
Czechoslovak Mathematical Journal

Karel Čulík
On some transformations in context-free grammars and languages

Czechoslovak Mathematical Journal, Vol. 17 (1967), No. 2, 278–311

Persistent URL: http://dml.cz/dmlcz/100776

Terms of use:
© Institute of Mathematics AS CR, 1967

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/100776
http://dml.cz


Czechoslovak Mathematical Journal, 17 (92) 1967, Praha 

ON SOME TRANSFORMATIONS IN CONTEXT-FREE 
GRAMMARS AND LANGUAGES^ 

KAREL CULIK, Praha 

(Received April 18, 1966) 

INTRODUCTION 

The only aim of this paper is to describe a class of mathematically well defined 
mappings which meet probably all the linguistic requirements for (singulary) transfor
mations. The main requirement expressed by N.CHOMSKY is that the transformations 
are mappings the domains and ranges of which are sets of phrase-markers. There 
are different mathematical definitions of a context-free grammar and of a phrase-
marker determined by it, but the term phrase-marker is very often used by linguists 
independently of any context-free grammar and without any mathematical definition 
at all. 

To be able to make any use of the main linguistic requirement concerning the 
transformations it is necessary to introduce a new definition of a phrase-marker (or 
of a structural description) which is independent of any context-free grammar and 
which is acceptable to linguists (i.e. which can be justified empirically). Both these 
conditions can easily be satisfied by a definition which is on the one part equivalent 
to that which depends on the notion of context-free grammar (as it was introduced 
originally by N. Chomsky, e.g. [1, 2]) but which does not make any use of the term 
rule (only the terms terminal and nonterminal symbols or vocabularies are necessary), 
i.e. a definition using the terms of graph theory only (see [3, 4]). Using this mathema
tical definition of the phrase-marker the reasoning leading to the considered class of 
mappings seems to be very natural. A mathematical definition of a transformation 
follows almost immediately from simple purely mathematical requirements. 

Concerning the linguistic requirements for transformations the following explana
tion of the situation can be of some use. 

^) The main part of this paper was lectured at the summer seminar (June, July, August 1965) 
on mathematical linguistics in M.I.T. under the leadership of N. Chomsky. During this seminar 
there were fruitful discussions with many other participants, especially with E. Bach, M. Halle, 
J. J. Katz et all. 
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In a traditional grammar of a natural language the one-to-one correspondences 
(in fact, there are some exceptions) between the sets of the active sentences and of the 
passive ones or between the declarative sentences and the questions etc., are very 
well known and very often used in teaching that language. Correspondences of that 
type were called transformations by Z. HARRIS [5]. In teaching e.g. Enghsh, the active 
sentences are considered simpler than the corresponding passive ones and therefore 
they are taught sooner. Only after a grammar for active sentences is built are the 
passive sentences introduced or described as a result of the active-passive transforma
tion which is applied to the active sentences. Finally a grammar for the passive sen
tences is also built or the original grammar is extended to that case. 

It is well known that in the traditional grammar the set Lof all English sentences 
can be divided into special subsets L^, L2, . . . , L„ (e.g. L^ is the set of active sentences, 
L2 of passive ones, L3 of declarative ones, L4 of questions etc.) such that some one-
to-one correspondences Cij between Ц and Lj can be discovered as an important 
result of linguistic research (e.g. C^ 2 is the active-passive correspondence and C3 4 
the declarative-question one etc.). To avoid any misunderstanding, the corresponden
ces Cij will be called descriptive transformations. 

Now from a pure mathematical point of view if we have the subsets L^, L2 . . . ,L„ 
and the descriptive transformations C^ 2? C3 4, ..., it is possible to define new subsets 
L\, L2, ..., 14 by the condition that L^ is non void and is an intersection of some of the 
original subsets L^, L2, ..., L„ such that always either L^ n Lj = 0 or Ц n Lj = 
= L- (e.g. L[ contains active declarative sentences, L'2 active questions, L'3 passive 
declarative sentences, L4 passive questions etc.). In general the subsets Ц contain less 
elements than the subsets Lj but, on the other side the number m of the subsets Ц is 
greater than the number n of Lj. Furthermore the partial transformations C-^ of C^̂  
are also determined between Ц and Ц such that Ц n L̂  ф 0 ф L̂ - n Lj (e.g. C^ 2 is 
the transformation which assigns the corresponding question to the given declarative 
sentences but only if both are active sentences, C^ 3 is the active-passive transforma
tion but only for the declarative sentences, etc.). Finally, it is always possible to 
compose the transformations C'lj and C} ̂ . The composed function Cj^j^C[j is 
a new transformation between Ц and Lj^ (e.g. C3 4^1 3 assigns the corresponding 
passive question belonging to L4 to each active declarative sentence from L^, because 
C'i 3 assigns the passive form from L3 to the given active declarative sentence from L[ 
and then C3 4 assigns the corresponding question from L4). 

In this situation one can look for a single distinguished subset L- or (perhaps con
struct a new subset LQ containing some artificial sentences) and some distinguished 
transformations such that, using them and using the composition of them, all the 
subsets L[, L'2,..., L[^ can be generated. And this fact was stressed by N. Chomsky 
and used in his generative transformational grammars. 

On the other hand, it was expressly required by N. Chomsky that the transforma
tions in his sense — they will be called structural transformations here — concern the 
whole phrase-markers (or structural descriptions) of the sentences and not only the 
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sentences themselves as it is the case when using descriptive transformations. Of 
course the notion of a structural transformation is more powerful than that of 
a descriptive one and each structural transformation defined for phrase-markers 
induces the corresponding descriptive one defined only for the sentence which is the 
terminal string of the considered phrase-marker. 

In the transformational grammar of Enghsh N. Chomsky assumes that a set of 
phrase-markers фо ^f the "kernel sentences" (or later of the "basic strings") L'Q is 
given and also some structural transformations T/, T2,. . . , T^ are given together 
with certain rules of composition of them such that using the allowed composed 
transformations TlJ'l^... Tl^ to the elements of ^o> 1̂1 the phrase-markers of all 
English sentences can be generated. If we denote by C\ the descriptive transformation 
corresponding to the structural transformation Tl and if we use the same rules of com
position of C- as of Tl then by some composed transformation C\fi\^... C\^ applied 
to LQ we have to obtain L^, by some different composed transformation apphed to Ljj 
we obtain Z/2, etc. It is clear that the original subsets L^, L2, ..., L„ are also the 
unions of some L\ and the original transformations C^j are also determined by 
some CĴ , so we are back in the starting situation in traditional grammar. 

By that the connection between the transformations in the Harris's sense and in 
the Chomsky's sense is clarified, of course only in the simplest case concerning so 
called singulary transformations (i.e. to a single sentence or to a single phrase-marker 
again a single sentence or single phrase-marker should always be assigned; the 
possibihty of constructing from two or more sentences or phrase-markers only 
a single one is not considered here). 

Finally there is an assumption about ^0 expressed by N. Chomsky, namely that фо 
is determined by a context-free grammar GQ, but not similar assumption is made 
with regard to the sets of derived phrase-markers ^ i , ^2? •••? Фш ^f the sentences 
belonging to L ; , ^ 2 , . . . , V^ resp. Let e.g. Щ = П,г{%) where T^^, = Tfj;^, . . . , 7^; 
is a certain allowed composed transformation. As ^0 is a finite set, Sß[ is also finite 
and therefore we can assume that Щ is determined by a context-free grammar G^. 
Under these assumptions the transformation Год can be considered as a correspon
dence between two context-free grammars GQ and G^. And that is just the starting 
point for a general definition of a (singular) transformation introduced in this paper. 

1. PHRASE-MARKERS AND MARKERS 

Let us introduce — only in order to clarify the terms used here — the following 
conventions: the term phrase-marker is always dependent on a context-free grammar 
as it is stressed in its informal definition given by N. Chomsky [1] where the starting 
point is a derivation of the considered grammar and where the famihar diagram 
having the form of a labeled tree is drawn step by step for all the used rules; the term 
structural description is always independent of any context-free grammar but it 
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corresponds again to the diagrams having the form of a labeled tree (e.g. the diagrams 
of the deep structure of "basic strings") where — probably — the edges express the 
immediate constituent relationship. 

The confusing fact is that the same picture, the diagram of a labelled tree can be 
considered once as a phrase-marker and at some other time as a structural descrip
tion. If we wanted to distinguish these two interpretations of the same labelled tree 
we could do it in the following way: in a phrase-marker we should mark out all the 
particular rules used in it by a closed dotted line around the corresponding vertices 
as shown in Fig. lb), where evidently the rules used are as follows: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

<vp> : 
<Verb> : 
<v> : 
<Prt> : 
<NP> : 

: = <Verb> <NP> 
: = <v> <Prt> 
: = turn. 
: = out, 
: = <Determ> <N>, 

<Determ> : : = <Quant> <Art>, 
<Quant> : : = some of, 
<Art> : : = the, 

9. <N> : : = lights. 

Thus a) is a structural description but b) is a phrase-marker. 
Unfortunately there is an exact mathematical definition neither for the notion of 

the phrase-marker nor for the structural description and therefore nothing that now 
follows can be proved, it can be only justified empirically by linguists or resulted by 
an example. 

It is clear how to pass on from a phrase-marker to a "corresponding" structural 
description and also how to mark out certain "rules" in a structural description such 
that it becomes a "corresponding" phrase-marker. What we are claiming is an 
assumption ~ probably acceptable to all linguists — that the classes of all structural 
descriptions and of all phrase-markers are identical, i.e. it is of no importance to 
distinguish between the notions of a phrase-marker and a structural decription. 

To be able to make any use of this assumption at a mathematical level it is necessary 
to have an exact mathematical notion underlying the two notions of phrase-marker 
and structural description and also being acceptable to all the linguists, i.e. each 
linguistically correct phrase-marker or structural description always satisfies the 
underlying definition and conversely each diagram satisfying the underlying definition 
is a phrase-marker or a corresponding structural description. 

If we look at the diagrams in Fig. 1 it is clear that very important information is 
contained in the placing of the particular symbols on the paper. One part of this 
information is expressed by the drawn lines and by placing the relation "up — down" 
and the second part is not expressed by any Unes at all but only by the relation "left-
right". The first part of the information concerns a binary relation a which is the 
immediate constitutent relationship and the second part concerns another binary 
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relation Q which is the immediate ordering relationship (a part of it concerning the 
terminal symbols is the immediate word-order relationship and the remaining part 
concerns the order of non-terminal symbols which in the strings belong to the certain 
derivations). 

Fig. 2a) shows an underlying structural description of a basic string and b) is the 
corresponding diagram where also the (7-lines but dotted are drawn and both the ^-

Verb 

/ \ 
V ?rt 

turn out 

/HP. 

/ 
Peterm 

Quant Art 

/ \ . i 
some of the 

\ 
N 

1 lights 

[turn] ^out If iQuant "; [Àrtîj l l ightsj lout If iQuant 

Jsome of 

ArtîJ IlightsJ 

Ithel 

John 

АцзГ Тег'Ъ ЯР Aclv шаУшег 

I 1 I / \ 
Past drink milk 1з;у Passive 

"̂ Aux-—i*¥erb Р'ЦР-fs.Adv тпаллег 

John >Past-^driiiK-»'miIk>'by--&'i^ÄSsiw 

tf^SSllX: ^,^ »Verb ASv^anner 

i 4 ЛА 1 

Fig. la, b. 

1 

zz - r zz r i 

Fig. 2a, b, с 

and tr-lines are directed by making the use of the directions "up — down" and "left — 
right" respectively. The most important difference between a) and b) is that in b) 
nothing depends on the placing of the particular symbols on the paper because all 
the necessary information is contained in both types of arrows (that type of a descrip
tion is necessary for any rigorous handling, e.g. for a machine handling). Thus b) 
and c) express the same phrase-marker or the same structural description as a), but 
evidently both are rather complicated. 

