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THEORY OF PROCESSES, II.

OtoMAR HAJEK, Praha

(Received March 3, 1966)

The present paper is a direct continuation of [I], and the conventions and notation
introduced there — in particular those of the Appendix — and also the mode of
reference will be preserved. The results of [I] will be referred to by prefixing I, so
that 1,4.9 refers to [I], section 4, item 9. Occasionally it will be useful to abbreviate
the notation

r:(P,R,p)— (P,R,p’) in Proc,

exhibiting a morphism and objects in the category Proc (1,3.1), simply to r: p — p’
in Proc, if the P, R, etc. are fixed previously or immaterial.

1. LATTICE-THEORETIC PROPERTIES

1. Consider the set of all processes in P over R, for fixed but arbitrary P and R.
Under the natural relation-inclusion, this constitutes a partially ordered set (cf.
1,1.20); its elementary properties, in particular the construction of joins and meets,
will be studied in this section.

2. Merely for the internal needs of the present paper, it will be useful to introduce
the term pre-process for processes without the compositivity property. More precisely,
p is a pre-process in P over R iff P is a set, R = R', and p is a relation on P x R
such that

1° (x, o) p(», B) implies o = B,

2° (x, o) p(y, o) implies x = y.

In analogy with I,1.1 one defines the individual relations of such a pre-process as the
relations ,pg on P, for all « = fin R, with

xppy iff (x,0)p(y, ).

Observe again that p is completely determined by the system {,p, | a = B in R};
property 2° is then equivalent with ,p, < 1 for all x € R.
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3. The set of all pre-processes in P over R constitutes a principal ideal in the
Boolean algebra of all relations on P x R. In greater detail, let p,,,, be the maximal
process in P over R, defined thus: (X, @) pp. (v, B) iff either « > B and x, y are
arbitrary, or (x, o) = (y, f). Then a relation p on P x R is a pre-process in P over R
iff p © Py In particular, if p; are pre-processes in P over R, then so are (Jp; and Np;.

4. Two special types of pre-process will be particularly important: the partializable
pre-processes (in P over R), characterised by

oDy S oPpopp, forall a=2p=y in R;

and the transitive pre-processes p characterised simply by transitivity of p, i.e.
by po p < p, or, equivalently, by

aPy @ oPgoygp, forall a ==y in R.

The definition I,1.2 of a process may now be formulated thus: a pre-process is
a process iff it is both partializable and transitive; this trivial but important result
will often be used, without explicit reference.

5. Let p; be pre-processes in P over R; it is easily shown that Up; is partializable
if all p; are such, and that (p; is transitive if all p; are such.

Now, the union Up; of processes p; may well not be a process; the preceding asser-
tion traces this to Up; failing to be transitive. However, a simple remedy suggests
itself (from I, Appendix, recall the notation pT for the transitivization of a relation p):

6. Lemma (and definition). Let p be a partializable pre-process in P over R.
Then the transitivization p" of p is a process, indeed it is the least process q in P
over R with q o p; it will be termed the upper modification of p.

Proof. The individual relations of pT are easily described:

(1) op% = U{6,Po, 0 0:P050---00, Po, % =10, =...20,=pin R, neC'};

it follows immediately that p' is indeed a partializable pre-process in P over R. The
remaining assertions follow from the fact that p" is the transitivization of p.

7. Now consider a system of processes p;, all in P over R. From 5, J p; is a partializ-
able pre-process, and hence one may form its upper modification say p according to 6.
Thus p is the least process in P over R with p o p; for all the p,, i.e. their least upper
bound (in the partially ordered set of all processes in P over R). In the customary
manner we denote p by Vp,, etc.

Evidently Vp; may be described by

(2) Vpi = UP.’UU(Piopj)u_uk(Pi°pj°pk)U""
i ij i
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or in terms of the individual relations,

(VP)s = Ulo,(Pi)os o v 00, (Pin_ o, i =0, 2 ... 20, =B, neCl}

(and similar formulae hold if the p;’s are merely partializable pre-processes, and Vp;
the upper modification of (Jp;). In particular, the least upper bound (1. u. b.) of two
processes p, q in P over R is

pvag=puqu(pogq)u(gop)u(pogqop)u...;
in the very special case that p commutes with g, p o ¢ = ¢ o p, one has that

(©) pvag=puqu(p.q),

whereupon p v g = po q if also their solution-spaces coincide.

As an elementary example, consider the two differential processes in R! over R!
associated with the differential equations dx/d6 = 1 and dx/d0 = —1. Then their
1. u. b. is the process p described by x ,p, y iff |x — y| <a-—p.

To summarize the main result (cf. [1], chap. IV, § 1, theorem 2),

8. Theorem. The set of all processes in P over R, partially ordered by relation-
inclusion, is a complete lattice.

A like result holds for bi-processes. (The assertion concerning bi-processes follows
from twofold application of the otherwise obvious result that p; < p, for bi-processes
iff p; = p;, for the associated processes; cf. I,3.9). The extremal elements of the lattice
described are, of course, the process p,.. from 3, and the least relation 0. More
generally, given an arbitrary subset D < P x R, the greatest process in P over R
with D as domain may be described thus: (x, «) p (v, B) iff both (x, «), (v, B) € D, and
either (x, a) = (y, B) or & > B and x, y are unrestricted. Similarly, the least process p
in P over R with domain D has (x, @) p (v, B)iff (x, «) = (y, B) € D; it is trivial (in the
sense of 1,1.12) and hence a bi-process.

