FKT,, FKT,. The multivalued convergence
space generated by F(L) either satisfies (&,) or does not satisfy even the weakest
axiom FKTy:If x = y, then there is a sequence {x,} such that it does not converge
to both points x and y.

Definition 1. Let (L, £, A) be a convergence space which has the property (P). The
convergence space generated by §(L) will be denoted by (L, &, 1) and the convergence
topology 1 will be called a sequentially regular modification of A.

Theorem 2. Let (L, £, 1) be a convergence space which has the property (P) and
let (L, Q, 2) be the convergence space generated by (L). Then:

(a) € = @; consequently A < .

(5) (1) = (D).

(¢) The space (L, e, 2) is sequentially regular.

(d) & = 8% and X = Aif and only if (L, &, 2) is sequentially regular.

Proof. The easy proof of (a) and (b) is omitted. Since ({x,}, x) € € if and only if
lim f(x,) = f(x) for each f € F(L), it follows that ({x,}, x) ¢ & implies the existence of
a function fe (L) such that {f(x,)} does not converge to f(x). Hence (c) holds.
A = 2 implies the sequential regularity of (L, &, ) in view of (c). Conversely, if the
space (L, 8, 1) is sequentially regular, then & = 2%, i.e. 1 = A, by Lemma 2.

Corollary 1. The sequentially regular modification X is the weakest of all sequen-
tially regular convergence topologies stronger than A.

Example 2. Let L= <0,1). Define M as follows: ({x,}, x) e M whenever
lim |x, — x| = 0. Let 2 be the set of all pairs ({x,}, x) € M such that {x,} does not
contain a subsequence of {1/n} and let p and A be the corresponding convergence
topologies. Then (L, M, p) is a sequentially regular space, Q=M l=pand + 1

Lemma 4. Let (L, &, ;) and (L, £,, A,) be convergence spaces which have the
property (P). Then A, = 2, if and only if (L, £y, 4,)) = F(L, L2, 1,)).
The easy proof is omitted.
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2

Now we shall consider the relation between sequentially regular convergence spaces
and completely regular spaces. The following definition is based on a suggestion made
by Prof. M. KATETOV.

Definition 2. Let (L, £, 1) be a convergence space. The weakest of all completely
regular topologies®) for L which are stronger than A will be called a completely
regular modification of J and denoted by 1.

Theorem 3. Let (L, L, /1) be a convergence space. The completely regular modifica-
tion X of A exists if and only if the space (L, £, 2) has the property (P). Furthermore:

(a) A function f on (L, Z) to <0, 1) is continuous if and only if f € F(L).
(b) If A = L, then 14 = {y: if f e (L) and f(x) = 0 for x € 4, then f(y) = 0}.

Proof. If the convergence space (L, £, A) has the property (P), then it follows from
[1] (the proof of theorem 8.4.4.%)) that there is a completely regular topology u
for L; the system of all sets of the form f~'(I), where f e (L) and I is an open
interval, is a base for u. Since each set f ~!(I) is open in (L, £, 1) it follows that A < u.
Hence, if f is a continuous function on (L, u) to <0, 1), then f e F(L). Conversely,
if f e §(L), then f is continuous on (L, u) because of the definition of the base for u.
Hence u has property (a). Now suppose that v is a completely regular topology for L
and that A < v. Let 4 = Land x, € u4. It follows from property (a) of u that, if f is
a continuous function on (L, v) to <0, 1) and such that f(x) = 1 for x € 4, then
f(xo) = 1. Since v is completely regular, we have x, € vA. Consequently u < v and
Z = u. Hence 1 has property (a). Property (a) together with the complete regularity
of Z imply (b).

If the convergence space (L, £, A) has not property (P), then it follows that no
completely regular topology for Lis stronger than A.

Corollary 2. Each sequentially regular convergence topology has a completely
regular modification.

Note 3. If (L, £, 2) is a sequentially regular space, then A < A°* < 1. The example
of a space for which A + 1°* & ] will be mentioned later (Example 6.).

Definition 3. Let (P, u) be a separated topological space. Define a convergence P
on P as follows: ({x,}, x) € P if each neighbourhood of x contains nearly all*) points

2) In this paper a completely regular topology is always understood to be a separated topology.

3) Theorem 8.4.4. Let P be any closure space. Then there is a completely regular topological
space P; and a continuous mapping ¢ on P into P; such that each continuous function on P is
a composition of the mapping ¢ and a continuous function on P;.