There is another important fact in the structural description a) in Fig. 2, namely 
that the non-terminal symbol NP is used in two different places. This is the reason why 
it is necessary to distinguish the tree or generally the graph structure of a structural 
description on the one hand and the labelling of the nodes of it by some symbols on 
the other hand. Then a labelling of nodes is a function defined on the set of nodes of 
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the underlying graph. The values of this function are the terminal or non-terminal 
symbols. 

Now the required definition underlying all the linguistic structural descriptions or 
phrase-markers can be formulated as follows: a structural description (or a phrase-
marker) over the terminal or non-terminal vocabulary V^ or V^ resp. (and over the 
context-free rules in 91, i.e. over a contex-free grammar G = <[VT, VJ^, 9Î>) is a finite 
double graph with labelled vertices P = {R, Q, a, / > , where Ä is a finite set of vertices, 
Q cz R X R and a Œ R x R are the binary relations the elements of which are called 
edges and f cz R x V, F = F^ u F^ is a function called labelling, such that the 
following conditions are satisfied 

(a) ^ is a rooted tree relation, i.e. there is a distinguished vertex r e R called the root 
such that for each x e R, x ^ r there is exactly one path in Q from r to x (i.e. 
a sequence (VQ, V^, ..., v^) of vertices from R such that (f^.i, Vi)eQ for each i = 
= 1, 2 , . . . . w and VQ = r, V„ = x); 

(b) a is an arbitrary atransitive and acyclic relation, Ï.QAÎ^VQ, V^, ..., f„) is a path 
in a then (^o, v„) ф a for each n > 1 and (t;„, VQ) ф a for each n ^ 1, which is con
nected; the two relations Q and a are connected by the following conditions 

(c) if X, j ; 6 jR and x ^ у then there always occurs precisely one of the following 
possibilities: there is a path either in Q from x to j^ or in cr from x to у or in Q from у 
to X or in СГ from у to x; 

(d) if (x, j;) e a and (x, x)', [y, y)' e Q then (x', y'), (x, y'), (x\ y) e Та (where Та 
is the transitive closure of a); and the labelling/ satisfies 

(e) if X e i^ and/(x) e F j then x is an end vertex, i.e. there is no vertex у such that 
(x, j;) e Q (/(r) is a distinguished symbol — usually S e V^); and if we are considering 
a phrase-marker over G = (^Vj, F r̂9î> then 

(f) if X e i^ and Q = {y e R; (x, j^) e ^} Ф 0 and Q = {y^, y2, ..., Ук) such that 
{Уь y^+i) e a for each z = 1, 2, ..., fc - 1 then (/(x) : : = /(}^i)/(j^2) • • - Д л ) ) e 9Î. 

This definition was introduced in [3, 4] on the base of an analysis of phrase-
markers or structural descriptions, only the conditions were formulated using the 
transitive closures TQ and Та of both relations (namely then TQ and Та are special 
partially ordering relations and TQ U Та is a/w// ordering relation). 

It is clear that it is very difficult to work with such a complicated formulation. 
Therefore in [6] another definition of phrase-marker was introduced (of course 
equivalent to the previous one in the sense that there is a one-to-one correspondence 
between the formations in the first and in the second sense) which is dependent on 
the rules of a context-free grammar, i.e. the condition (f ) is used in full. To avoid any 
possible confusions we shall speak only about the markers over the given context-free 
grammar instead about the phrase-markers. 

A proper marker over a context-free grammar G = (Vj, F^, 9Î> is a rooted tree 
with labelled vertices and edges M = (^A, r, B, (p,ij/y; A h a, finite set of vertices, 
r G Л is a root, JB cz Л X Л is the set of edges, cp cz A x 9i is a, function called 
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labelling of vertices and i/> с Б x {1, 2, 3, ...} is a function called labelHng of edges, 
such that the following conditions are satisfied: 

(A) <Л, r, Б> is a rooted tree with the root r, i.e. r is a distinguished vertex and for 
each vertex a e Ä, a + r there is exactly one path in В from r to a; 

(B) if {a, b)e В and (p{a) = {Xo : : = X1X2 ... X j 6 9î, (p{b) = (Уо :.*= Y^Y2... 
... y„) G 9Î where X^ G F for 0 ^ i ^ m, Ŷ  G F for 0 ^ 7 ^ n then there exists an 
integer к such that 1 ^ /c ^ m, X̂^ = Yo ̂ î d i/̂ (̂ , b) = k. 

(C) is Ь Ф с then i/̂ (a, b) Ф i^(a, c). 
An improper marker is each particular symbol from К An improper marker has 

no vertices. Finally a disconnected marker is any finite sequence of the length I > 1 
of proper or improper markers over G. 

In Fig. 3a) is a marker corresponding to the phrase-marker in Fig. lb) and in 
Fig. 3b) is a marker which corresponds to Fig. 2. In the first case the labelHng of 
vertices uses only the numbers of the particular rules instead of the rules themselves. 

Again it is very easy to see how to pass from a phrase-marker to the corresponding 
marker (of course the underlying rooted tree is determined only in regard to the usual 
graph-theoretical isomorphism) and conversely from the markers to the phrase-
markers. 

What is important to stress here is that — briefly speaking — to the two non-
isomorphic phrase-markers two isomorphic markers can correspond, because the 
isomorphism concerning the underlying rooted tree by markers is weaker than the 
isomorphism concerning the underlying double graphs by phrase-markers. In fact 
the ordering relation a is expressed in a marker only by the labelling of edges ij/. 
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2. LINGUISTIC REQUIREMENTS CONCERNING TRANSFORMATIONAL 
GRAMMARS 

The first requirement expressed bp N. Chomsky is that each transformation T is 
or is to be a mapping the domain and rhe range of which are the sets ^ and ^ * of 
phrase-markers resp. In fact the range ^ * is not given in advance or expHcitly but it 
has to be determined uniquely by the transformation T and by its domain ^ , i. e. 
sp* ^ |p>k. there is P G ̂  such that T(P) = P*}. That means that a transformation 
has to be a constructive mapping containing always a complete procedure for obtain
ing P from P. 

The second requirement expressed by N. Chomsky concerns the determination of 
the domain ^ of T. The existence of a broad and unspecified class of phrase-markers 
(e. g. the cless ok all possible phrase markers over the all possible context-free 
grammars) is assumed and ^ is a subset of it which is fully characterised by the struc
ture index of T. Namely, if a is an arbitrary string over V = Vj'u Fjy, where obviously 
in Vj and 7дг there are symbols used in the phrase-markers from ?), then there is 
a uniquely determined set ^^ of phrase-markers such that a is their structure index. 
If we use the notion of th phrase-marker introduced in the previous section then 
a — A1A2 ... Л„, where y l eF for 1 ^ i ^ ?i is a structural index of a phrase-marker 
P = <R, Q, (T,fy if there are vertices r^, Г2, . . . , r„GP such that r̂ , r̂  + i)G(7for 
f = 1, 2, . . . , /1 — 1, i.e. (r^, Г2, . . . , r„) is a path in a aue it is not possible to extend it, 
ane if Дг,) = Ai for each i = 1, 2, ..., n. 

The third requirement expressed by N. Chomsky concerns the so-called elementary 
transformation T^^ which underhes Г. If ^ = L(P), where L(P) denotes the last 
string of P, i.e. concatenation of all symbols by which the end vertices are labeled in 
the order determined by a, then by the structural index a = A1A2 ••• A„ of P 
a sequence of strings (t^, ?2> •••? 0 ^̂  uniquely determined such that ^̂ 2̂ --• t„ = t 
and that ti is traceable in P to the vertex labeled by Ai for each i = 1, 2 , . . . , n, i.e. 
using the previous notation we can say that each vertex r̂  determines one sub-phrase-
marker Pi of P the root of which is r̂  (in all details we can put Ri ~ {x e P ; either 
x = Tf or X Ф Yi but there is a path from r,- to x in Q\, Qi~ Q r\ {Ri x P^), a,- = 
= (X n{Ri X P^), fi =flRi) and ti = L{P,) for each i = 1, 2 , . . . , n. Now the 
requirement is that L^P'^) = criö-2 ... o-̂  where â  = T^i (i; ^1, 2̂? •••, 0 ^^^ ^^^h 
i = 1, 2 , . . . , П. Besides that if P' e ^ , L{P') = t' and P; with the root г\ are the 
corresponding sub-phrase-markers such that L{P'^ = t'i and / ' ( ^9 = Ai for each 
i = 1, 2, ..., n, then each а\ = Tĝ (f; '̂., ^2?..., t'^) is formed from (TJ by replacing f̂-
by t'j for each J = 1, 2 , . . . , n. That means that c^ has to be a string having the following 
form: Gi = x^Q^t^x^iH2 . . . „̂x '̂̂ , where x^^ is a terminal string over Vj for each i, 1 ^ 
^ i ^ n and each j,0 S J S n (otherwise it would not be possible to substitute tj 
in (Ti for each j = 1, 2, ..., n). But obviously it should not be required L{P'^) = 
= x^Jh^x[^^t2 • • • tn4^^^o^^hA^^t2 . . . t„x[^^... х̂ о"̂ !̂ . . . f„x̂ "̂  and therefore the require
ment concerning T^i has to be reformulated in accordance with the effect which was 
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to be realized, namely the ejffect of ruling out the possibility of applying transforma
tions to particular strings of actually occuring words (or morphems) or in other words 
the effect of avoiding an arbitrary pairing off of sentences. That means that here the 
complete characterisation which mappings are transformations is required. 

The fourth requirement expressed by N, Chomsky concerns the resulting effect 
that Thas on the terms t^, t2,..., t^, N. Chomsky requires that, for instance, Г may 
have effect of deleting or permuting certain terms, of substituting one for another, or 
adding a constant string in a fixed place and so on. 

The fifth requirement expressed by N. Chomsky is picking out the importance of 
the relation "̂ ^ is an У4/' in the phrase-marker P, i.e. the relation '4^ is traceable to Л / ' 
or in other words "there is a sub-phrase-marker P^ of P such that Ь(Р^) = t^ and 
F(Pi) — Ai\ where F{P) is t\\Q first string of P. By that he only reminds us that the 
graph-structure of P has to be changed very carefully in order to obtain the new 
graph-structure of P*. 

All five requirements concern only the so called singular transformations (such 
that apply to a single phrase-marker and not to pairs or generally to n-tuples of 
phrase-markers). If we review all of them we find out that there is no description at 
all of any procedure how to get P* from P. 

Using some examples how the singular transformations are determined by the 
linguist working in the area of transformational grammars the following scheme can 
be deduced: if Tis a transformation and a = ^1^2 • • « Ai its structural index then the 
following transformational rule is used A^A2 ... A„~-^ а^А^а^Л^ .,.A^a„ where 
(î\, Ï2? •••? 0 is a permutation of {1, 2, ..., n}, aj are strings over Vj and either 
Л* = Л^. or Л* = / (J is the null-string in the free semigroup over V). 

If we are thinking about the phrase-marker P in Fig. 1 the transformational rule 
can be <V> <Prt> <NP> =^ <V> <NP> <Prt>, i.e. using the usual notation A^ = 
=.. <V>, A2 = <Prt>, Л3 = <NP>, i.e. n - 3 and i^ = 1, î  = 3, i^ = 2, Af = A,^ 
for j = 1, 2, 3 and a J = I for j = 0, 1, 2, 3. Then the T{P) = P* is to be the phrase-
marker drawn in Fig. 4a). 

Similarly if P is phrase-marker in Pig. 2 the transformational rule can be as follows: 
n==6, A, = <NP>, A2 = <Aux>, A, = <Verb>, A^ = <NP>, A, - by, A, = 
= Passive and z\ = 4, Ï2 = 2, 13 = 6, i^= 3, i^ = 5, iß = 1, Aj == A^^ for j = 
= 1, 2, ..., 6 and (̂ 2 = be, ÛJ = I for j Ф 2, 7 = 0, 1, ..., 6. Then the T{P) = P* is 
to be a phrase-marker in Fig. 4b). 