9. It is now in place to describe, as far as reasonable, the connection between
various properties of processes p; and those of \/p;. Thus, let p; be processes in P
over R, set p = Vp;, and write D for the domain of p, D; for that of p,, etc. (refer
to I,1 throughout). Then

(4) D = yD;,
since D = domain p, and hence from (2)

D > | domain p; = D;
and also
D = U domain (p; o pi, o ... 0 p;) = | domain pi, = UD;.
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For the carriers and parameter-domains there follows from (4) directly
C=UC,, B=UB,.

The description of the interval-components of p is easily obtained, but slightly more
involved: o and f are in the same interval-component of p iff there is a chain I, ..., I,
such that each I, is the interval component of some p;, «€l,, f€l,, and I, inter-
sects I, for 1 < k < n. In particular, if all p; are extensive, then p is extensive iff B
is an interval in R.

As concerns the solutions of the processes involved, one has the following easily
established assertion (cf. 1,2.7).

10. Lemma. Let p; be a process and S; a solution system base with S; < sol p;
(¢f. 1,2), all in P over R; then \US; is a solution system base and JS; = sol \/p,.

In particular, one may take for S; the complete solution system of p;. Hence, if
each s, is a solution of some p;,, if domains, = [0,,,,0,] for1 £ k <neC' and

0 = 8,10, for 1<k=n,

n
then {J s, is a solution of Vp;. In particular, \/p; is solution-complete if each p; is
k=1

such.

11. Preserve the assumptions and notation of item 9. For the escape times one has,
evidently,

&(x, o) = sup &(x, «)

(with the supremum taken over those indices i which satisfy (x, ) € D, cf. (4));
hence p has globality at (x, a) if some p; does. Moreover, it is also immediate that
(x, ) € D has local existence relative to p iff it does relative to some p;; thus (x, o) is
an end-pair (or start-pair) relative to p iff it is such relative to a!l p; with (x, «) e D,.

Quite obviously, unicity is usually not preserved on passing to l. u. bounds (possibly
this is best seen from lemma 10 or the example in item 9); however, in a significant
special case, one does have a positive result. The processes of a system {p; ! iel}
may be termed consecutive iff, for all i + j in I, the intersection B; n B; of their

parameter-domains contains one point at most. If this is so, then
3(x, &) = min §(x, o),
i

so that local or global unicity obtains at (x, «) € D relative to p iff it obtains relative
to all p; with (x, o) € D;.
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12. Lemma. Let r: (P, R, p;) = (P', R, p}) in Proc. If domain r > |J domain p,,
then also r : \/p; = \p; in Proc.

Proof. Set p = Vp;, p’ = VP}, and take any finite subset {1, 2, ..., n} of the index
set. Then
roplopzo...o[’,,or—l C(roplor-_l)o(ropzol‘_l)o
oceo(Fopaor ™) e plopho...opyc p’

since domain p; = domain r by assumption. Hence and from (2), ro por~! < p’ as

asserted.

Thus, in the style of 1,4, p = Vp; admits period 7 if all the p; do; p is stationary or
r-symmetric if all the p; are such. Obviously the procedures of taking 1. u. bounds
and of changing orientation commute. However, additivity is usually not preserved,
see 18.7°.

13. According to 8, there exists a greatest lower bound (g. 1. b.) Ap; of arbitrarily
given processes p; in P over R; it may be obtained as the 1. u. b. of all processes p’
such that p” < p; for all indices i. However a more constructive description is possible
in terms of transitive pre-processes, on the lines of item 7.

Assume given a transitive. pre-process p in P over R. For a« = f in R define rela-
tions ,p; on P by

ap['i=n{a 0°0pﬂ:ag()gﬁin R}

Obviously these are the individual relations of a pre-process p’ in P over R. It is
easily verified that p’ is again transitive with p’ = p, and also that

(5) q = p' = p for all partializable q < p
(g a pre-process in P over R); in particular,
(6) p’ = p iff pis partializable .

Next define, by transfinite induction, transitive pre-processes p, as follows: p, = p,
Patt = Pa» Po = N P, (for the moment, the prime denotes the operation described

a<w
above). The sequence { pa}ago is then constant starting at least from some ordinal
connected with the cardinality of P x R; thus p, = p, for some ordinal o. (6) then
yields that p, is partializable (and transitive), and thus a process. Hence and from (5),
it is the greatest process g in P over R with ¢ = p, and will therefore be termed the
lower modification of p.

14. Using this and item 5, one may also describe the g.1. b. Ap; of arbitrary
processes p; in P over R as the lower modification of (p;. Of course, the construction
is considerably more involved than that of the upper modification; thus there is no
simple formula analogous to (2) or (3).
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15. As in item 9, we shall now examine the effect of taking g. 1. bounds on the
concepts usually associated with processes. Thus, let p; be processes in P over R,
and set p = Ap; (then p < p,;, and I,1.20 yields the trivial parts of the assertions to
follow).

First

(7) D =ND;;

here D « (D, is trivial, and the opposite inclusion is obtained from the definition
1,1.6 of the domain of a process by following through construction 13 (or by observing
that the minimal process with domain (\D; is a common lower bound to all p;).
Hence p is cartesian if all p; are such, whereupon also C = NC;, D = N\D,.