4) A proposition is true for nearly all » € N if there is ny € N such that the proposition is true
for all n = ny.
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of {x,}. Denote = the corresponding convergence topology. The convergence space
(P, B, 7) will be called a convergence space associated with the space (P, u).

It is well known that P = P* and 7 < u.

Theorem 4. A convergence space (P, B, n) associated with a completely regular
space (P, u) is sequentially regular.

Proof. Suppose that ({x,}, x) ¢ . Then there is a u-neighbourhood U of x and
a subsequence {x, } of {x,} such that U x,, = P — U. It follows from the complete
i=1

regularity of u that there is a continuous function f on (P, u) to <0, 1) such that the
sequence {f(x,)} does not converge to f(x). Since = < u, we have f € F(P) and the
proof is complete.

Lemma 5. Let (L, 2, 1) be a convergence space which has property (P). Let 1
be the sequentially regular modification of A. Then 7. = 1.

Proof. The assertion follows directly from the statement (b) of Theorem 2.

Theorem 5. Let (L, &, 2) be a convergence space which has property (P). Let 1 (%)
be the sequentially regular (completely regular) modification of A. Let (L, M, p)
be the convergence space associated with (L, ). Then I = 2 and therefore p = 1.

Proof. Let ({x,}, x) € M and let f € F(L). Suppose that the sequence {f(x,)} does
not converge to f(x). Then there is a subsequence {x,} of {x,} and an open interval I

such that f(x)eI and U x,, = L — f~'(I). This contradicts the definition of M.
i=1

Therefore lim f(x,) = f(x) and hence ({x,}, x) € 2. To prove the converse suppose
that ({,}, ») € £ and let U be any Z-neighbourhood of y. Then there is a continuous
function f on (L, Z) into <0, 1) and an open interval I such that y e f~(I) = U.
By Theorem 3 we have fe (L) and therefore lim f(y,) = f(y). It follows that

({Vn)> y) € M.
The statement (d) of Theorem 2 and Theorem 5 imply the following

Corollary 3. Let (L, 84, A;) and (L, £,, 1,) be sequentially regular spaces and let 1,
and 1, be the corresponding completely regular modifications of ; and A, respec-
tively. Then X, = 1, if and only if A, = A,.

In view of statement (d) of Theorem 2, Theorem 5 and Theorem 4 we have

Corollary 4. The class of sequentially regular spaces whose convergences are
largest is exactly the class of convergence spaces associated with completely regular
spaces.
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3

The class of all completely regular spaces whose topology is a completely regular
modification of some convergence topology will be denoted by P. It is natural to ask
whether every completely regular space is a member of P. The negative answer is
supplied by the following

Example 3. Let P = U U x,, U (x,). The points x,,, m €N, ne N, are isolated.
m=1n=1

The complete collection of neighbourhoods of the point x, is the family of sets

o] o0

U U x,vu (xo) where ke N and r is any mapping of N into itself. The space
m=k n=r(m)
(P, u) is clearly completely regular and the space (P, B, ) associated with (P, u) is
discrete. Therefore (P, 7) is completely regular and hence # = 7. According to Lemma
5 and Theorem 5 there does not exist a convergence topology 4 for P such that 1 = u.
Consequently (P, u) is not a member of the class P.

This example shows that a sequentially regular space (P, B, ) can be associated
simultaneously with completely regular spaces (P, u,) and (P, u,) while u; + u,.
The situation is different when the spaces (P, u,) and (P, u,) are members of P.

Lemma 6. If a completely regular space (P, u) is a member of P and if the con-
vergence space (P, B, n) is associated with (P, u), then u = #.

Proof. The assertion follows immediately from Theorem 5 and Corollary 3.

Corollary 5. Let (P, u,) and (P, u,) be members of the class P and let (P, B,, m,)
and (P, By, n,) be the corresponding convergence spaces associated with them.
Then nt, = 7, if and only if u; = u,.

Theorem 6. Let (P, u) be a completely regular space. The space (P, u) is a member
of the class P if and only if the following condition is satisfied:

A function f on (P,u) to <0, 1) is continuous if and only if lim f(x,) = f(x)
whenever for each neighbourhood U of x we have x, € U for nearly all ne N.

Proof. Denote (P, P, n) the convergence space associated with (P, u).

_If (P, u) is a member of P, then according to Lemma 6 we have u = # and the
assertion follows by Theorem 3.

To prove the converse observe that, according to Theorem 3, the family of sets
f7Y(I), where f e 8(P) and I is an open interval, is a base for # and u simultaneously.
Consequently u = # and (P, u) is a member of P.