In the first case in P* it is possible to find the corresponding structural index <V> 
<NP> <Prt> and in the second case <NP> <Aux> be Passive <Verb> by <NP>, both 
are in fact the right sides of the used transformational rules. In the first case — because 
this transformation should be a permutation only — the subphrase-markers of P* 
below the structural index are well defined but not above it and in the second case 
neither below nor above the structural index of P* there is determined what sub
phrase-markers should be — because of adding "be". 
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As the last requirement it can be stressed that the transformations are to be positively 
one-to-one mappings. Thus to a transformation T there allways exists its inverse 
transformation T~^. This is an important requirement in regard to the semantical 
questions, namely that by using a transformation no information can be lost. 

the «ni 

Aux ykTb Adv manner 

\ .-^ IX / \ 
Passive ârink Ьу^^^^^Р 

John. 

I X / \ .̂ -^ IX 
i l k Pa!st ЪелллРаБа "̂̂  ' 

b) 
Fig. 4a, b. 

3. LINGUISTIC REQUIREMENTS CONCERNING TRADITIONAL 
TRANSFORMATIONS 

In regard to a traditional grammar of a natural language we can suppose that all 
the sentences of that language contained in the set L are strings over the terminal 
vocabulary Vj, where Vj contains all the basic forms of all word-forms, all suffixes 
and also a special symbol denoting space (we do not go into details and consider e.g. 
the irregular verbs, where in the word-forms "goes" and "went" there is no common 
root or stem, etc.). Further we can suppose that Vj- is divided into subsets according 
to the tY3,dition2i\ grammatical categories SiS substantives, adjectives, verbs, numerals 
on the one hand and into the other grammatical or logical categories as pronouns, 
articles, auxiliary verbs, prepositions, conjunctions and all other phrases having pure 
logical character as negation, "if... then", "there exists", "for each" etc. and of 
course what remains, i.e. different suffixes, on the other hand. The first type of 
categories can be called proper and a set of all terminal symbols belonging to any 
proper category can be called proper (terminal) vocabulary and denoted by Vp. The 
second type of categories can be called auxiliary and F^ = F^ — Vp can be called 
auxiliary (terminal) vocabulary. Obviously the words having full lexical meaning 
belong to Vp while the words of a grammatical or logical character belong to F^ 
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(again here we are not going into all details about the meaning because we do not 
consider a determination of place and time and different possible modalities etc.). 

Besides that we can generally suppose that we have more specialized proper cate
gories than the above mentioned ones, e.g. we have the categories for intransitive 
verbs, transitive and double transitive ones etc. and let C^, C2, ..., Cp be the subsets 
of Vp corresponding to the particular proper categories <Ci>, <C2>, ..., iCp} 
(further it is possible to assign to each category <С^> certain logical characteristics 
expressing whether the words belonging to Ci express some individual objects or 
classes of them, or properties of them, or relations between them, or properties of 
properties etc. which in other words says what type of a logical predicate the words 
are or can be). Now we can define the variables ^i for each i = 1, 2, ..., p as the new 
symbols denoting arbitrary elements of C .̂ In fact it would not be necessary to intro
duce these new symbols ^i because we could use the names <Cj> to be same purposes 
as it is done in the ALGOL 60 language description [7]. 

Now in regard to the division of V^ into Vp and F^ each string q from L(or each 
string over the vocabulary Vj) can be uniquely expressed in a canonical form q = 
= ^oôi^ i ••• Qk^^k where Q^ e Cj. с Vp for each i = 1, 2, ..., /c and qi are strings 
(may be null-string/) over the auxihary vocabulary F^ for each i = 0, 1, ..., k. Here к 
can be called canonical length of q. Further the string qo^j^i ••• ^A^/C^ where ^j^ is 
a variable corresponding to the category <Cj.> determined by the condition Qi e Cj. 
for each i = 1, 2, ..., k, can be called a sentence-form of q and the strings qi or 
symbols ^j. are called the constants or variables of that form resp. It is clear that such 
a sentence-form ^o^ji^i ••• ^ju^k is uniquely determined by a sequence of constants 
(^0. Qu •••. Qk) and by a sequence of categories (<C^-,>, <C;^>, ..., ( C ^ » or only by 
their indices (j i , 7*2? • • -5 A) if a fixed ordering of them is assumed. 

If we are thinking about the subsets L^, L2, ..., L„ of the considered set L such 
that any the traditional transformation Tu between L̂  and Lj may be obtained, then 
the following requirement concerning the subsets L̂  has to be satisfied: if q e Li and 
Ч ~ QoQiQi ••• Qk^k is a canonical expression then also ^ o ô î ^ i ô * ••• Qt^k ^ ^i for 
each ß * such that ß * and ß;, belong to the same category Cj^ for each h = 1, 2, ..., /с. 
In other words if F is the set of all sentence-forms determined by the set Lof sentences 
and if in the similar way the sentence-forms F^ correspond to the subsets L̂  for i = 
= 1, 2, ..., n then the previous requirement can be expressed as a condition F^ n Fj = 
= 0 for i Ф j and z, j = 1,2,.. . , n. 

The further requirement can be formulated as a mathematical definition of a tradi
tional transformation (only a singular one!) Tij between Ц and Lj in the following way: 
Tij is a one-to-one mapping from L̂  onto Lj such that if ^ = QoQiQi ••• QkQk ^ ^i 
then Tij{q) = <?o6Î^Î • • • QÎQI and a) / = fc, b) there is a mapping/,, y which assigns 
a sequence (SQ, s^, ..,, ŝ ,) e F j to an arbitrary sequence (го, r^, ..., r^) eF^ of the 
strings (may be also null-strings) over V^ for each fc = 0, 1, 2, . . . such that 
fi,Mo^ Qu "•> Чк) = (^0. ^î> •••» Чк)^ с) to each sequence (qo, qu •••' Qk) there cor-
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responds a permutation n^ of the integers {1, 2, ..., k} such that g* = Q^ „i(;j) for 
each h = 1,2, ..., к. 

In a very special case it can happen that every sentence belonging to L̂  has a fixed 
canonical length /c. Then/^ у corresponds to the Chomsky's elementary transformation 
and it is always possible to consider instead of/^ j a sequence of mappings/^°\ /^^\ ..., 
...,/^^^ such that/^^^(^Oî ^ ь •••̂  f̂c) = ^* for each /i = 0, 1, 2, ..., /c. However, one 
cannot make any use of that because it does not touch the important question how 
to determine/f^J in another manner than by an enumeration, which is of course a non
effective method in a general case. 

The mapping fij is the most important part of a transformation because ~ in 
fact — the transformations are essentially the mappings rather of sentence-forms 
than of the sentences themselves. 

But also in a general case it is here quite clear what is a constant and what a variable 
(i.e. a category or the corresponding non-terminal symbol called the metalinguistic 
variable in ALGOL 60 language) and also all the possible effects of the transforma
tion are determined exactly. Namely the proper symbols (or the variables if we are 
thinking at the level of sentence-forms) can be permuted or — which is the same — 
one can be substituted for another which is determined by the permutation я. It is 
also clear that a deleting or adding of a symbol always concerns the constants, i.e. 
the auxiliary terminal strings only and that it is determined by the mapping/^^ which 
is as general as possible. E.g. Tij will be a pure permutation if/^j(^o? ^i? •••? Qk) = 
= (̂ 05 1̂5 • • •? Qk) for each sequence (qg, q^, ..., q^, i.e. if /^j is an identity mapping; 
there will be an effect of deleting or adding if for/^^(^0, qu • • •? Я.к) — (^o? Ял^ • • -̂  ^*) 
there is an index h such that qj, Ф / and ^* = / or on the contrary qh = I but qt "¥ I etc. 

But it is important to mention here that these properties of permuting, deleting or 
adding are not the properties of the mapping/^ ^ or even Tij in general but that they 
are only locally depending on each particular choice of a sequence (̂ o» 4u •••^ 4k)-> 
i.e. the effects can be different for different sequences under the condition that we 
have not in our mind some special cases (e.g. if L̂  and Lj are very small subsets 
containing only the sentences belonging to one single sentence-form; then the domain 
OÏfij is a single sequence etc.). 

With regard to the transformations which are mappings of phrase-markers the 
two previous requirements concern the last strings of them only. They determine 
a very strong correspondence between the proper terminal symbols (namely they do 
not change, only permute and therefore in the corresponding last strings it has to be 
the same number of such symbols) but very weak correspondence between the 
auxiliary terminal strings (there are almost no conditions concerning / besides that 
the length of sequences has to be preserved). 

Further it can be assumed that in each phrase-marker each proper terminal 
symbol Q is dominated by the corresponding category <С^>, i.e. QeC^ and all the 
categories are the non-terminal symbols of an underlying context-free grammar (and 
obviously <С^> ! : = Qi are some of the rules). According to that assumption there 
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is a very strong correspondence between the categories used in the corresponding 
phrase-markers. 

The last requirement concerning the non-terminal symbols in the corresponding 
phrase-markers contains' also the previous assumption about the proper categories. 
If Fjv and F* are all the nonterminal symbols used in the phrase-marker of the 
domain and range of a transformation Tresp. then by Ta correspondence between V^ 
and V^ should be determined that it might be possible to interpret and understand 
the new phrase-markers using the "is a" relation from the original ones. 

That correspondences between V^ and F* of two context-free grammars G and G* 
have a great importance in all the linguistic questions where two languages or two 
grammars have to be considered and compared simultaneously as it is by the transla
tion or in comparative Hnguistics or when constructing a grammar from several 
partial grammars for special parts of a language etc. Here a question is touched about 
the linguistic categories which are independent on the particular languages (see 
Chomsky [8]). 

4. HOMOMORPHISMS OF GRAMMARS 

Let G = {Vj, Vj^,% Sy be a context-free grammar, SeV^, Vj n Vj^ = 0, 9? с 
с: Fjv X F°° where F == F^ u F̂y and F°° denotes a free semigroup of strings over F, 
G(S) denotes the language generated by G from S etc. E.g. e is an identity symbol 
(with respect to the operation of concatenation), i.e. xe = ex = x for each string 
X G F'^, but e Ф F°°. 

G is said to be canonical if the terminal vocabulary Vj is divided into two parts 
Fp Ф 0 and F^ called proper and auxihary vocabulary resp. (i.e. Fj> = Fp u F^, 
Vp n Vj^ ~ 0) in such a way that the following condition is satisfied 

(1) if (x : : = У)Е9{ then j ; has to contain either a nonterminal or a proper symbol. 

Then the union F^ = F̂y u Vp is called the canonical vocabulary ofG. Separately 
we shall also extend the notion of the canonical grammar to the case Vp = 0, namely 
each context-free grammar will be called canonical without the necessity to satisfy (1). 
It will be seen that even in this special case of canonical grammars all further notions 
will have good sense. 

" In a canonical grammar G each rule w^ G 9Î or w^ e 9Î (where the capitals Ä, В are 
used as indices only) can be expressed in a unique way in the following canonical 
form 

(2) WA = {AQ'.: = a^A^a^ . . . Да^) or w^ = (BQ : : = Ъ^В^Ъ^ .^-В^Ъ^, where 
Al e Vc and â  G F ^ or a^^ e for each i = 0, 1, ..., /c (and similarly for w^). 

The integer к determines a number of occurences of canonical symbols at the right 
side of the rule w^ and is said to be the canonical length of w^. The number of 
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occurences of proper symbols in a string x is said to be the proper length of x. 
Obviously an arbitrary string x over V can also be expressed in its canonical form 
XQX^XI ... Xj^x,, = X, where Xi e Vc for each f = 1, 2, ..., fc and x̂  e V^ or x^ = e 
for each i = 0, 1 , . . . , k. The canonical form is also determined in the case Vc = V^-. 

The most important characteristic concerning the recursive structure of a context-
free grammar G and therefore also the language generated by it is the following ternary 
relation 

(3) ©ç̂  = {(w^, WB, i); w^, Wße% Bo = A^ and 1 й г й К 

where к is the canonical length of w^} 

which can be called the relation of applicability of rules, because the triple (w^, w^, i) 
means that the rule w^ can be used to the f-th canonical symbol (which has to be 
a nonterminal one) of the right side of the rule w^. Again it is clear that this notion has 
an exact meaning in the context-free grammars too. 