The description of solutions of p is particularly simple:

16. Lemma. Let S; be the solution system of a process p; in P over R. Then \S; is
the solution system of Ap;; i.e., s is a solution of Ap; iff it is a solution of all p,.

Proof. The non-trivial part is to show that a common solution s of all p; is also
a solution of Ap;. This follows from the construction of 13 and the following observa-
tion: if
st ,py B (for « = pin domain s)

holds for some pre-processes p, then it also holds for their set-intersection, and also
for the pre-process p’ as in 13.

For the two numerical characteristics ¢ and ¢ we have, in general, only the obvious
relations

e(x, o) < infex, o), O(x, «) = sup d(x, a).

Thus an end-pair (or start-pair) of some p; is also such relative to p = Ap;; similarly,
local or global unicity obtains at (x, o) relative to p if it does relative to some p;.

17. Lemma. Let r : (P, R, p;) — (P', R, p}) in Proc, and assume that r = (r', r")
is a partial map with r'(x, «) independent of x and mapping R onto an interval of R'.
Then also r : Ap; = Ap} in Proc. .

Proof. Set p = Api;, ¢ = Np; Then pis a process, and hence, by the assumptions
onr, ropor tisa partializable pre-process in P’ over R’. Secondly, q is a transitive
pre-process with o po ™! < ¢, since

1

ropor *cropor!cp

for all i's. The construction of 13 (together with (5)) applied to g then yields r o p o
or~! < p’ for the lower modification p’ = Ap; of g, as asserted.

Thus, as in 12, p = Ap; admits period z if all the p; do; p is stationary, or r-
symmetric, if all the p; are such. Obviously the procedures of taking g. 1. bounds and
of changing orientation commute.
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18. This item contains suggestions for minor extensions of the preceding results.

1° Specify the connection between pre-processes (possibly partializable or transi-
tive) and solution system sub-bases in the manner of I,2.

2° Define pre-bi-processes (pardoning the terminological atrocity) as symmetric
relations with property 1.2°, and formulate appropriate versions of partializability
and transitivity. Specify the connection between these and pre-processes in analogy
with that obtaining between bi-processes and processes (1,3.8—9).

3° Prove the results of items 3, 5, 6, 8, 12, 13, 17 for pre-bi-processes or bi-processes,
respectively. (However note that the upper modification of a pre-bi-process is not its
transitivization.)

4° Let p be a process in P over R, and R’ a subset of R; obtain a necessary and
sufficient condition for the partialization p | (P x R’) to be a process in P over R
(hints: the condition involves only R and the interval-components of p; apply item 3).
In the positive case describe the domain, extents of unicity, etc.

5° Let {p; [ i eI} be a system of processes in P over R; prove that Ap; has unicity
if (pi)poap;)s! = 1foralli,jinl,« > BinR.

6° Obtain results stronger than 9 to 11 and 15 to 16 for monotone systems of
processes. Hence show that to every process p with unicity there exists a process p’
(both iri P over R) maximal relative to the following properties: p’ > p, p” has unicity.

7° Prove that the g. 1. b. of additive processes is additive (hint: make appropriate
modifications in the construction of item 13). Show that the 1. u. b. of additive proces-
ses need not be additive (suggestion: dx/d0 = x and dx/d0 = —x in R'; however,
in R} this L. u. b. is again additive).

8° Let p be a process in P over R, and let t € R! be such that « € R implies « + t €
€ R. Now define, for all « = f in R, relations ,(p,); on P by

a(pr)ﬂ = a+rp/}+t .

Verify that these are the individual relations of a process p, in P over R (also observe
that then also p,. is defined for all n € C'). Prove that

P"= V py and p"= A py
neCt neC1

are processes admitting period 7, and show that they are, in a sense, upper and lower
modifications of p.

9° Define, prove existence and describe the upper and lower stationary modifica-
tions of a process. (Hint: 8°.)

10° Let p be a process in P over R, ¢ its stationarization as in 1,4.11 (hence a process
in P x R), proj; : P x R — P the natural projection, and finally p’ the upper
stationary modification of p as in 9°. Prove that

proj; x 1:q - p" in Proc.
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11° Let p be a process in P over R, and r : P — P one-to-one onto. Show that
pp=(x1opol(rx1)!

is a process p, in P over R (also observe that then also p,. are defined for all n e C').
Prove that \V p,.» and A p,. are the upper and lower r-symmetric modifications
of p neC! neC!

12° Let p be a partializable pre-process in a group P over R. For each pair « > f8
in R define a relation ,p, in P by letting x ,py y iff there are x;, y; € P (i = 1, 2) with

Xy — X=X, Vg — V2=, xinpﬂyi'

Show that the ,p; are the individual relations of a partializable pre-process p’ in P
over R. By alternating this procedure with transitivization sufficiently often, construct
the (appropriately defined) upper linear modification of p.

13° Let p = Vp; with the p; consecutive processes (cf. item 11) in P over R.
Collect appropriate results to obtain the following assertions: If each p; is a local
(global) semi-flow (flow, semi-dynamical system, dynamical system), then so is p.

19. The remaining items are concerned with interpretations of 1. u. b. formation
outside process-theory proper.

1° Describe the effect of formation of 1. u. b. and g. 1. b. in graphs, interpreting
these as stationary processes over C'; and similarly for partially ordered sets (cf. I,
4.19.22°).