If a space (P, u) is a member of P and at the same time a convergence space, then
any subspace (Q, u | Q) of (P, u) is again a member of P. This is not true in general as
it is shown in the following
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Example 4. Let P = U U Xy U U x,,, U (xo)- The points x,,,, me N, ne N, are

m=1 n=1

isolated. The complete collection of nelghbourhoods of the point x,,, m € N, is the

family of sets U X U (X,,), k€N, The complete coliection of neighbourhoods of the

@

point x, is the famlly of sets U U Xy Y U X U (xo) where [ € N and r is any

m=1 n=r(m) m=1

mapping of N into itself. The space (P, u) is completely regular. Denote (P, B, ) the

convergence space associated with (P, u). Then u = n? = n“" and therefore u = 7.

Consequently the space (P, u) is a member of P. Let Q = U U x,,,,, U (xo). It was

m=1n=1
shown in Example 3 that the space (Q, u | Q) is not a member of P.

In considering whether a topological product of two members of P is a member
of P we shall restrict our attention to convergence spaces. Let (L, £,, 4;) and (L,, ,,
;) be completely regular convergence spaces. Denote (L, £, A) their convergence
product and (L, w) their topological product. It was shown in [8] that, if (L, £, 1,)
satisfies the first axiom of countability and (L,, £,, 4,) does not contain a g-point
(in particular, if it satisfies the first axiom of countability), then A = w and hence
1 = w. Consequently, (L, w) is a member of P.

Now we are going to present an example of two normal convergence spaces (one
of which satisfies the second axiom of countability) whose topological product is not
a member of P.

0 0
Example 5. Let L, = U U X, U (x,). Define convergence €;:

m=1 n=1

({s:}.s)e @, ifeither s;=seL,,ieN, or s =X,,,ie€N, and s=x,,

where {n;} is any subsequence of {n}.

Let L, = U U VY (yo). Define convergence £,:

m=1 n=1

({t}.t)e 8, ifeither t;=teL,, ieN, of t, = Yypmy i€N, and t=y,,

where {m,} is any subsequence of {n} and r is any mapping of the set {J m; into N.

Denote A; and 4, the corresponding convergence topologies. =t

The spaces (L, £, 1) and (L,, ,, 1,) are clearly normal topological spaces and
the space (L,, £,, 4,) satisfies the second axiom of countability.

Let (L, w) = (L;, 4;) x (L, ;) be the topological product and let (L, &, 1) =
= (L, &,, Al) x (Lz, £,, 4,) be the convergence product of the two spaces.

Let 4 = U U (xm,,, Ymn) © L and define a function f on L as follows: f(z) = 0,
m=1n

zeA, f(z) =1,zeL— A.Itis easy to prove thatf is contmuous on (L £, 4). On

the other hand, note that the family of sets U U X U (%) X U U Yun Y (¥0)s

m=1 n=r(m) m=k n=1

where ke N and r is any mapping of N into itself, is a complete collection of w-

239



neighbourhoods of (x,, y,). Hence f is not continuous on (L, w). By Theorem 3 it
follows that Z % w and, by Theorem 5, (L, w) is not a member of P since (L, 2, 2)is
clearly associated with (L, w).

Note 4. J. NovAk asked in [6] whether the following two definitions of continuity
of functions on the topological product (L, w) of convergence spaces (L, £,, ;) and
(L,, £,, 4,) are equivalent:

(Dy) A function f is continuous on (L, w) if for each (x, y) € Land & > 0 there are
A,-neighbourhood U of x and A,-neighbourhood V of y such that f(U x V) <
< (f(x,y) — & f(x, ¥) + ¢).

(D,) A function f is continuous on (L, w) if lim f(x,, y,) = f(x, y) whenever
g —limx,=xand &, — limy, = y.

The example 5 shows that the answer is negative since the function f is continuous
in the sense of (D,) but is not continuous in the sense of (D) ).

4

J. Novdk defined the notion of the sequential envelope o(L) of a sequentially regular
convergence space Lin [4].

The sequentially regular convergence space (S, S, ¢) is a sequential envelope of
a convergence space (L, €, 1) if the following conditions are satisfied:

(00) (L, &, 2) is a subspace of (S, S, o).

(0y) S = 0“'L.

(o,) Each function f € §(L) has an extension fe (S).

(03) There is no sequentially regular space (S, &', ¢’) containing (S, €, o) as
a proper subspace and fulfilling (¢,) and (o) relative to Land S'.

The sequential envelope of a sequentially regular space can be directly obtained
by successive adjoining of “ideal points” to the given space. The following definition
was suggested to me by Prof. J. Novak.