Now let G* = <Fp, F*, F*, 9î*, S*> be another canonical grammar and let us 
assume that either Fp ф 0 ф F* or Fp = 0 = Vp. 

An (usual) homomorphism of 9Î into 9Î* is a mapping Ф of 9Î into or onto 9Î* 
preserving the canonical and proper lengths of rules and preserving the relation of 
applicability of rules too, i.e. Ф satisfies the following two conditions 

(4) if w G 91 then Ф(\у) e ^ * and the right side of 0(w) has the same canonical and 
proper length as the w has, 

(5) (w^, Wß, 0 e ©3Î if and only if {Ф(\^у^, Ф(^в), i) e (Sgĵ j. i.e. BQ = A^ if and only 
if Б* = A^ where we denote the canonical forms as follows: Ф{^А) = 
= {At : : = atAXal...Ataî) and Ф{щ) = (Bj : : = blB^b* ...B*b*). 

It is necessary to lay stress on the fact that in (4) and (5) there is no requirement 
concerning the auxiHary vocabulary or, in the case Vp = (li = Vp, no requirement 
concerning the terminal vocabulary at all. At the first sight this is the main difference 
between our definition of homomorphism and that which was introduced by M. P. 
ScHtJTZENBERGER [ U ] and which concerns the vocabularies instead of sets of rules 
as it is here. Later on, however, some connections between these two different con
cepts of homomorphism will be estabhshed. 

As we want to be able to change the word-order of sentences or to compare the 
sentences distinguished from each other by the ordering of their elements only, it is 
necessary to introduce a more general notion of homomorphism as follows. 

Let 7г̂ , Tiß, ..., 712 be permutations assigned to all the particular rules w^, Wß, ..., 
..., W2 from 9Î such that each % permutes the set of integers {1, 2 , . . . , k] if and only 
if к is the canonical length of w^. A mapping Ф of 9Î into or onto 9Î* together with 
these prescribed permutations тг̂ , тг̂ , ..., тг̂  is said to be the permutational homo
morphism if Ф satisfies (4) and 
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(6) (w^, Wß, i) e ®зг if and only if (Ф(>у^), <P(WB), nj^i)) e ©gj:̂  i.e. B^, = A^ if and only 

If all the prescribed permutations л^ are identical (i.e. nj^i) = i for each г) then 
the permutational homorphism is a usual one. Evidently under these assumptions 
condition (6) reduces to condition (5). 

Theorem 1. Let 5R satisfy the following requirement: Each nonterminal symbol is 
contained at the right side of a rule and also at the left side of a rule. Now a map-
ping Ф of Щ. into 9Î* satisfying (4) is a permutational homomorphism with respect 
to the prescribed permutations n^, TIQ, ..., TÎ  if and only if the following two con
ditions are satisfied: let us denote w^ = (AQ ::= aQA^a^ . . . Aj^a^) and Ф{w^ = w* == 
= (tZo^*ai . . . Л*а*) the canonical forms; then 

(7) Ai e V^ if and only if ^*^(/) e V^ for each f = 1, 2, ..., /c and 

(8) there is a mapping Тд, of Vj^ into F* such that if Ai G VJ^ then ^*^(i) = T:[AI) 
for each i = 1,2, ..., к and T^V(^O) = ^o /<^^ ^^^^ ^A ^ ^ • 

Proof. First of all let us suppose that Ф is a permutational homomorphism with 
respect to the given permutations TI^, KQ, ..., TT̂  and let us prove (7) and (8). 

If AiE V^ for some i, I S i ^ k and some w^ e 91 then there is — according to our 
requirement concerning 9Î — Wß e 5R such that BQ = Ai and therefore by (6) Б* = 
= ^*^(f), i.e. v4* (̂,) e F*. If A^ G Vp for some i, 1 ^ j ^ /c and if it were A^^.^ e V^ 
then w^ and w^ would have different proper lengths which is a contradiction to (4). 
Therefore Ф satisfies (7). 

Further let us consider the set of all couples, [Ai, ^*^(i)) corresponding to all 
rules w^ e% Wj^ = [AQ : : = aQA^a^... Aj^aj^) and to all integers i = 1,2,..., к such 
that Ai e F̂ y. We add to this set the couples (AQ, Л*) corresponding to all rules 
w^e9î . Formally we assume that each permutation тг̂  is extended as follows: 
7г (̂0) == 0. If this set of couples were not a mapping there would be two different 
couples {Ai, At^^i^) and (Bj, B^^^j^) such that A^ - Bj but A^^^^^ Ф B^.^jy We need 
to deduce a contradiction from this assumption. There are the following possibilities: 

(i) i ^ 1, j ^ 1; according to the requirement about 9Î there exists a rule Wĵ  e 9Î 
such that XQ = Ai = Bj where Wx = {XQ : ; = XQX^X^ . . . Xf^X}^. Then (w^, Wx, i) e 
eOjK and (WB, W ; , , ; ) ^ © ^ and therefore by (6) X* = A^^^i^ and Z* = B^^^j^ i.e. 
^*^(0 = ^*B(J) which is the required contradiction. 

(ii) Ï = 0, J ^ 1 (and similarly i ^ 1, j = 0); now the first considered couple is 
{AQ, Al) - according to the extension of к^ - and therefore AQ = Bj and by (6) 
^0 = КвОУ ^ ^ the other side Л* = Л*^(o) i.e. ^*^(0) = 5*^(,) which is again a con
tradiction. 

(iii) i = 0, J = 0; using the other part of the requirement about 9î a rule 
w^eyi such that X, = AQ == BQ for some r, 1 g r ^ й has to exist, where Wx = 
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= {XQ'. : = XQX^X^ . . . Xf^x^^. Then by (6) AQ = X* (̂̂ ) and Б* = -^*x(o and therefore 
^*^(o) = Л* = B* = ^*B(O) which is also a contradition. 

We have proved that the considered set of couples (Ai, yl*(,) )is (or it determines) 
a mapping TJ^ of V^ into V^ and we can therefore write Т/у(Л )̂ = Л*̂ ,.) always when 
Ai 6 F„ which means that Ф satisfies the condition (8). 

If conversely Ф satisfies (4), (7) and (8) then for all rules w^, w^ e 9Î such that BQ = 
= Ai, where i ^ 1 the following must be vahd: BQ = 5*^(o) = т^у(оо) = '^ivl^i) = 
= ^*^(i) which is the condition (6). 

The requirement concerning Ш in the theorem 1 is not very strong because every 
canonical grammar G can be reduced in such a way that the new grammar satisfies 
this requirement. For this reason there is a very small loss of generality if we mainly 
consider the homomorphisms such that the mapping т from Theorem 1 really exists. 
Moreover we shall consider the homomorphisms Ф such that the assumed mapping т̂ у 
can be extended to the proper vocabulary Vp too, i.e. that the following condition is 
vahd 

(9) There is a mapping Тр of Vp into Vp such that if A^ e Vp then ^*^(/) = 'î'p(^i) 
for each i = 1, 2 , . . . , k. 

If we define the mapping т of Vc into F* by the conditions т\у^ = т^ and т\у^ --= Тр 
then the conditions (8) and (9) can be expressed in another form 

(10) Ф{Ао::= aoA,a,...Aj,aj,) = {T{Ao):: = 4 т(Л^^-1ц)) a t . . . т(Л,^-1(,)) a?) 
for each (Ло : := «o^i^^i ••• ^k<^k) ^9Î. 

Corollary 1. Let a canonical grammar G ~ {Vp, F4, V^, % S} be given and let the 
sets Vp, F*, F* be prescribed in such a way that they are mutually disjoint and 
iS* G F*. J/TJV is an arbitrary mapping of F^ into V^ and Xp of Vp into F j and if to 
each rule w^ e 9î^ having the canonical form AQ\'.= aç^A^a^ . . . Aj^a^^ a permuta
tion n^ of {1,2, ...,/c} and a sequence (a*, a^, ..., «*) is prescribed such that 
at e F*°° or a* = efor each i = 0,l,..„k then 9Î* = {(т(Л) : : = а^{А,^~1щ) a j . . . 
. . . (Ля^-1(/с)) ^k)l ^A £ 91} 15 the homomorphic image of^ with respect to the permu
tations n^, Up, ..., 7Г2 and G* = (y^, F*, F*, 9Î*, S* > is a canonical grammar. 

The p r o o f is obvious. 

A permutational homomorphism of a canonical grammar G = {Vp, V^, V^, 9Î, 
S> into or onto another canonical grammar G* = {V^, F^, F*, 9Î*, S*> is a 
permutational homomorphism Ф of 9Î into or onto Ш such that there exists 
a mapping т of Vc into F j satisfying the condition T(S) = S*. 

5. WELL TRANSFORMATIONS 

From a pure mathematical point of view it seems to be natural and useful to look 
for a subclass of transformations of phrase-markers such that all the other transforma-

293 



tions could be generated by some type of composition of them. Besides that this 
subclass should contain the transformations which are as simple as possible. 

As the transformations should be mappings of phrase-markers the simplest trans
formations have to be those which map the simplest phrase-markers. 

The simplest phrase-markers as the labelled trees are those containing only one 
vertex and no edge, but from these — without edges — it is not possible to compose 
more complicated phrase-markers. Therefore we have to choose the simple phrase-
markers containing at least one edge. 

From the theoretical point of view it is sufficient to choose only one type of these 
phrase-markers, namely that one which contains two vertices (one of them being the 
root) connected by an edge, because each phrase-marker can be composed of them 
using the identification of vertices only. 

But there are very good reasons that we allow also a little more complicated trees 
containing in general more than one edge but having a very special form, namely 
that all their edges are connected with the root. Exactly these simple rooted trees — or the 
double graphs from Sec. 1 — with a labelling of their vertices, correspond to the 
particular rules of the context-free grammars as it was shown in Fig. 1. And this fact 
is a crucial point in regard to the next definitions of transformation, because essentially 
the transformations of phrase-markers will be determined by some mappings of rules, 
namely by the homomorphisms investigated in the previous Sec. 4. 

The following structural transformations are said to be well-transformations 
because they are essentially the same mappings as the well-translations introduced 
and studied in [6, 9]. In the following definition the term of marker instead of phrase-
marker is used because it is easier and clearer to describe by them the mappings of 
rules (actually only the labeUings will be changed). 

Let be given the canonical grammars G = {Vp, F.,, Кд, % S} and G* = <F*, F*, 
F^, 91*, S*>, a permutational homomorphism Ф of G onto G* with the prescribed 
permutations 71̂ ,̂ 71^2'•••'̂ w„ corresponding to the rules Wi,W2, ..., vv„ from Ш 
resp. Further let 9Л and Ш1* be the sets of all proper markers in G and G* resp. (i.e. 
they are proper markers over 9Î and 9Î*). 

Now a well transformation T of G into or onto G* determined by the homo
morphism Ф is a mapping of9K into 9Л* such that if we denote M = {A, r,B, (p, ФУ еШ 
and T(M) = M* = <Л*, г*, Б*, ф*, i/̂ *> the following conditions are satisfied: 

(li) there is an isomorphism i of the rooted tree <Л, r, B} onto <Л*, r*, JB*>, i.e. 
t is a one-to-one mapping of A onto Л* such that c(r) = r* and (a, b) e В if 
and only if (i(a), t(fo)) e Б*; in other words we can suppose Л* = Л, r* = r, 
Б* = B; 

(12) ifaeA then (p%t{a)) = Ф{(р{а)); 

(13) if {a, b)eB then ф%с{а1 i{b)) = п^^,^{ф{а, b)), 
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It is necessary to note that in canonical grammars we use a little modified notion of 
marker in the following sense: in the condition (B) of Sec. 1 the labelUng ф concerns 
the canonical forms of rules, i.e. if ф^а, b) == к then (p(a) = (XQ : : = XQX^X^^ . . . 
. . . X,„x,„) and (p{b) = (7o : : = ygY^y^ . . . Y^y^) and YQ = Xj,, where Xj, is the k-th 
canonical symbol (either nonterminal or proper) and not the /c-th symbol at the right 
side of the rule (p(a). 