2° For i el let v; be an orientor field in a normed linear space L; denote by p; the
corresponding processes (defined via classical or other solutions, cf. 1,2.10.12°).
Show that the process p similarly associated with any orientor field v, »(x, 0)
> U vfx, 0), has p = Vp;; also consider equality instead of inclusion, under further
iel
appropriate conditions. (Suggestion: try v (x, 0) and Jv(x, 0) convex and compact.)
Finally, we shall be concerned with mixed-type regulated systems, usually
denoted by

dx
8 — = f(x,u,0), ueU;
) G = 0)

here f and u are partial maps L x Q x R!' - Land L x R! - Q respectively, L
a normed space, Q a set (this description comprises not only the pure forcing terms
u:R' > L= as in 1,2.10.14°, but also autonomous regulators u : L - Q, and
regulators of mixed type). Concerning the set U of regulators we shall assume only
that proj, [domain u] is an interval in R! for each u € U.
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3° Using 1,1.3 (or rather I,2.10.5°) interpret two-position regulation as a system
{p:| i = 1,2} consisting of two processes only (in Lover R'). Interpret (8) similarly;
also show that finite switching regimes of (8) are adequately represented by formation
of the 1. u. b. of the processes p, corresponding to (8), even up to behaviour at switch
points. (Hint: use U as the index set; apply lemma 10.)

4° Define regulated-processes in P over R with regulators from U (P a set, R = R!
U a partially ordered set) as maps p of U into the set of processes in P’ over R, having
the following three properties:

1" If Vu; exists in U, then p(Vu;) = Vpu,,
2" If Au; exists in U, then p(Au;) = Apu,,
3’ If O exists in U, then pO = O.

(Here the notation on the left sides of the formulae concerns the partial order in U,
that on the right the partial order as in item 8.) Show that u < u’ in U implies pu =
< pu'.

5° Show that each regulated system (8) defines, in a natural manner, an associated
regulated-process; also show that then

domain pu = domain N domain f(., u, .).

6° Define functional-differential regulated systems, as suggested by the symbolic
form
dx

Ezf(x”J,u(x,,lJ,O),(}), ueU

(with J = [—1,0] or J = (=0, 0], cf. [,1.21.9°), and construct the corresponding
regulated-process.

2. TRANSFORMATION THEORY

1. The basic results of this section are items 2 and 9 on inverse and direct generation
of processes. The role of these in the present paper is similar to that of the Deux
méthodes générales de définition d’une topologie, familiar from [2, § 7]; namely, as
fundamental apparatus in the elementary categorial constructions of processes
(indeed, this was the motivation). They may also be interpreted as the abstract coun-
terpart of classical transformation theory for differential equations; see item 12.

The problem to be considered may be formulated, loosely but succintly, thus: given
the relation r in a morphism condition ro por~! < p’, i.e.

(1) r:p—p in Bipr,

find p to given p’, or conversely, possibly with various further properties.
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2. Transformation theorem (and definition). For i€l let p; be a process in P;
over R}, and r; a relation between P; x Rjand P x R. Then there exists a unique
process p, in P over R, maximal relative to the following properties:

(2) r;:p— p;, domainp < domainr, (foralliel).
p is then said to be inversely generated by the p; and r;.

Proof. It suffices to show that the 1. u. b. of all processes p satisfying (2) also does
so. For convenience of notation, let p; vary over all processes in P over R which
satisfy (2), and set p = \/p,. According to 1.6, p may also be obtained thus: take the
partializable pre-process ¢ = {Jp;; then p is the transitivization of g, i.e. p = Uq".

Now proceed to verify (2) for p. Fix an arbitrary i € I; then

‘I‘,-oqori_l = U(riopjori_l) [y p:,
J
(3) domain g = range ¢ = |J domain p; < domain r;.
J

Hence

1 . -1 -1 ’ [
C Fiool; olF;o{dol; S PioPi = Pis

rioqtor;
etc..i.e. 7,0 q"o r; ' < p); thus
riepor;t =U(ricq"ori') < pj.
n
Thus p indeed satisfies the first condition from (2); the second follows similarly from
(3). This concludes the proof.

3. Lemma. In the situation of 2, let s : R — P be partial map such that domain s
is an interval in R and proj, r;[s] an interval in R, for each i € I. Then s is a solution
of p iff's = ( domain r; and r[s] is a solution of p; for each i el.

(Note that r,[s] is the image of the set s under r;; cf. 1,3.4.)

P1 >of. One part of the assertion follows directly from (2) (and 1,3.4). Conversely,
let s have the indicated properties. Then it is easily shown that 5" = {(so, o, s, f) :
to 2 B in domain s} is a process in P over R and satisfies (2); from maximality,
s" = p, and hence s is indeed a solution of p.

4. In the diagram
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let the processes p; and q; be given, and also the morphisms u; and relations r; as
indicated. Also let p be inversely generated by the p; and i;, and similarly g be
inversely generated by the g; and u; - r;. Then u is an inclusion; thus p < g, and
hence commutativity obtains in the diagram. (This is an immediate consequence of
the definition and maximality of g.)

By suitable choice of the u,’s we obtain the following assertion: In the situation of 2
let r; = r; x 1 (thus r}is a relation between P; and P); if all the p; admit period T or
all are stationary then p has the same property.