Definition 4. A sequence {x,} of points of a sequentially regular space (L, €, )
will be called remarkable if the sequence {f(x,)} is convergent for each f e F(L).

Lemma 7. Every remarkable sequence in a sequentially regular space (L, £, 1)
is either R*-convergent or totally 8*-divergent.

Proof. If a remarkable sequence {x,} of points x, € L is not totally 2*-divergent,
then there is a subsequence {x,} of {x,} and a point x € Lsuch that ({x,,}, x) € £.

5) To find necessary and sufficient conditions under which the definitions (D) and (D,) are
equivalent remains an open problem.
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Hence lim f(x,,) = f(x) for each f € F(L). Therefore lim f(x,) = f(x) for each f & F(L)
and the assertion follows by Lemma 2.

We define an equivalence relation in the set of all remarkable sequences in a sequen-
tially regular space (L, &, 1) as follows: {x,} ~ {y,} whenever lim f(x,) = lim f(y,)
for each f € F(L). Denote o the family of all equivalence classes [{x,}] of remarkable
sequences.

Lemma 8. Let (L, £, 2) be a sequentially regular space, let {y,} € [{x,}] and let
({va}, y) € 8% Then [{x,}] is the set of all sequences {z,} such that ({z,}, y) € 8*.
The easy proof is omitted.

Corollary 6. The family </ is the union of two disjoint families # and € where
is the family of those equivalence classes which contain exactly one constant
sequence and € is the family of those classes which contain only totally *-divergent
sequences.

Theorem 7. Let (L, L, /1) be a sequentially regular space. For each ordinal ¢ < w,
there is a convergence space (L, L, A;) with the following properties:

(a) 8 = £ for each & = 1.

(b) £, = & for eachn < &.

(c) (L,, 8. 4,) is a subspace of (Lg, L, A) for each n < &.

(d) Ly = 2L,.

(¢) For eachn < ¢ there is a one-to-one mapping h, on F(L¢) onto §(L,) such that
h(f) = f| L, for each f e F(Ly).

(f) The space (Lg, L¢, ) is sequentially regular.

Proof. Let (Lo, £, 49) = (L, £, ). The conditions (b) through (f) are clearly
satisfied for & = 0. Suppose that the spaces (L,, £,, 4,) with required properties are
already defined for each < ¢ < w,.

I Let ¢ = { + 1. The space (L;, &, 4,) is sequentially regular by (f). Let %, be the
family of all equivalence classes of remarkable sequences in L, which contain only
totally £F-divergent sequences. Let L, = L, U %,. Let f € (L;). Define the extension f
of f on L as follows: f(x) = f(x) for x € L, f(x) = lim f(x,) for x e €,, x = [{x,}].
Let & be the family of all extensions of f e §(L,). Define the convergence €, on L,
as follows: ({x,}, x) € & if lim f(x,) = f(x) for each feF (if ({x,},y)e & and
({x.}, 2) € &, then f(y) = f(z) for each fe F and therefore y = z; hence £, satisfies
(30)) Denote 4, the corresponding convergence topology. It is easy to prove that
& = §(L;) and that the space (L, 8, 4;) satisfies conditions (a) through (f).

IL. Let £ be a limiting ordinal. Let L, = U L,, Let fe ‘;}(LO) and x € L,. Then

there is the least { < ¢ such that x € L,. By ( ) there is a unique function g € 'iS"(L;)
such that f = g | L. Let f(x) = g(x). Thus to each f € §(L,) we have defined a unique
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extension f on L. The convergence £, and the convergence topology 4. are defined
in the same way as in the case of an isolated ordinal, and again it is easy to see that
the required conditions are satisfied.

Denote (S, &, 6) the convergence space (L,,,, £,,,, 2

w1 (o384 'w1)'

Theorem 8. The convergence space (S, S, o) is a sequential envelope of the space
(L. 2, 2).

Proof. The space (S, S, o) is sequentially regular by (f). Condition (a,) (cf. p. 240)
is implied by (c), condition (o) is implied by (d), and condition () is implied by (e)-

Suppose that condition (03) is not satisfied. Then there is a sequentially regular
space (M, M, ) containing (S, S, o) as a subspace and satisfying conditions (o)
and (o) while M — S = . By (0,) we have M = p®L. Let ¢ be the least ordinal
such that L — S #+ 0. Since L= S we have ¢ > 0. Let ae y°’L — S. Then a e
€ u°L — u* 'L and there is a sequence {x,} of points x, € u*"'L, n e N, such that
({x,,}, a) e M. Since ¢ — 1 < &, we have x, € S, ne N, and there is < w, such that
x,€L,, neN. It is easy to see that {x,} is a remarkable sequence in L, and therefore
there is beL,,, such that ({x,}, b) € &,,,. It follows that ({x,}, b) e ©. This is
a contradiction since clearly a # b. Therefore condition (o) is also satisfied.