Lemma 1. The well transformation T determined by a homomorphism Ф of G 
onto G* is a mapping of^ onto Ш1*. 

Proof . Let M* = <v4*, r*, Б*, ф*, ф^} be an arbitrary marker such that M* еЗЛ* 
and let us define another marker M = <Л, г, В, (р, ф} as follows: Ä = Л*, г == г*, 
В = Б*; as Ф mapps 9Î onto 9Î*, ^~^(w*) ф 0 for each w* e9î* and therefore one 
can choose a rule Wj^ e Ф~^(>У*) for each w* e 1Я* and then put (p(a) = W/̂  for each 
a e Ä and for each w* = ф*(а). Finally one defines ф(а, b) = п~^(ф^(а, b)) where 
Щ = 9(^)-

Now we have to show that M satisfies (A), (В) and (C) from Sec. L Condition (A) 
is evidently satisfied and also condition (C) immediately follows by the fact that M* 
is a marker and n~^ has to be a permutation again. As to condition (B) we want to prove 
that if [a, b) e В and (p[a) = [XQ : : = XQX^X^ . . . Xj^X;,), (p(b) = [YQ ::= Jo^i^i ••• 
. . . Yiyi) then Хф(^а,ъ) — YQ, i.e. {(p{a), (p{b), ф{а, b)) e ©0j. By these assumptions and 
by the fact that M* is a marker it follows that (a, b) e Б* and ((p*(fl), <p*(b), ф*{а, b)) e 
e ©3,^ where cp*{a) = (X* : : = x*Ztxî . . . Z*x*) and ц>*{Ь) = (Г* : : = У1УЫ .•• 
. . . Yfyf), i.e. Х* (̂дд,) = У*. By condition (6) the required condition follows im
mediately. 

Finally obviously M ЕШ and it is clear that Т(М) = M*. 
Theorem 2. / / T is well transformation determined by a permutational homo

morphism Ф such that there exists a mapping т of V^ into F* and if M еШ then 
1) the strings L{M) and L(T[M)) have the same canonical and proper length and 
2) if XQX^XI . . . X^Xf^ and XQZ*X* ... X*x* are the canonical forms of L{M) and 

L{T(M)) resp. then there exists a permutationП of {1,2, ..., k] such that ^я(о = 
= T(Xi)for each i = 1, 2, ..., k. 

Proof. We shall use an induction with respect to the integer n = card Л where 
M = <Л, г, В, ф*, ФУ is а proper marker over Ш. Let us denote Т{М) = M* = 
= <Л*, г*, ß*, ф*, ф^у where Л* = Л, г* = г and Б* = Б which is allowed accord
ing to (11). 

If /7 = 1 then Л = {r} and ф(г) = (XQ : ! = x^X^x^^ ••. ^ л ) and ф*(г) = 
= (x* : : = x*Xtxî . . . X*x*); further Ф(ф(г)) = ф*(г) and therefore by (4) L{M) 
and L(M*) have the same canonical and proper length, i.e. the requirement 1) is 
satisfied. On the other side if 7r̂ (,) is prescribed permutation corresponding to the rule 
(p{r) then by (10) X^̂ ^̂ (̂.̂  = т(Х^) for each i = 1, 2, ..., /c and therefore we can put 
П = 7î (̂ ), i.e. the requirement 2) is satisfied. 
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Now let be п > 1. Then there exists the end vertex b e A of the rooted tree <Л, r, B} 
such that fe Ф r (i.e. there is no vertex с e A such that (fe, c) e B). Let a be the unique 
vertex such that a e A and (a, fe) e B, If we define JT = Л — {fe}, r = r, В = В — 
— {(of, fe)}, Ф = (p\x and i/î  = \l/\ß then M = <Д r, Д ср, î > is а proper marker 
over ï l again, i.e. M e Ш, and therefore we can denote Т{М) = M* = <Л*, r*, Б*, 
Ф*, ï^*>. As card ^ < п we can use the following inductive assumptions; 1) the cano
nical and proper length of L(M) and L^M"^) is the same, i.e. we can denote the 
canonical forms of L(M) and of L{M^) by z^Z^z^ . . . Z^^z^ and z^Z^z"^ . . . Z^z^ 
resp.; 2) there exists a permutation П of {1, 2, ..., m} such that Z^̂ -̂, = T(Z^) for each 
i = 1, 2, ..., m. 

Further let us denote ^(fe) = (YQ : : = j o ^ i J i ••• Yiyi) and ф(а) = {WQ :: = 
= WQW^W^ ,.. Wf^Wj,). As ^*(fe) = çP(^(fe)) and ^'^{a) = Ф{(р(а)) we can by (4) 
denote cp^{b) ^ ( 7* : : = У^УГУХ ••. ^^ГУГ) and ç^a) = (Pf* : : = w*Pfîwî . . . 
. . . ^*vv*) and we know that the proper length of 9*(fe) and ^(fe) and similarly 
of ф*(а) and ç(a) is also the same. Let Пу and n^^ be a permutation prescribed by Ф 
to the rules ^(fe) and (p{a) resp. Then by (10) У*̂ ,̂.) = т(У,.) for each / = 1, 2, ..., I. 

Nowaccordingto the definition of the marker YQ = T7^(^f,)and У* = Tf^*(„^b)inM 
and M* resp. On the other side the canonical symbol W^^a,b) l̂ ^s to appear in L(M) 
as a canonical symbol Zp for some p,l^p^m (this fact is clarified by introduction 
of a mapping v, see the end of this section and Lemma 2 and Theorem 3). Similarly 
^iHa,b) has to appear in L(M^^) as Z* for some q,l^q^m. Thus L(M) = ZQZ^Z^^ ... 
. . .^p-iyoYiyi- . . Yiy^ZpZp., 1...Z,,z^ and similarly L(M*) - z^Z^z^...z*_^y*У^у^... 
• • • ^ Z J z ^^ ^ ^ + 1 • • • ^m'^m-

By these expressions and by the previous inductive assumptions it is clear that L{M) 
and LiM"^^ have the same canonical and proper length which proves 1). 

Further as L{M) and L{M'^) have the canonical expressions x^XiX^ . . . X^pc^^ and 
XoX*x* . . . X*x* the following equalities hold: A: = m + / — 1; X^ = Z,- for 1 ^ 
^ i < p, Xi = y^-p+i for p ^ i < p + и Xi = Zi^i + ^ for p i- I -^ i S к and 
similarly X* = Z* for 1 ^ у < ^, X* = У*_^+1 for q Sj < q + I and X* = 
= Z*_,^.ifor^ + luj йк. 

Now we can define the permutation n o f { l , 2, . . . ,m + / ~ l } b y a special type 
of composition of the permutations П of {1, 2 , . . . , m} and тгу of {1, 2, ..., /}. This 
composition depends on the prescribed integers p and q and can be determined 
as follows: 

if 1 S i < P and 1 й n{i) < q then n{i) = П{{) 

if 1 ^ i < p and ^ ^ n{i) ^ m then Я(г) = il(i) + / 

if p ^ i < p + I then Я(г) = 7iy(f - p + l) + ^ - l 

if ]? + / ^ f ^ m + / - 1 and 1 ^ Я(1 - J) < ^ then n{i) = n{i - I) 

if p + I ui йпг + I ~ 1 шй q ^n{i - I) ^ m then n{i) = n{i - 1) + I 
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Using the inductive assumptions we obtain immediately that Хщ^^ = т{Х^) for each 
1 = 1,2,... , k, which proves 2) and accompMshes our proof. 

The following part of this section is intended to clarify the statement 2) and the 
proof of Theorem 2. Therefore we shall not prove some results in this direction. 

Let M = <Л, г, В, (р, ФУ be а proper marker over Ш and let XQX^XI . . . Xj^Xf^ be 
the canonical form of L[M), If we take an arbitrary vertex aeA and if we denote 
the canonical form of the rule (p{a) as (YQ : : = Jo^ i J i ••• ^û'i) ^^en it can happen 
that there exists an integer n, 1 ^ n ^ /, and such that there does not exist a vertex 
b e A such that (a, b) e В and xj/^a, b) = n. We can say that the n-th canonical symbol 
corresponding to the vertex a is free and we shall express this fact by the pair [a, n]. 

Now there is exactly one path in <Л, r, B} starting in r and ending in a; let us 
write it as a sequence (r = bo, bi, ..., b^ = a) (i.e. (b^-i, Ь̂ ) е Б for each i = 
= 1, 2, ..., m). By this path one uniquely determines the following sequence of 
integers (k^, k2,..., k^) defined by the condition k^ = \l/{bi^i,b^ for each i = 
= 1, 2, ..., m. If m = 0, i.e. if a = r, we put instead of the sequence (/c ,̂ ..., k„) the 
single number 0. In this way to each vertex aeA there belongs its value v{^a) = 
= (^ij ^2? • • •? K) äiid we can suppose that the set of values or the set of all vertices 
is fully ordered by the lexicographical ordering (i.e. according to the first difference 
from left to right) ^ . Obviously two different vertices have two different values. 

Further the marker M' = {A\ r\ B\ (p\ ij/'} is uniquely determined where 
A' = {c G A; either t[c) g v{a) or v{c) = (/i^, /22,..., h^) and /ẑ  = /ĉ  for i = 1, 2 , . . . , 
..., m, where v{a) = (/c ,̂ k2,..., k^}; r' = r; B' = В n (A' x A'); (p\c) = ф(с) for 
с Ф bj, where i = 0, 1, ..., m and (pQ, b^,..., fo^) is the path connecting r and a; 
if с = bi for some i,0 ^ i < m and if (ZQ : .* = ZQZ^Z^ . . . Z^Zf^) is the canonical form 
of (p{c) then (p'[c) has the canonical form (ZQ ! : = ZQZ^Z^ . . . ^^,.+1-1^;^.^J where 
^i + i = 'A(b,-, b, + i) ^ Й; if с = a then <p'(a) = (7o ! : = Jo^ iJ i .. . y„ - i i ; ) ; at last 
i/^'(c, d) = i/̂ (c, d) for each (c, ̂ ) G Б'. 

By all the previous constructions there is defined a mapping v of all the pairs [a, ?i] 
of M into the set of all integers {1, 2,. . .} if we put v [a, n] = p, where p is the canoni
cal length of L(M'). 

Lemma 2. Let M = <Л, r, В, ср, ф} be а proper marker over the % where G — 
= <Fp, F4, Fjv, 9Î,-S) is a canonical grammar. Then the mapping v {belonging 
to M) is one-tO'One mapping onto the set {1, 2 , . . . , fc} where к is the canonical 
length of L{M) and Y;, = X^̂ ^ „^/or each pair [a, n], where the canonical forms of 
cp[a) and L[M) are {YQ : : = y^Y^y^ ... Yj^ and XQX^X^ . . . X^Xj, respectively. 

Theorem 3. (Continuation of Theorem 2.) Using the mappings v in M and v* in 
M* the permutation П of 2) can be determined as follows 

(14) Я(у[а,п]) = г*[а,я,(„/и)] 

for each pair [a, и] in M where n^^a) is a permutation corresponding to the rule (p{a). 
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6. DESCRIPTIVE TRANSFORMATIONS 

A language generated by a canonical grammar is said to be canonical. Let G[S) 
and 0*(-5*) be the canonical languages generated by the canonical grammars G = 
= <Vp, F^, F^, % Sy and G* = <F*, F*, F*, 91*, S*> resp. 

The sequences (XQ, X^, ..., X},) such that x̂  e V^ or x̂ - = e and ХоХ^х^ . . . X^Xj, G 
e G[S) where X^ e Vp for each i — 0, 1, . . . Д are said to be forms of G(S). Let us 
denote the set of all forms of G(S) by the symbol %Q. 