5. The transformation theorem seems satisfactorily general; indeed, it may even
be presented as evidence of the appropriateness of the process concept as given in 1,3.
The inner mechanism of its proof may be seen to depend on the existence and con-
struction of 1. u. bounds.

On the other hand, the transformation theorem is, possibly, too general, in that
some of most elementary properties of p are not particularly simply connected with
those of the p; and r,. Thus, the domain D of p satisfies D = N\r; '[D,], a simple

i

consequence of (2) only; however, a complete description of D in terms of p; and r;
is rather involved (cf. 13.2°). For the purpose of the following section a rather special
case will be more than sufficient. It may be noticed that the conditions to be imposed
on the relations r; are similar to those appearing in 1.17 (and 1,3.4).

6. Proposition. For i €I let p be a process in P;over R}, and r; = (r}, ¥}) a partial
map P x R — P} x R} such that ri(x, «) is independent of x e P and

4) Nritor)csl.
Then the process inversely generated by the p; and r; coincides with the lower
modification of N\(r; '« piory).
i
Proof. 1° Set q; = r; ' o pior; for iel, and g = (g, First we shall need to
i

prove that ¢ is indeed a transitive pre-process. Each g; is a symmetric and transitive
relation, since pj} is such and r; . r; ! < 1; therefore g is symmetric and transitive,
and it only remains to verify the initial-value condition 1.2.2° for g.

Let (x, @) g (y, B). Then for each i eI there exist pairs in P; x R} such that

(xp i) ri(x,a), (i B) (v, B)s (i o) pi (Vi B 5
in particular, the assumption on r} yields that
(5) o = v, fi=rip.

It is required to show that o = f implies x = y; thus, let « = f. Then (5) yieldé
«; = P;, and then xj = y; since p; is a process. Hence (x}, «}) = (y}, B}), implying
(x, &) r;* c ry, a); and since this holds for all i € I, (4) yields x = y as required.
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2° Thus q is indeed a transitive pre-process, and one may form its lower modifica-

tion, say p. The assertion is then that p satisfies (2) and is maximal with this property.
Now,

Fiopori ' Crioqiori = iiar;opior;er;t < p!
since r; o r; 1 = 1; and obviously
domain p < domain gq; < domain r; .

To prove maximality, take any other process p in P over R satisfying a condition
as (2); then

. . . - 1 ’ —
i olFioPol; oF; CF; opiol; ={(;

since domain p = range p < domain r;; and hence, in turn, p< (g, =¢, p < p
(cf. 1.13 (5) with a different notation). Therefore p is indeed the greatest process
with (2) as asserted; this completes the proof.

7. Some remarks to proposition 6 are appropriate; preserve the assumptions and
notation. Condition (4) is satisfied trivially if some r, is one-to-one, i.e.if r; ' o r; = 1.
A partial converse to this is that if the index set is a singleton, then (4) is precisely the
requirement that r be one-to-one.

Of course, the results of items 3 and 4 apply a fortiori in the situation of 6. In 3 the
requirement on proj, r;[s] now reduces to that r;[domain s] is to be an interval in R;;
this is satisfied automatically if r; maps R onto an interval in R;. For the domains
we now have that

(6) D =N '[D]
(to prove the non-trivial inclusion show that the maximal process with domain
Nr; . [D,] satisfies (2)).

Now assume that, in addition, all the » increase; then, from I,3.6

e<infri™ oglor.
i

In particular, (x, o) € D is an end- or start-pair relative to p if some r(x, «) is such

relative to p;. We shall also show that, in the same situation,

(7 d=infri ' dior,.

This will imply that p has positive or negative local or global unicity at (x, 2) € D if
some p; has the corresponding property at ry(x, «).
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The proof of (7) is a variation on that used in 1,3.7, and exploits (4). It suffices to
consider the case d(x, «) < + 0. Then there exist 0 € R arbitrarily near §(x, «) and
u # vin R with u ¢p, x, v 4p, x (cf. 1,1.17). Since D < r; '[D,], one also has

ri(u, 0) P V{(X, O() with ri(u, 0) = (r;(u, 0)’ r',.’(})

for all i eI, and similarly for (v, 8). Now, r}0 < dir(x, ) would imply r(u, 0) =
= r{v, 0) by definition of 6}; however u = v and (4) yield that this cannot occur for
all i 1. Thus {0 = §ir(x, a) for some i, implying (7) on taking 0 \ d(x, a).

8. Now consider the second problem suggested in 1 by (1), that of finding p’ to
given p and r. This case is considerably more complicated; e.g., such processes p’
need not exist at all. To see this, observe that (1) implies that r o por™! is a pre-
process, and hence 7o por~! < p/. for the maximal process pL.. in P’ over R’
(cf. 1.3); however, arbitrarily given p and r may well violate this necessary con-
dition. On the other hand, in a reasonable situation related to that of item 6, one can
obtain positive results. First let us describe the situation in the general case.

For i el let p; be a process in P; over R;, and r; a relation between P’ x R’ and
P; x R,. Iff there exists a minimal process p’ in P’ over R’ with

riop;=p forall iel,
then p will be said to be directly generated by the p; and r;.
9. Proposition. For eachi el let r; = (r, r;) be a partial map P; x R, > P’ x R’
such that ri(x, o) is independent of x € P, one-to-one, and maps R; onto an interval

in R'. Then, for any processes p; in P; over R;, the upper modification of U(r; o
o pior; ') isthe process p' directly generated by the p; and r;.