Lemma 9. Let (L, L, A) be a sequentially regular space and let (L, 2, 1),
0 = ¢ £ w,, be the sequentially regular spaces defined in the proof of Theorem 7.
For any ¢ the space (L, ¢, A:) is a sequential envelope of the space (L, £, %) if
and only if €; = 0, i.e. if all remarkable sequences in Ly are F-convergent.

Proof. The assertion follows from the construction of spaces (L, £, 1) and from
Theorem 8.

Definition 5. A sequentially regular space (L, g, 2) will be called L-complete if
every remarkable sequence in L is £*-convergent.

Theorem 9. A sequentially regular space (L, 2, 1) is &Z-complete if and only if
o(L) = L.

Proof. The theorem follows from Lemma 9 if we consider the case of ¢ = 0.

.Corollary 7. If a sequentially regular space (L, £, A) is either isolated or countably
compact, then o(L) = L.

Theorem 10. A sequentially regular space (S, €, o) is a sequential envelope of
a convergence space (L, 2, 1) if and only if the following conditions are satisfied:

(00) (L, &, 4) is a subspace of (S, S, o).

(0,) S =0"L.

(02) Each function f € §(L) has an extension fe (S). -

(63) The space (S, S, 0) is L-complete.
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Proof. I. Suppose that the space (S, , o) satisfies conditions (o) through (o%)
but that it is not a sequential envelope of (L, 2, /1). Then, by (03), there is a sequentially
regular space (M, 9, 1) which contains the space (S, S, o) as a proper subspace and
satisfies conditions (o) and (o) in respect to L. Condition (o,) implies that M =
= u®L. Let & be the least ordinal such that p’L — S =% 0; clearly & > 0. Let
a € u*L — S. Then there is a sequence {x,} of points x, € S N "L, n € N, such that
({x.}, a) e M. Let feFS). It follows, by (v,) for M, that there is an extension
J'e §M). Since ({x,}, a) € M, the sequence {f(x,)} and therefore also the sequence
{f(x,)} are convergent. Consequently {x,} is a remarkable sequence in S and, by (d%),
it is S*-convergent, i.e. there is b € S such that ({x,}, b) € *. This is a contradiction
since a =+ b.

II. To prove the converse suppose that the space (S, S, o) is a sequential envelope
of (L, £, ) but that it does not satisfy condition (¢3). Let (M, M, ) be the sequential
envelope of (S , ©, o). Then we have M = S by Theorem 9. It is easy to prove that the
space (M, 9, p) satisfies conditions (o) through (o) with respect to (L, £, 1). This
is a contradiction by (o).

Corollary 8. If (L, &, J) is a sequentially regular space, then o(o(L)) = o(L).
The following example of a sequentially regular space (L, €, ) for which o(L) + L
is constructed in [7].
Let L= U U (x k); ({z},2) € & for each ze L, ({(o, 1)}, (o, 1)) € & whenever
1

aswy k=

lim o, = o, ({(«,, k)}, (wy, k)) € & whenever k > 1 and o, + a, for m % n, and
({o, k;)}, (2, 1)) € £ for each « < w; and for each subsequence {k;} of {n}. Let
L'= L— (wy,1). Then o(L') = L.

Since the space (L, £, 4) is {0, 1} sequentially regular, it follows (see [7]) that it
can be realized by a convergence system of sets. The folowing is an example of such
a system and it will be used to show the existence of a convergence ring P for which

) O'(P) + P.

Example 6. Let R = X U Y where X and Y are disjoint sets of power ¥, and 2M°
respectively. Let R be the usual convergence of sequences of sets in R and let ¢ be the
corresponding convergence topology.

For each & < w, let X, be a countably infinite subset of X such that X; n X, = 0
whenever f§ & y. For each o < o, arrange the points of X, into a one-to-one sequence

o0
{X,} so that X, = U x,,.
n=1

Let S = {(«, k) < o, k=2,3,...}. Let T= {{& ki}} be the set of all
sequences of points of S such that both sequences {¢,} and {k,} are one-to-one. Let

U ={V:V=U(k) {& k,} € T}. Since p(#)=2" there is a one-to-one
n=1
mapping Y of the family % onto the set Y.
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Let f < w, be an ordinal. To each o < f8 we assign a positive integer n(a, f) in the
following way:

If the ordinal f is finite, then n(x, f) = « + 1 for each o < B.