A mapping t of G(S) into or onto G*(>S*) is said to be a descriptive transformation 
if there exists a mapping a of Fp into Vp and if there exists a permutation тг̂ ^ of 
{1, 2, ...5 fe} corresponding to the string x e G(5) with the proper length к such that 
the following condition is satisfied: 

(15) if XQX^XI . . . Xj^Xf, is the canonical form of x and if XQ^^X* . . . Xfxf is the 
canonical form of x* = ^(x) then к = I and X*̂ ^̂ ) = cr(X )̂ for each i = 
= 1 ,2 , . . .Д . 

A descriptive transformation t is said to be a descriptive form transformation if 
there exists a mapping/of (Ç̂^ into g^ such that/preserves the length of forms and 

(16) if XoX^Xi . . . X},Xi, is the canonical form of x and if XoX*x* . . . X*x* is the 
canonical form of ^(x) = x* then (x*, x*, ..., x*) = / (XQ, X^, ..., x^) and 

(17) if the permutations % and тту correspond to the canonical forms XoX^x^ . . . 
. . . Xj^Xi^e G(5) and УоУ^Ух . . . Y^yi G(S) such that к = I and x̂  = y^ for 
each i = 0, 1, . . . , k, then Пх = тгу. 

Let us note that for these notions the requirement Fp ф 0 is essential. 

We say that the descriptive transformation t of G{S) into G*(5*) is induced by the 
well transformation Tof 9Л into 5Ш* if 

(18) L{T{M)) = t{L{M)) for each M e Ша, 
where Ш^ = {M e Ш; F{M) = S and L{M) E V^}. 

Let us note that if M e Шо then L{M) e G{S) but it can happen that L{M) e G{S) 
but M Ф Шо. 

Theorem 4. / / the well transformation T is determined by a permutational 
homomorphism Ф of a canonical grammar G into G* then T induces a descriptive 
transformation t of G(S) into G'^iS'^) if and only if the following is valid 

(19) if L{M^) = L(M2) then L{T{M^)) = L ( T ( M 2 ) ) for aUM„M2e Ша. 

If T satisfies (19) and Ф maps Ш onto 9Î* then t maps G{S) onto G*(S*). 

Proof. ÏÎ МеШо then L{M)eG{S\ F{M) = S and L{M)eV^ which means 
that the proper and canonical length of L[M) are the same. Now by the definition of 

298 



the homomorphism Ф of the grammar G into G* (i.e. not only of Ш into 9Î*; see the 
end of Sec. 4) there exists the mapping т of Vc into F* such that т(5) = 5** and there
fore by (10) F{T{M)) = S^. Further in virtue of the part l) of Theorem 2 L{M) and 
L(T{M)) have the same proper and canonical lengths and therefore L(r(M)) eF*°°. 
Thus we have showed that Т{М) e Ш^ and therefore also L{T{M)) E G * ( S * ) . Now 
it is clear that by T a binary relation is determined containing all the pairs {L(M), 
L(T(M))) e G(S) X G*(5*) and (19) is a necessary and sufficient condition when this 
relation is a function. The remaining part of this Theorem follows immediately 
by Lemma 1. 

Corollary 2. Let T be a well transformation determined by a permutational 
homomorphism Ф of G into G*. / / G /5 not ambiguous or if V^^ = 0 and Ф is not 
permutational, then the condition (19) /5 satisfied. 

P r o o f is obvious. 
The basic problem concerning the descriptive transformations is the problem of 

the construction of a well transformation which induces the given descriptive trans
formation. The canonical grammars generating the given canonical languages either 
are given fixed or they are to be chosen suitably such that they admit a permutational 
homomorphism determining the required well transformation. Obviously this 
problem need not always have a solution. 

7. DECOMPOSITION TRANSFORMATIONS 

As there can be many different (eventually permutational) homomorphism s of G 
into G* it is possible to introduce more general structural transformations than the 
well ones are. For this purpose we shall use some decompositions of markers into 
submarkers such that each of these submarkers will be mapped by a different homo
morphism (or by a different well transformation). 

Therefore first of all let us suppose that a procedure Q) how to determine a decom
position ^ ( M ) of a marker M e Ш is given. It can be allowed that the procedure ^ 
be not applicable to all markers from Ш but only to some subset. This subset will be 
denoted by Ш^. 

A decomposition M of a proper marker M = <Л, г, В, (р, ф} is а set of proper 
markers М^, M2, . . . , М„ which satisfy the following conditions: 

(20) Mi is a submarker of M for each г = 1, 2, ..., n, i.e. if M^ = <Л̂ -, r̂ , B^, cp^, ф^} 
then Ai a A; Bi = В n [Ai x Ai); 

to each vertex â  e Ai there is a path in M from r to â  containing r^; (pi = (p\^^; 
ij/i = \l/\ß. and further 

n 

(21) \J Ai = A and Ai n Aj = ф for each i, j = 1, 2 , . . . , n where i Ф j . 
i=l 
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A decomposition of an unproper marker is only this unproper marker itself and 
a decomposition of a disconnected marker is a sequence of the decompositions of its 
components. 

Lemma 3, There is a one-to-one correspondence between the set of all decomposi
tions of a proper marker and the set of all subsets of its vertices containing the 
root. Namely, the elements of the given subset of vertices are the prescribed roots of 
the corresponding submarkers. 

Proof. Let a decomposition M = {М^, M2, ..., М„} be given. Then r^, Г2,..., r„ 
is the required subset of vertices because according to (21) there has to be an index 7 
such that rj = r, where r is the root of the considered proper marker M. 

If on the contrary the required subset {r^, Г2,..., r„} с Л is given and if e.g. Гу = r, 
then the subsets A^ for each i = 1,2,...,?! can be defined as follows: using the paths 
from r to ri we take a vertex r̂  such that its path has the maximum length and we 
define Ai = {â  e A; there is a path in M from r to Ö̂  which contains r J ; it is clear 
that by the set of vertices A — A^ (as far as Л — Л̂  ф 0) again a proper submarker 
of M is determined and therefore the described construction may be repeated. 
Obviously the obtained subsets A^, Л2,..., A„ satisfy (21) and if we define B^ = 
= В n{Ai X Ai), (pi = (P\A., ij/i = il/\ß. then M^ = (A^, r̂ , Б ,̂ (p^, if/i} is a submarker 
of M which satisfies (20). Therefore M = {M^, M2,..., M„} is a decomposition of M 
with the prescribed set of roots {r^, Г2, ..., r„}. 

Using this lemma a decomposition procedure of a marker can be determined as 
a procedure determining some subset of vertices of the given marker. 

By a decomposition M = {M^, M2, ..., M„} of a proper marker M = (A, r, B, 
(p, ФУ the following factor-marker MQ = {AQ, r^, BQ, ÇQ, фо} of M can be defined: 
^0 = {^u 2̂» •••? ^n} (but it would also be possible to put AQ = {M ,̂ M2,.... M„} 
because that is unimportant with respect to an isomorphism of markers); TQ = r 
(by Lemma 3 rj has to be such that rj = r); Bo{{ri, rj); there is â  e A^ such that 
(ai, rj)eB and i Ф j , where i,j = 1, 2, ..., n}; фо(^0 = (H^t) • • = ^(^f)) ^^^ 
each z = 1, 2,. . . , n and the integers il/o{^i^ ^j) for all; such that (r̂ , rj) e BQ are deter
mined in a non arithmetical way as follows: we take all the paths in M^ which con
nect the root Г1 with an arbitrary end vertex â  e Л ;̂ by each end vertex â  its value v^a^) 
is determined (see the end of Sec. 5), these values are ordered lexicographically and 
if in the /c-th place of this ordering is /;(а̂ ) such that (a ,̂ Гу) e В then we put 1/̂0(̂1? o) ~ 
= k. 

We will not prove that the factor-marker of a proper marker is really a marker. 
Evidently the factor-marker MQ is not a marker over the set of rules 9Î as the 
original marker M is but it is easy to construct new rules from the rules of 9! over 
which the factor-marker is defined. A factor-marker of a disconnected marker 
is a sequence of factor-markers of its components. 

Now let us introduce further assumptions concerning the decomposition proce
dure ^ . We shall say that ^ has the length n if ^(М) = {M ,̂ M2,..., M„} for each 
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M Cl Ш^, i.e. if each decomposition consists of n submarkers. Further we shall 
assume that an ordering of each decomposition ^(М) = {M^, M2, ..., M„} can be 
estabHshed. This ordered decomposition will be denoted by [M^, M2, ..., M„] and 
the corresponding procedure ^ will be called the ordered decomposition procedure 
(there are many different possibilities how to order the submarkers M^, M2, ..., M„ 
or — by the lemma — the vertices of M). 

A sequence of homomorphisms Ф^, Ф2,..., Ф„ of G into G* (whose corresponding 
mappings of Vc into F* are т ,̂ Т2, ..., T„)is compatible with the ordered decomposi
tion procedure ^ of the length n if the following condition is satisfied: 

(22) Ti{F{(po{rj))) = Tj{F{(po{rj))) for each (r̂ , rj) e Bo and for each МеШ^ 
where MQ is a factor-marker of M. 

If we denote (po{^j) = {x '.'.= y) then — a single rule can always be considered as 
a proper marker — F((po{rj)) = x and the condition (22) requires т (̂х) = т/х). 

Now a decomposition transformation T of G into G* determined by an ordered 
decomposition procedure ^ of the length n and by a compatible sequence of homo
morphisms Ф1, Ф25. •., Фц of G into G* is a mapping of Ш^ into 9И* such that if we 
denote M = <Л, г, Б, ср, ф}, Т{М) = М* = <Л*, г*, В*, с/?*, i/̂ *> and ^(М) = 
= [Ml, М2, ..., М„] the following conditions are satisfied: 

( i r ) Л* = Л; r* = r; Б* = J5; 

(12') if a eAi then cp*(a) = Ф (̂ф(а)) for each i = 1, 2, ..., n; 

(13') if {a,b)eB asA^ then jA*(a, b) = n%ß/{a, b)) for each i = 1, 2, ..., n, 
where я̂ /̂«) is the permutation belonging to the rule (p{a) in the permutational 
homomorphism Ф^. 

Obviously the previous notation M^ = <Л ,̂ r̂ , B,-, cpi, ij/i} for each f = 1, 2,..., n e.tx. 
is assumed. 

It is clear that each well transformation is a decomposition because we can always 
choose a trivial decomposition procedure of the length 1 which is of course ordered. 

On the other hand everybody expects that after the necessary modifications 
Theorems 2 and 3 remain to be valid for the decomposition transformations, but we 
shall not give complete proofs here (they can be given in a strong analogy to the proofs 
of Theorems 2 and 3). 

Let us assume that a decomposition transformation T of G into G* is given 
and that ^ is its ordered decomposition procedure of the length n. If ^(M) = 
= [Ml, M2,..., M„] where МеШ^ and M^ == {Ai,ri,Bi,(pi,\l/i} for each i = 
= 1, 2, ..., П and if Т(М) = M* then by (1Г) and by Lemma 3 a decomposition 
M* = [M*, M*,..., M*] of M* is determined (the prescribed roots of submarkers 
for M* are the same as for M*, i.e. {r ,̂ Г2,..., r„}). Thus another ordered decomposi
tion procedure ^ is determined putting ^*(M*) = M* for each M* e Ш%* = 
- {M* G 5Щ*; there is M e 9И such that M* = Цм)}, 
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If Mo = <Ло, Го, Во, (ро^ \1/оУ and M* = <Л*, г*, Б*, ф*, ф^} is а factor-marker 
of M and M* resp. corresponding to the decomposition ^(M) and ^*(M*) resp. 
then it is easy to see that by T another well transformation TQ of the factor-markers 
is determined. This factor transformation To, i.e. the underlying homomorphism and 
the permutations corresponding to the particular rules, can be expUcitly determined 
by Theorems 2 and 3 (but it is necessary to give a complete definition of the modified 
grammar and the set of rules concerning the factor-marker; this has not been done 
here). 