Proof. From the assumptions on r;, each r; o p; o #; ! is a partializable pre-process
on P’ over R’; hence so is their set-union (cf. 1.5), and

Fiopior; ' < U(riopiory!) forall iel.

Now merely apply 1.7 to conclude the proof.

10. In the situation of 9, for the corresponding domains and parameter-domains
one has

D' =yr[D], B =Uri[B]

The description of some solutions of p’ follows from 1.10. To take at least one case
in greater detail, assume that all r} increase; also let s, be a solution of p; with
domain s, = [B, o] (for 1 < k < neC”, i,el) and assume that

FilsiBio Be) = T, (Skg1%s 15 %yq) for k<
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in particular this implies rjfi, = r}  o,.,, i.e. the proj, r;[s.] are contiguous
intervals. Then

n
s =Ury[s]
k=1

is a solution of p. (The modifications necessary to cover the case of s with non-closed
domain or with not all r; increasing are perhaps obvious.)

As concerns the relation between the escape times of p; and p’, from 1,3.6 it follows
that

¢(x, o) = sup {ri(ex, ) — 0) : (x", &) ri(x, @), i€} ;

in general little more can be asserted even if I is a singleton. At least, then, local
existence relative to p’ obtains at (x’, «") e D" if (x', a’) r; (x, 2) and local existence
relative to p; obtains at (x, ¢) for some i € 1.

11. In the diagram

P o—— g
u

let the processes p; and gq; be given, and also the morphisms u; and relations r; as
indicated. Assume that the r; satisfy the assumptions of 9, and the u; satisfy similar
assumptions. Let p” be directly generated by p; and r;, and ¢’ be directly generated
by ¢q; and r; o u;. Then u is an inclusion; thus ¢" = p’, and commutativity obtains in
the diagram. (This is, of course, a restricted case of the dual to item 4.)

Hence, by suitable choice of the u,’s, we obtain the following assertion: In the
situation of item 9 let r; = rj x 1; if all the p; admit period t or all are stationary,
then p has the same property.

12. The reader familiar with differential equation theory may share the present
author’s opinion that classical transformation theory is rather unsatisfactory in one
respect. To be sure, one cannot object e.g. to linear transformation theory for linear
equations; however, in the more general case over-strict assumptions are necessary
to obtain well-founded results by classical methods. Thus, it seems regrettable to be
forced to exclude transformations such as y = x? or ¢ = 6* in dx/d0 = f(x, 0),
even though perfectly good equations may well result by a formal procedure, and
regularity of the transformation may be quite immaterial for the problem considered.
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The treatment suggested by the results of this section is to interpret the given equa-
tion as a process p in the usual manner, to describe the transformation by a suitable
relation r, and then to construct the process (inversely or directly) generated by p
and r or r~ !, This may then be followed by a separate inquiry as to differentiability
of the so-obtained process.

13. (Suggestions for further results.) 1° Show that inverse generation as in 2can
be composed from the formation of g. . bounds and the inverse generation by a single
bi-process and relation.

2° Let the process p be inversely generated by p’ and r : (P, R, p) » (P, R, p').
Prove that the domain of p is the intersection of the following two subsets of P x R:

domain r — r™'[P" x R = D], UXcPxR:(r|X)o(r|X)"" =p}.

In particular, the second set may be omitted if ror~' < p’. (Hint: for the more
difficult inclusion consider the minimal process with given domain, 1.8).

3° Let r = (', ") be a one-to-one partial map P x R — P’ x R’ with #"(x, 2)
independent of x € P, one-to-one, and mapping R onto an interval of R". Show that
the process p, inversely generated by a bi-process p’ in P’ over R’ and the relation r,
coincides with the lower modification of the transitive pre-process o p'or.
Also give reasonable conditions on r for p to be directly generated by p’ and r~!.

4° Prove the following complements to proposition 6: If r; = r} x r7, and to any
x; € P there exists an x € P with x| r; x for all i € I, then (\r; ' o p} o r;is partializable,
and hence coincides with the process inversely generated by the p} and r;.

5° In the situation of (7) show that & = /™" o &} o r} if r} is one-to-one: more
generally, if J < I'is such that "\ (r; ' o r;) < 1, then § = inf r{ ™" 5 8}o rl.
ieJ ieJ
6° Formulate the necessary condition spoken of in item 8 in terms of p and r only.
7° Treat r-symmetry and additivity under inverse and direct generation (by
a single relation). ‘

8° Prove the existence of the process directly generated by a process p in P over R
and the collapsion of P to a singleton (multiplied by the identity map of R). De-
scribe its domain, and characterize local existence in terms of p.

3. CATEGORIAL CONSTRUCTIONS

1. In this section there are performed the elementary constructions of processes
from given ones: relativization, direct product, factorization, direct sum (for inverse
and direct limits see item 19). The unifying concept is that of process generation
as described in the preceding section.
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2. Let p be a process in P over R, and D’ an arbitrary subset of its domain D:
let i : D" = D be the inclusion map, interpreted as a relation between P x R and
P x R. Then the process p’ inversely generated by p and i will be termed the relati-
vization of p to D'.

Thus p’ is the maximal process in P x R with p’ = p and domain p’ < D'".
A direct description may be obtained from 2.6: p’ is the lower modification of the
transitive pre-process p ] D’ (this leads to a construction which is a special case of
1.13).