If the ordinal § is not finite, then arrange the points of the set W(B + 1) =
= {¢: & £ B} into a fixed sequence {&4}; for each o < B let n (x,f) be an integer
for which &8, ;) = a.

Il

Define the convergence space (M, I, p).
M = {4, 0 £ w,, ke N} where 4,, are the following subsets of R:

for « < o, k>1: Ay =Z, B,V {y:ye, (v k) ey '(y)},
for « = wy, k> 1: A, = Z,,
for o < o, k =1: 4,, = U X,

k Bza k—n(a,p) i
where Z, = U X, ;and By = U U x5, (UXpn =0 fori < 1and g < o).
=1

i aSp<oy m=1 m=1

It is clear that A, + Ay for (o, k) + (B, j).
Let M = R (partial convergence [7]) and let u = ¢ | M. Denote M’ = M — (A4,,,,).

Let ¢ be a mapping on (L, £, 4) onto (M, M, p) such that ¢((x, k)) = Ay. It can
be proved that the mapping ¢ is a homeomorphism. (Note that {B,,} is an increasing
sequence for each o < w;. It is also easy to see that, for any k > 1, B, = 0
whenever the set S is infinite.) Consequently ¢ (M) = M. oeS

Denote P = R(M’) the ring generated by M’ and (P, P, n) the corresponding
convergence subspace of (R, R, ¢). We will show that o(P) # P. By Theorem 9 it
is sufficient to show that the space (P, B, n) is not Z-complete, i.e. that there is
a totally P-divergent remarkable sequence in P. We will prove that {4,,,} is such
a sequence.

Let f € (P). Denote g = f| M' € FM"). Since {A,,;} is a remarkable sequence
in M, it follows that the sequence {g(4,)} and consequently also the sequence
{f(A,,1)} are convergent. Hence {4,,,} is a remarkable sequence in P.

Since R — lim 4,,; = A,,;, it remains to prove that A, ¢P. Let CeP and
suppose that A,,, = C. We will prove that C — A, ; + 0. Since CeP = R(M)

we have C = A ﬂ C;®) where C;;eM, i=1,2,...,r, j=12,..., 5, Denote

i=1 j=1
si r .
C;=NCyi=12..rsothatC= A C; Wecanassume, without loss of genera-
j=1 i=1
lity, that thereis p < rand «fi, j) < w; suchthat C;; = Ay 5,1, I S pJj = 1,2, .., 8
while C; = A, ., i > p, where k; > 1. It follows that C; = A1, i < p, where «; =

r
) A C; denotes the symmetric difference of the sets Cy, C,, .-+, Cp i-€. the set of all points
i=1
belonging precisely to an odd number of the sets C;.
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= max (oc(i J))- Since the set A C,; can contain only a ﬁnite number of points x,,,,
an1d<f/1<;:1 < C, it follows thz;t ‘;;+1> 1. Consequently Ag; = A C; where f = max a;.

On the other hand Xgm € U C; for a finite number of mj olnly Hence the;e< ;; I;no
such that xg,, ¢ U C; ;n§+t11erefore Xpm, € C. It follows that C + A4, and hence

Ay ¢ P. i=p+1

The space (M, M, p) is also an example of a convergence space for which p %
+ p®* # fi (cf. Note 3 p. 236). If we denote B = {4, : & < wg, k > 1}, then 4,,; €
€ u”'B — uB and therefore u* # p. Itis also easy to see that the point 4, and the
closed set {4, : @ < w,} cannot be separated by open neighbourhoods and con-
sequently the space (M, ©®*) is not regular. Hence fi + u®'.

It is pointed out in [4] that the definition of a sequential envelope o(L) is similar to
that of the Stone-Cech compactification (L) but that the spaces o(L) and f(L) can
be completely different. Now we are going to examine their relation more closely.

Theorem 11. Let (L, £, 2) be a sequentially regular space, let 1 be the completely
regular modification of /. and let (P, u) be the Stone-Cech compactification of (L, %).
Let (P, B, n) be the convergence space associated with (P, u). Then o(L) = n“'L.