Remark. There is another possibihty how to describe the situation by decomposi
tion transformations. Instead of introducing factor-markers one can introduce rather 
different algebraic structure M = <Д г, Б, ф, xj/} corresponding to the decomposi
tion M = {Ml, M2,..., M„} which is not a marker. Here <Л, r, Б> is the same 
rooted tree as in the factor-marker only (p does not assign particular rules but the 
whole submarkers to the vertices r̂ , M^ and ф is again the same as in the factor-
marker. Obviously this definition has a recurrent character. 

Now we shall introduce a special type of decomposition transformations which are 
very close to the singulary transformations described by Chomsky, Bach a.o. using 
the notions of structural index and transformational rule. 

Each string L(M) where M is a marker in the canonical grammar G such that 
F(M) = S can be called a structural index in G. In fact the most important cases 
occur if L(M) contains also other elements than the terminal symbols. 

A submarker M' = <Л', r', B\ cp\ ф'У of a proper marker M = <Л, г, Б, ср, ф} 
is said to be main or secondary if r' = r or r' Ф r resp. It is clear that in a decomposi
tion of a proper marker exactly one of the submarkers must be main. M' is said to be 
an end submarker of M if each vertex a' 6 A' which is an end vertex in M' is an end 
vertex in M too (let us remind that a' is an end vertex in M' if there is no b' e A' 
such that (a', b') 6 Б'). In a decomposition there must be at least one end submarker 
and at least as many end submarkers as is the difference between canonical and 
proper length of the last string belonging to its main submarker. 

A specialization of our decomposition transformation depends on the used 
decomposition procedure ^ . We shall be concerned with the decompositions such 
that each their secondary submarker must be an end submarker, i.e. in other words 
the factor-markers of these decompositions are extremely simple because they contain 
only the root and the end vertices. Such decompositions will be called index decom
positions. 

Lemma 4. Let M' be a main submarker of a proper marker M. There exists 
exactly one index decomposition of M containing M\ 

Proof. If M = {A, r, Б, cp, ФУ and M' = <Л', r\ B\ cp', ф'У then either A' = A, 
i.e. M' = M, which is a trivial case or A' ф A, i.e. A — A' + ф. In this last case 
<Л — A\B n ((л — A') X (A — A'))y is a directed graph the connected components 
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of which are the rooted trees <Л ,̂ r̂ , Bj} for i = 1, 2, ..., n. If we define (p^ = ф|^^ 
and xj/i = i/̂ |ß. for each i = 1, 2, ..., n then Mi = <^,-, r ,̂ Bi, (pi, i/̂ j> are submarkers 
of M. It is easy to show that Mi is an end submarker of M for each i = 1,2, ,,.,n 
and therefore {M\ M^, M2, . . . , M„} is an index decomposition of M containing M\ 

If conversely {M\ M^, M2, . . . , M„} is an index decomposition of M and {M\ M[, 
M2,..., M^} another index decomposition, then the equality of these decompositions 
follows by a simple induction with respect to n. 

Lemma 5. Let M' and M" be the main submarkers of a proper marker M and 
let M be a marker over a not ambiguous canonical grammar G. If L(M') = 
= L[M") then M' = M" but this assertion need not be valid if G is ambiguous. 

The p r o o f follows immediately by the definition of ambiguity of G. 
Finally an ordered decomposition procedure ^ which is determined by a structural 

index w in an unambiguous canonical grammar G can be described as follows: 
Ш^ = {M еШ; there is a main submarker M' of M such that L[M') = w}; if 
M e Ш^ then by Lemma 4 there exists only one main submarker M' of M such that 
L[M') = M and therefore by Lemma 5 there exists exactly one index decomposi
tion M of M containing M' and we put ^ (M) = M. By Lemma 4 it follows that the 
length of ^ is equal to the diff'erence of the canonical and proper length of w and it is 
clear that M can be ordered in a unique way using a one-to-one correspondence 
between all the end submarkers of M and all the end vertices of the factor-marker MQ 
of M which is determined by M (this ordering corresponds to the ordering of the 
occurrences of nonterminal symbols in w). Such ordered decomposition procedure 
with a fixed length will be called an index decomposition procedure. 

Now let us assume that a decomposition transformation T of a canonical 
grammar G into G* is given, the underlying compatible sequence of homomorphisms 
of which is Ф ,̂ Ф2, ---.Фщ ^^^ the decomposition procedure of which is an index 
decomposition procedure S) with the prescribed structural index w = WQ^^IW^ .. . 
. . . Wj^w^ (this is the canonical form of w). It is clear that there are exactly m — 1 
occurrences of nonterminal symbols among the canonical symbols W^, W2,..., W„, 
i.e. m - 1 ^ n. If M еШ^, then ^ (М) = [М^, M2, . . . , М,„] and we can assume 
that the first submarker M^ is main and that the remaining submarkers M^ correspond 
(in the factor-marker) to the nonterminal occurrences Wj._^ for each i = 2, 3, ..., 
m where 1 ^j\ <J2 < ... < jm~ 1 й п. 

It is easy to show that the corresponding decomposition procedure ^ * of M* = 
= T(M) is again an index decomposition procedure because the main submarker M^ 
is mapped by Ф1 (Ф^ is nothing else than a well transformation; obviously the possible 
permutations corresponding to the particular rules are always assumed) onto a main 
submarker M* of M* and from the fact L^M^) = w by Theorems 2 and 3 it follows 
that L(M^) = Wol^*w* ... Fr*w* and that there is a permutationЯ, of {1, 2 , . . . , n} 
satisfying the condition И^я(о = ^{^t) for each г = 1, 2 , . . . , n where т is a mapping 
of Vc into Vc assumed by T. 
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Now a pair of structural indices (w, w*) together with the permutation Я can be 
called a transformational rule of T. It is necessary to note here that a transformational 
rule need not determine the decomposition transformation T uniquely and therefore 
a transformational rule is not sufficient to determine T. The necessary additional 
information concerning the vertices and edges of new phrase-markers always given 
by the linguists (see e.g. Chomsky [10], Bach [12]) is here fully expressed by the 
underlying homomorphisms and their permutations. 

It is possible to deduce the necessary and sufficient conditions for a pair (w, w*) of 
structural indices in order that it may be a transformational rule. 

In a special simple case when ф. = Ф for each i = 1, 2,. . . , m the decomposition 
procedure ^ is not necessary and it is sufficient to consider a well transformation 
instead of that of decomposition. The prescribed structural index w remains to be 
necessary for the determination of the domain Ш^ of the well transformation T. 

In order to clarify the value of the transformational rule we can say that by the 
transformational rule a partially descriptive transformation is prescribed (the descrip
tive transformation is used here in a broader sense which does not require only the 
terminal symbols to be concerned — the essential characteristic is that a descriptive 
transformation maps string onto strings but a structural transformation maps markers 
onto markers) and we are looking for a structural transformation by which the given 
descriptive transformation would be induced. 

8. EXAMPLES 

In this Section different examples are considered. Examples 1 and 2 concern the 
pure linguistic point of view but the further examples are more abstract and finally 
the last examples concern some pure mathematical questions, not completely solved 
here. 

Example 1. The canonical grammars Ĝ ct = i^p^ УА^ V^,% < 5 » and 0*̂ ^ = 
= <F|, V% F^, 9Î*, <S*» are determined as follows: 

Vp == (father, daughter, desk, ,.., kill, see, like, . . . } , 

Vt = (father, daughter, desk, ..., killed, seen, liked, . . . } , 

VA = (the, a, s, /}, where / denotes space, 

Vl - (the, a, is, by, /}, 

VN - « S > , <NP>, <VP>, <N>, <V,,,>, <Vbase>}, 

Vt - «S*>, <NP>, <VP>, <N>, <Vp,,>, <Vp,et>}, 

9Î = (wi, W2,..., w^^] and 9Î* = (w*, wf,..., w*J where the particular rules ŵ  
or wf are given in the i-th row of the following list in the left or right column resp. 
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1. <s> : 
2. <NP> : 
3. <NP> : 
4. <vp> : 
5. <v,,.> : 
6. <N> : 
7. <N> : 
8. <N> : 

^- X^base/ • 
10. <Vb,,e> : 
11. <Vb,,,> : 

: = <NP> <vp> 
: = /the <N> 
:=/a<N> 
: = <Vao.> <NP> 
• ~ x^base) S 
: = /father 
: = /daughter 
: = /desk 

:=/kill 
: = /see 
: = /like 

1. <s*> : 
2. <NP> : 
3. <NP> : 
4. <vp> : 
5. <Vp,3> : 
6. <N> : 
7. <N> : 
8. <N> : 

9. <Vp„t> : 
10. <Vp„.> : 

11- <Vpre.> : 

: = <VP> <NP> 
: = /the <N> 
: = /a<N> 
: = <NP> <Vp,,> 
: = / i s < V p , e t > / b y 
: = /father 
: = /daughter 
: = /desk 

: = /killed 
: = /seen 
: = /liked 

It is easy to see that the canonical language G(S) and also G*(S*) contains 108 
different sentences. Therefore we shall not enumerate all the corresponding pairs 
of sentences in the well known active-passive descriptive transformation t of G{S) 
onto G*{S*). E.g. if s = /the/father/kills/a/daughter then s e G{S) and t{s) = 
= /a/daughter/is/killed/by/the/father e G*(S*) etc. The form of 5 is (/the, e, s/a, e) 
and of t{s) is (/a, /is/, /by/the, e/). 

All the sentences of G[S) have the canonical length 3 and the required transforma
tion 71̂  of {1, 2, 3} is equal 7г̂ (1) = 3, 715(2) = 2 and п^(3) = 1 for each s e G{s), The 
required mapping a of Fp into Vp is determined as follows: (7(father) = father, 
^'(daughter) = daughter, cr(desk) = desk,..., ö-(kill) = killed, cr{sœ) = seen, ö-(hke) = 
= hked, . . . 

Both grammars G^^^ and G^^^ are chosen in such a way that there exists a structural 
transformation ToîG^^^ into G^^^ which induces t. 

The mapping т is defined as follows: т(х) = o{x) for each xeVp and T(<S>) = 
= <S*>, T « N P » = <NP>, r « V P » = <VP>, « N » = <N>, T « V , „ » = <Урз,>, 
'̂ (<^^base)) = <^^pret>- The homomorphism Ф of G onto G* is defined as follows: 
#(w^) = wf for each / = 1, 2 , . . . , 11. Ф is permutational and there are nonidentical 
permutations for w^ and W4 only. They are prescribed as follows: ni(i) = 2,7ii(2) = 
== 1; 714(1) = 2, ^4(2) = 1. By T and Ф a well transformation Tis determined which 
induces î indeed. 

In Fig. 5 there are phrase-markers P and P* of the sentences s and t(s) resp. which 
were chosen above. 

The well transformation T can be considered as a decomposition transformation 
with respect to the index decomposition procedure ^ determined by the structural 
index w = <NP> (УгсгУ <NP> and with respect to the transformational rule (w, w*) 
where w* = <NP> (Vp^^) <NP> together with the permutation Я of {1, 2, 3} such 
that Я(1) = 3, Я(2) = 2, Я(3) = 1. Obviously it is necessary to put Ф^ = Ф for each 
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ï = 1, 2, 3, 4 (it is clear that Q) has the length 4). Here it is clear how the permutation Я 
is determined by the permutations TÎ  and 7Г4. 

In Fig. 5 the particular sub-phrase-markers of the index decompositions ^(P) 
and ^*(P*) are marked out by the dotted lines. 