3. It follows immediately that p’ < p, that the domain of p’ is precisely D', that s
is a solution of p” iff it is a solution of p with s < D’, that

e(x, o) Se(x,a), &(x,2) = 5(x, %)

for (x, «) € D', etc. In particular each end-pair of p in D’ is also an end-pair of p’;
however p’ may have further end-pairs.

Preserving the notation, if pj is the relativization of a second process p; to Dj,
and r: p - p; a morphism in Proc with r[D'] = D/, then commutativity obtains
in the diagram

r
p — D
i I T i

N
p
r[D’ !

It follows that if p admits period t and D" is such that (x, 2) € D" implies (x, « 4 1) €
€ D, then p" also admits period . If p is stationary and D’ = P’ x R’ with P’ < P
and R’ a subgroup of R, then p' is also stationary. If p is additive and (x, @) € D',
(», ) e D’ imply (x — y, o) € D, then p’ is also additive. If p is r-symmetric and
r[D'] = D', then p’ is also r-symmetric.

4. For i =1 let p; be a process in P; over R. Then the process p in IIP; over R
inversely generated by the p; and proj; x 1 will be termed the direct product of the p;
(and occasionally may be denoted by ITp;, or as in p, % Pas etc.). For the moment it
will also be convenient to set

P =TIP;, r;=proj; x 1.

Thus p is the maximal process on P such that all the natural projections are
admissible relative to p — p; in Proc (cf. 2.2 with () domain r; = P). However, both
2.6 and 2.13.4° are also applicable. Hence p may also be described thus: denoting
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elements of P = IIP; by [x;], etc., one has
(1) [xi] «Pp [y:] iff X a(P,‘)‘; Vi forall iel.

5. The notation of 4 is to apply. From 2.3, a partial map s : R — P is a solution
of p iff all proj; o s are solutions of p;. From 2.7 one has that ([x,], o) € D iff (x;, o) €
€ D, for all i € I; hence, easily

C < IIC,, B=(B3,,

and in the special case that all p; are cartesian (i.e. D, = C; x B;) p is also cartesian
and D = (IIC)) x (NB,).
Now set x = [x;]; then directly from (1),
(2) . &(x, o) = infg,(x,;, o) ;
and from 2.7 (7),
(3) 3(x, @) = inf §,(x;, o) .
Hence local existence obtains at all (x;, o) if it obtains at (x, «), and global existence
obtains at all (x;, «) iff it does at (x, o); thus (x, &) is an end-pair if some (x,, a) is
such (but p may have other end-pairs than these). In (3) inequality may actually
occur, cf. 20.5°%; at least, then, global unicity obtains at (x, «) if it does at all (x, «).
According to 2.4, p admits period t or is stationary if all p; are such. Evidently, if

all p; are additive (in groups P;) and P is endowed with the so-called complete direct
product group-structure [4, V, § 17], then p is additive.

6. In the situation of item 4, several slightly stronger results may be had in the
case that the index set I is finite. Assume this. Then, of course, (2) above reduces to
¢ = min ¢, so that all end-pairs of p are as described in 5; explicitly, ([x;], «) is an
end- or start-pair iff some (x;, ) is such.

A less trivial consequence is that if I is finite then (3) may be replaced by

(4) 3(x, o) = miin di(x;, o)

(with x = [x,]). Indeed, assume the contrary; then §; < + o0, so that §; < ¢, for all
iel (cf. 1,1.17) and

min §,(x;, &) < ming(x;, o).
Now fix a j € I and choose 0 € R such that
Q) (4} 0) p; (xjo @), (v 0) p; (x). )
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for some u; + v;in P;, and that « < 0 < ming;and 0 < ¢ (this is the contradictory
assumption; note that if there were a« = mine¢;, then some §; = + oo by I,1.17,
contradicting an assumption). Since 0 < min g(x;, «), for all i & j in I, there exist
u;, v; in P; with (5) (and j replaced by i). Then [u;] # [v;] since u; * v;, and from (1)

[ui] 0P« [xi] s [Ui] 0Pa [xi] B
contradicting @ < §(x, «). This concludes the proof of (4).

Thus for finite index sets, local or global unicity obtains at ([x;], «) iff it obtains
at all (x,, a).

7. Let p be a process in P over R, and ~ an equivalence relation on P; denote
bye:P — P/~ the canonical surjection associated with ~ (i.e. ex is the equivalence
class modulo ~ of x € P). Then the process p’ in P/~ over R directly generated by p
and e x 1 will be termed the factor process of p modulo ~, and may be denoted by
p|/~.

/According to 2.9 and 1.6, p’ is the transitivization of the partializable pre-process
(e x 1) o po(e x 1)7*; the individual relations of p’ may then be described as (cf. 1.6
(1), observe that e™! o e = ~)

(6) Pp=€oN{6,Po,0~ 0gPoy 0~ 0.co~og Dp
a=0,2=2..20,=p neCloe!

8. According to 2.10 (primes refer to concepts associated with p’),
D' = (e x 1)[D], B =B;

obviously even the interval-components of p coincide with those of p’, and C’ =

= ¢[C].