Proof. Let ¢ be a special homeomorphism on (L, £, A) into the convergence cube
space (C, €, y) of the dimension P(F(L)), i.e. p(x) = (f(x)), x e L, F(L) = {f, : a€l}.
Let v be the usual product topology for C. Then by Theorem 3 it follows that ¢ is
a homeomorphism on (L, Z) onto the subspace (¢(L), v|¢(L)) of (C, v). Since v (L) =
= B(o(L)), it follows that there is a homeomorphism k' on (P, u) onto (v ¢(L),
v|v o(L)) such that |, = ¢. Let A = n®'L, B = y** ¢(L) and h = h'|. Then h is
a homeomorphism on (4, B4, n | A) onto (B, €4, y | B) such that h(x) = ¢(x) for x € L.
The assertion of the theorem follows by Theorem 13 in [7].

Corollary 9. The sequential envelope of a sequentially regular space is the
smallest sequentially closed subset in the Stone-Cech compactification of the cor-
responding completely regular space which contains the given space.

Theorem 12. Let (L, £, A) be a sequentially regular space. If the space (L, 2) is
normal, then o(L) =

Proof. Let (P, u) be the Stone-Cech compactification of (L, £) and let (P, P, x)
be the convergence space associated with (P, u). According to Theorem 11 we have
o(L) = n'L. Suppose that 6(L) & L. Then there is a one-to-one sequence {x,} of
points x, € L, ne N, and a point x € tL — L such that ({x,}, x) € B. According to
(#2) we have ({x,,}, x) € P for any subsequence {x,} of {x,}. However, since the
space (L, 1) is normal, we have nd n 7B = whenever 14 n 1B = 0. This is
a contradiction and the theorem follows.
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On the other hand, if ¢(L) = L, then it does not follow that the space (L, 7) is
normal. Let us mention the following example.

Example 7. Let Lbe the subset of all points (x, y) of the Euclidean plane such that
y = 0. The topology A for Lis defined as follows: Let (xo, Yo) € L. If yo > 0, then the
family of sets U,(xo, yo) = {(x, ¥) : (x — x0)* + (¥ — ¥0)* < 1/n?}, where neN
and is such that 1/n < y,, is a complete collection of neighbourhoods of (xo, ).
If yo = 0, then the family of sets U,(xo, 0) = {(x, ) : (x — x0)*> + (y — 1/n)* <
< 1/n*} U (xo, 0), where n € N, is a complete collection of neighbourhoods of (x,, 0).
The space (L, ,1) is a well-known example of a completely regular non-normal space.
It is easy to see that space (L, A) is a sequentially regular convergence space. Since
1 = 1, the space (L, 1) is not normal but on the other hand ¢(L) = Lby Theorem 9.
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Pesrome

O CEKBEHIIMAJIBHO PEI'VJISAPHBIX ITPOCTPAHCTBAX
CXOOUMOCTH

BAIJIAB KOVTHUK (Vé4clav Koutnik), ITpara
B cratne pacCcMaTpUBAIOTCA IIPOCTPAaHCTBA CXOAMMOCTH, T.C. IIPOCTPAHCTBA, B KO-
TOPBIX OI€pamus 3aMBIKaHUS onpenecieHa MmoCcpeicTBOM CXOOUMOCTH IIOCIICIOBa-

TEJIbHOCTEH.
006o3H2%1M Yepe3 %(L) MHOXECTBO BCEX HETIPEPHIBHBIX AEHCTBUTEIHLHBIX (OYHKIVIA
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Takux, 4o 0 £ f(x) £ 1 must Beex x e L. IIpocTpancTso cxomumocTd L HaspBaeTcs
CCKBECHIUAJIBHO PEryIAPHBIM [3], €CNIM K KaXJ10i Touke x € L u K KaX/IOo# mocyeIo-
BaTEJIBHOCTH TOYCK {x,l}, IpUYEM HMO/HA BBIOpaHHAsI W3 HEe MOJMOCIeI0BaATE b=
HOCTB HE CXOIUTCs K TOYKE X, cymiectByeT GyHkmus f e F(L) Taxas, 4T0 mOCIem0Ba-
tesbHOCTS { f(x,)} He cxomures k f(x).

B crathe maeTcst HEOOXOUMOE M OCTATOYHOE YCIIOBUE ISl TOTO, YTOOBI CEKBEH-
IUAJILHAS TOTIOJIOTUs OBUTA CEXBEHIUAILHO PETYIISAPHOIL.

ITpocTpaHCTBO CXOAMMOCTH MMeeT CBOHCTBO (P), ecid st X == y CyLIeCTBYET
fe &) raxas, uro f(x) #+ f(y). B mpocrpaHCcTBE CXOAMMOCTH, KOTOPOE HMEET
cBoiictBo (P), Ha30BEM CEKBEHUMAIBHYIO TOMOJOIUIO ) CeKBEHIMAJIEHO peryJisip-
HOM MoaubuKamyeil CEeKBEHIMAIBHONM TOMOJOTUM A, €CIiU A sBisercs ciaGeitmeit
M3 BCEX CEKBEHIMAJHHO PETYJLSIPHBIX TOMOJIOTHH GojIee CUIIBHBIX YeM A.