According to the previous definitions the markers and submarkers M, M* and 
Mj-, Mf are used instead of phrase-markers. These markers and their decompositions 
and the corresponding factor-markers M* are shown in Fig. 6. If M = <У1, Г, В, (р^фУ 
then А = {г, а, Ь, с, d, eJ,g};B = {(г, а), (а, fo), (г, с), (с, d\ {d, е), {с J), (/, д)]\ 
ç{r) = wi, ф(а) = W2, ф(Ь) = W6, (р{с) = W4, <p((i) ф(е) = W9, ф ( / ) = 
<p(ö') = >̂7? äî d i/̂ (r, а) = 1, \li{a, b) = 1 i/̂ (r, с) = 2, i/̂ (c, J) = 1, i^(J, e) = 1, 
\l/{c,f) = 2, il/{f,g) = 1 and similarly all the other submarkers M ,̂ M*, Mf and 
also the factor-markers MQ and M* can be described by the enumeration of their 
different elements as it was done by M. Especially if M* = <Л*, r*, ß*, ф*, i^*) 
where evidently Л* = Л, r* = r and B* = Б, i.e. condition (11) is satisfied, then 
Ф*(х) = Ф((р{х)) for each x G Л, i.e. condition (12) is satisfied, because the labellings 
of the vertices in both markers M and M* are the same. Finally i/̂ *(r, a) = 2 = 
= пЩг, a)), iA*(r, c) = 1 = щ{ф{г, с)) and iA*(c, rf) = 2 = п^{ф{с, d% r{cj) = 
= 1 = nj^{c,f)) and in all other cases the prescribed permutations are identical, 
thus condition (13) is satisfied. Therefore M* = T(M). 
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One easily sees that L(Mi) - <NP> <V,,t> <NP> and L(MÎ) = <NP> <Vp,3><NP> 
and that IJ for M^ satisfies (14) when the mappings v and v* are determined. 

In this example it was not necessary to define Ф̂  = Ф for each i = 1, 2, 3, 4, i.e. 
to define Ф̂  for each rule of 9Î, because obviously e.g. it was sufficient to define Ф^ 
only on the subset Ш^ с Ш, where Л^ = {^1,^4}; Ф2 only on the subset 9Î2 = 
= {^2^ ^3? ^6» ^7 ' ^s} ^tc. That means that Ф̂  need not be necessarily homomorph-
isms of 9Î into 51* but sometimes they can be homomorphisms of some special 
subsets 9îj- of 91. It is clear that the subset 9Î,- is always determined as the set of rules 

Fig. 7. Fig. 8. 

which are used in the submarker M^ for each marker M e. 9K^. This is a practical 
reason why it can be useful to consider a well transformation as a decomposition 
transformation and use the structural indices too. 

There is another possibility how to define the canonical grammars generating the 
canonical languages G(S) and G*(S*). The following changes are necessary: the 
symbols "the" and "a" are transferred from F^ and F^ in Vp and V%\ a new non
terminal symbol <Det> is added to F̂y and F* and instead of the rules W2 and W3, 
the rules w^2 = ^ti = <NP> : : -= <Det> <N>, УУ̂ З = w*3 = <Det> : : = /the and 
^14 = ^14 = <(Det> : : = /a are introduced. 

These modified canonical grammars are weakly equivalent to the previous ones and 
again the former can be well transformed onto the latter. The forms of the considered 
particular sentences s and t[s) are as follows: (e, e, e, s, e, e) and (e, e, j is, jby, e, e). 
Therefore this descriptive transformation is a form transformation. 

Example 2. Here particular examples are investigated of the singular transforma
tions which are not well transformations and which are introduced by different 
linguists. 

In Fig. la) and 4a) a pair of corresponding phrase-markers was shown in the 
simplest case when "the singulary transformation is a permutation". According to the 
basic definitions of well or decomposition transformations it is clear that the phrase-
marker in Fig. 4a) can never be the image of Fig. la) in a well transformation. This 
impossibihty is caused by the impossibility that the right side in Fig. 7 is the image of 
the left side in a well transformation, because the canonical lengths of the both rules 
in the left side are equal to 2 and on the right side one is equal to 3 and other the to 1. 

There are no difficulties from the mathematical point of view to introduce more 
general mappings of phrase-markers than the well and decomposition transforma-
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tions are. It is possible to decompose the phrase-marker (or the markers) into parts 
which need not be rules but some chosen types of sub-phrase markers and to prescribe 
directly the corresponding sub-phrase-marker (i.e. a new rooted tree and new label-
lings). The pair of phrase-markers in Fig. 7 can be an example of such general cor
respondence. We have not introduced these general transformations here because 
there is another way how to make possible to use the notion of decomposition trans
formation here. 

Let us change the left side in Fig. 7 as it is shown in Fig. 8. Now it is clear that this 
modified sub-phrase marker can be mapped onto the right side of Fig. 7 by a well 
transformation. This modification means that in the underlying context-free grammar 
the rules <VP> : : = <Verb> <NF> and <Verb> : : = <V> <Prt> are substituted by 
new rules <VF> : : = <Verb> <Prt> <NP> and <Verb> : : = <V>. We do not know 
any linguistic objections against this modification, because it seems to us that the 
linguistic interpretations of the nonterminal symbols <VP>5 <Verb> and <V> are 
not sufficiently distinguished and determined. Therefore <Prt> can be in "is a"-
relation to <VP> directly instead of to <Verb>. 

Another pair of corresponding phrase-markers was shown in Fig. 2a) and 4b). 
Here too, some modifications as in the previous case would be necessary. We shall 
not analyse this case in detail because a possible handling with active—passive 
transformation is given in Example 1 and we do not believe that the shown phrase-
markers have a definite and correct form. What we want to stress here is that again 
a convention concerning the rooted tree is silently assumed which must be added to 
the transformation rule in order to determine fully the new phrase-marker. 

For this reason, in the underlying context-free grammar it would be more useful 
to use the rule <S> : : = <NP> <VP> <NP> (if we have in mind the transitive verbs) 
expressing that <VP> denotes a binary relation between the subject and the object, 
than the traditional rules <S> : : = <NP> <VP> and <VP> : : = <Verb> <NP>. 
Similarly in the case of double transitive verbs the first rule should be <S> : : = <NP> 
<VP> <NP> <NP> etc. It must be considered why these oldest grammatical and logical 
concepts and schémas are to be used today when the logical analysis of language and 
the logic itself are developed more in detail. 

Example 3. Let us consider two context-free grammars Ĝ  = <Fj, Vf^, 5Н̂ , S} and 
Gi = <F*, F^, SRf, S*> (from the point of view of canonical grammars we suppose 
F^ = Fj, Vp = 0). We shall say that Ĝ  is well (or decompositionally) and permuta-
tionally transformable onto Gf if there exists a well (or decomposition) transforma
tion Tof Gi onto Gf which is determined by a non permutational (or permutational) 
homomorphism of SR| onto 9îf. 

If 9îi = {S : : - Sa, S : : = Ь} and 9l* = {S* : : aS*b, s* : : = с} where a, b, с 
are terminal symbols then Ĝ  is well transformable onto G*. 

In Fig. 9 two corresponding phrase-markers are shown which are evidently not 
isomorphic as the rooted trees (but the corresponding markers are isomorphic). 

308 



If 9Î2 = {S : : = AB, A : : = aA, A : : = ь, в : : = с} and 9î* = {s* : : = ВА, 
А : : аА, А : : = Ь, в : : = с} where А, В are nonterminal and а, b, с are terminal 
symbols then G2 is not well transformable onto G* but G2 is well permutationally 
transformable onto G*. In Fig. 10 the two corresponding phrase-markers are shown. 

^ш^ 
1 n â? 

Fig. 9. 

If 9I3 = {S^ S*a, S* S*c, S'̂  b} where a, b, с are terminal symbols 
then Gl is not well transformable onto G3 (because the cardinal number of 9?з is 
greater than that of 9îi) but Ĝ  is decompositionally transformable onto G3. The 
corresponding decomposition procedure ^ can be described as follows: the roots of the 
submarkers of ^(М) are all the vertices of M which are labelled by the rule S : : = Sa 
and in the known ordering of them the odd or even vertices will correspond to the 
rules S* : : = S*a or S* : : = S*c respectively 

' ~ I T 
•"^ 'A^V' 

m '• 

1(3 I m 
4 с . 

Fig. 10. 

,^"li^!N 

>^5^] 
I ъ 

If 9̂ 4 = {s* : : = s*aR, s* : : = s*c, s* : : = b, R : : = bR, R : : = c} where R 
is nonterminal and a, b, с are terminal symbols then 9?i is not decompositionally and 
permutationally transformable onto 9Î4 (because in 9Î4 there is a rule having canonical 
length two but in Sl̂  each rule has canonical length at most one). 

It is clear that with respect to the homomorphisms of the sets of context-free 
rules a classification of all context-free grammars is determined because a set 9Î of 
rules can be called simple if each homomorphism Ф of 9Î onto 9Î* implies that Ф is 
an isomorphism. Thus to the same class belong the sets having the same homo
morphism image. This classification induces a classification of context-free languages 
if we define that a context-free language L is well (or decompositionally) (and 
permutationally) transformable onto L* if there are context-free grammars G and G* 
generating L and L* respectively such that G is well (or decompositionally) (and 
permutationally) transformable onto G*. 
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Then Gi(S) = {foa"; и ^ 0} is well transformable onto Gt(S*) = {a^cb""; n ^ 0}, 
but Gi{S) is a regular event and G*(iS*) is not. Therefore the class of regular events 
is not preserved by the well transformations and to the same class of the mentioned 
classification the regular and also some nonregular languages will belong. 

On the other hand, it is clear how to generahze the notion of homomorphism and 
then the notion of well transformation to the context-sensitive or quite general 
grammars and languages. Especially by the context-sensitive grammars the situation 
is very simple. Here it can be expected that these generalized transformations will 
transfer context-sensitive grammars on the context-free ones and that therefore they 
could be a suitable tool for study of context-sensitive grammars and languages. 

Finally it is interesting to note that if we put 9̂ 5 = {S : : = SaS, S : : = b} where a, b 
are terminal symbols then Ĝ  can not be well transformable onto G5 but Gi(5) = 
== {ba"; и ^ 0} is well transformable onto 05(8) = {Ь(аЬУ; n ^ 0} because this 
last language is generated by the following grammar Gß :Ш^ == {S ::== Sab, S : : = 
= b}, where a, b are terminal symbols. Now it is clear that one of the two occurrences 
of the symbol S in the rule S : : = SaS in 9Î5 is not important. 
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Резюме 

О НЕКОТОРЫХ ТРАНСФОРМАЦИЯХ 
КОНТЕКСТНО-СВОБОДНЫХ ЯЗЫКОВ 

КАРЕЛ ЧУЛИК (Karel Culik), Прага 

В статье вводится и изучается с учетом требований лингвистов, особенно 
Н. Чомского (N. Chomsky), предъявляемых к сингулярным грамматическим 
трансформациям — довольно общий класс отображений, называемых ,,хороши
ми трансформациями". Последние сопоставляют фразовым показателям любой 
грамматики типа 2 опять фразовые показатели другой такой грамматики, опре
деленные однозначно некоторым гомоморфизмам певрой грамматики во вто
рую. Под гомоморфизмом следует понимать отображение сопостявляющее 
правилам грамматики опять правила, следовательно не отображение алфавитов 
(как его вводит М. Р. Schützenberger).). 

Специальные, строгие условия, налагаемые на гомоморфизм, касаются 
разбиения множества терминальных символов на собственные и вспомогатель
ные и отношения применимости одного правила к другому. Фразовый пока
затель определяется математически как некоторый двойной граф; в статье 
используется равносильное понятие показателя. Показагель это корневое 
дерево, узлы которого помечены правилами и ребя натуральными числами. 
Естественным образом вводится понятие первого и последнего слова по отно
шению к данному показателю. Если выполнены некоторые дополнительные 
условия, индуцируется трансформация языка, порожденного в язык, порожден
ный второй. Особую важность приобретают перестановочные гомоморфизмы 
и с их помощью определенные трансформации. Они позволяют проводить неко
торые фиксированные перестановки собственных, терминальных и вспомога
тельных символов в правилах. На примере показана возможность отобразить 
с помощью хорошей трансформации регулярное событие на нерегулярный язык. 
Изучаются некоторые дополнительные проблемы. 
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