BrioJtHe PETyIAPHYIO TOMOJOTHIO 4 HA30BeM BIOJIHE PETYJIAPHON MOIU(pUKAIMCH
CEKBCHIMAILHOM TOMOJIOTHM A, €CIIA A sBisieTcst cmabeifiieil W3 BCEX BIIOJIHE pe-
TYJISIPHBIX TOTIOJIOTHH GoJIee CHIIbHBIX YeM A. JIJIs TOTO, YTOOBI CYILIECTBOBAJIA BIIOJIHE
peryJsipaas MoaubuKaIysl CEKBEHINAILHOW TOMOJIOrMY HEOOXOOUMO M JAOCTATOY-
HO, 4T00B! OBLUIO BhITOJIHeHO ycioBue (P). Eciu A — ceKBeHIHMANbHASI TOIOJIOTHS,
=1

BesikoMy oTOeIMMOMY HPOCTPAHCTBY COOTBETCTBYET MPOCTPAHCTBO CXOAUMOCTH,
B KOTOPOM IIOC/ICI0BATEILHOCT {X,} CXOAMTCS K TOUKE X, €CII BCSIKast OKPECTHOCTh
TOYKA X COJCPXKUT MOYTH BCE TOUKH X,. CeKBEHIMAJIbHO peryiisipHast Momuduxa-
us /. CeKBEHIMOHAJIBHOW TOIIOJOTHH A COBIIANAECT C CEeKBEHIMAIBHOM TONIOJIOTHUCH,
COOTBETCTBYIOLIEH BIONHE peryiaipHoii Momudmxammin 1. KiTace CeKBEHIMAILHO
PETYJISPHBIX IIPOCTPAHCTB COBHAAAET C KJIACCOM IMPOCTPAHCTB CXOIUMOCTH, COOTBET-
CTBYIOLIMX BIIOJIHE PETYJISIPHBIM MPOCTPAHCTBAM.

Wccrenyetcst kiacc P BIOJHE PErysipHBIX IPOCTPAHCTB, TOIOJIOTHSI KOTOPBIX
SIBJIICTCSL BIIOJIHE PETYJISIpHOM Momudukamueid HEKOTOPO# CEeKBEHIMAJIbHOW TO-
noJyornu. JlaeTcst He06X0QUMOe U JOCTATOYHOE YCJIOBWE IS TOTO, YTOOBI BIOJIHE
peryJsipHOE TPOCTPAHCTBO MPUHAIIEKAIO Kiaccy P.

TokaseBacTest, YTO CEKBEHIMAIBHYIO 000504Ky o(L) CEKBEHIMAJBHO DETYJISp-
HOTO MPOCTpaHCTBa L MOXHO HOJIyYUTh MOCTEIIEHHBIM PACHIMPEHUEM JAHHOTO IIPO-
CTpaHCTBA.

CexBEeHIMATIPHO PETYJIIPHOE IIPOCTPAHCTBO HA30BEM F-IOJIHBIM, €CIM CXO-
IMTCS KaXk/as IOCIefoBaTeIbHOCTh {X,} Takas, 4To mociefoBatensHocTh {f(X,)}
cxomurest s kaxaoi fe F(L). MokaspBaercs, YT0 F-MOJHOTA CEKBEHIMAIBHO
peryiasipHOro MpocTpaHcTBa L sBiISeTCS HEOOXOMUMBIM M JTOCTATOYHBIM YCJIOBHEM
Iuts1 paBeHcTBa o(L) = L.

HccnemyeTcsi COOTHOMIEHNE MEXIy OWKOMITAKTHBIM PAaCUIMPEHWEM BIIOJIHE pe-
TyJspHOro ImpoctpancTBa. CexBeHIMATIbHAsE 00O0JOYKA CEKBEHIIMAIBLHO DETYJIISIp-
HOTO NPOCTPAHCTBA SIBJISAETCS HAMMEHBIIMM CEKBEHIMAJIbHO 3aMKHYTBIM ITOJIMHO-
JKECTBOM OMKOMIIAKTHOTO PACIIMPEHHS COOTBETCTBYIOIIETO BIOJHE PETYJISIPHOTO
IIPOCTPaHCTBA.

>

TO

247



		webmaster@dml.cz
	2020-07-02T20:36:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