If 5, are solutions of p with domain s, = [0, 0,] for 1 < k < ne C', and with

S0 ~ 810, for 1 <k<n,

n
then ) eos, is a solution of p’ (there are obvious modifications for non-closed
k=1
domains).
If p admits period T or is stationary, then p’ has the corresponding property;
however, p’ may well be stationary without p being such. For the escape times one has

&'(x’, «) = sup {e(x, «) 1 x" = ex} ;

in general little more can be asserted concerning ¢’ (and nothing concerning §').
Items 9 to 12 concern some special situations in which, loosely speaking, unicity is
preserved under factorization.
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9. Thus, let p be a process in P over R, and ~ an equivalence relation on P. There
will be presented two of several possible variants of a compatibility relation between
p and ~. First, p will be termed compatible with ~ (and vice versa) iff

(7) ap/!ONO(apﬂ)_lCN’ aPao ™~ © ~ o4Py

for all « = Bin R; and p will be termed strictly compatible with ~ (and vice versa)
iff
(8) aPpo~ S~ o,Py

for all « = Bin R (to prevent misunderstanding, in general there are no implications
between these two concepts).

Also let g be the bi-process associated with p, and p’ the orientation-changed
process (cf. 1,3.12). Iff p is compatible with ~, then we will also say that p and q are
positively compatible with ~, and p’ negatively compatible with ~. Iff p is both
positively and negatively compatible with ~, then the bi-process g will be termed
compatible with ~, and p, g, p’ bilaterally compatible with ~ ; obviously this obtains
iff (6) holds for unrestricted o, 8 in R. Similarly for strict compatibility.

10. For processes with global unicity, strict compatibility implies compatibility.
Indeed, ,py o (,ps) "' = 1 and (8) for all « = B in R yield

Ppo~o(abp) ™t ~ouppolapp) ! =~

For processes with global existence, compatibility implies strict compatibility. Indeed,
global existence for p implies (,p;) ™" o ,p; > Py, Whereupon (7) yields

~ oulp 2 (Ppo~ o(alp) ") cubp @ aPpo ~ o pPp 2
DapﬂoﬂpﬁON =<zpﬂ°~

Thus if p has global existence and global unicity (i.e. if p defines a global semi-flow,
1,4.18.3°), then compatibility and strict compatibility are equivalent.

Some further properties are exhibited in the following items.

11. Let p be a process in P over R and ~ an equivalence relation on P. If p is
compatible or strictly compatible with ~, then the domain D is invariant under ~ in
the sense that (x, 2)e D, x ~ y imply (y, a) € D. Indeed, in either case there is
aDeo ~ = ~ o 4P, for o € R, so that

XaPaX, X~y imply x .~y 5y
for some y’, and hence (y, @) e D.
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In the case that p is strictly compatible with ~, the individual relations of the cor-
responding factor process p’ are simply (cf. 7)

9) aPp=CogPyoe

The factor process p’ may then be described rather concisely: there is x" ,pj y" for
x',y"in P[~ and « = B in R iff there exist x e x" and y € y’ with x ,p, y. (Another
formulation is that the partializable pre-process (e x 1)o po(e x 1)7" is transitive
and hence coincides with p’.) The following are two results on unicity under facto-
rization.

12. Lemma. Let p’ be the factor process of a process p modulo an equivalence
relation ~. Then

1° p' has unicity iff ~ is compatible with p,
2° If ~ is strictly compatible with p, then, for all (x, «) € D,

(ex, a) = e(x, o), &'(ex, o) = 5(x, ).

Proof. First recall that ece™! = 1,e” ! c e = ~. If ~ is compatible with p, then

(7) judiciously applied in (6) yields ,pj o (,p5) " < 1 as asserted. Conversely, if a map
r:P — P’ is admissible relative to p — p’ in Proc (e.g. r = e), then it is easily
verified that the equivalence relation ~ with x ~ y iff rx = ry is strictly compatible
with p. This proves 1°.

In the second assertion, the part concerning the escape times follows quite obviously
from (9); as for the extents of unicity, assume the contrary. Then there exist x ~ y
and u ~ vin P, 0 = ain R such that

(10) UgDPy X5 VoPy) > 0<5(X,O();

but then (8) yields v ~ w, wyp, x for some w, and necessarily w = u (from (10),
using the definition of §). But this contradicts u ~ v ~ w.

13. Let {P;| i eI} be a disjoint system of sets, and for i € I let p, be a process in P;
over R. Denote the disjoint sum of the P; by £P;, and the natural injection P; — ZP;
by inj; (since the P;’s are disjoint, we may even assume =P; = JP;, inj; : P; = UP)).
Then the process p in LP; over R directly generated by the p; and inj; x 1 will be
termed the direct sum of the p;, and may be denoted by Ep,, etc.

In the slightly more general situation when disjointness is not required one may
put P{ = P; x (i), and define p} as the direct product of p; with the maximal process
on the singleton (i); thus one reverts to a situation as above. However, for the sake
of simplicity, the original assumption on disjointness will be preserved.

The properties of the direct sum are particularly simple, and follow from the
obvious relations

p=Vpi=Upi, piAp=pnp;=0 for i+j in I.
iel iel
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Hence (also see 1.9 to 1.11)
D =yD;,, C=UC;, B=UB,.

The solution system of p is directly the set-union of those of the p;;
e(x, o) = gfx, @), O(x, ) = &(x, o)

for x € P;. The process p admits period 7 or is stationary iff all the p; are such.

14. The reader with a weakness for formally balanced exposition may have noticed
that the four elementary constructions, as presented above, do not attain the same
level of generality. Thus, even informally, the (category-theoretic) dual of the factoriza-
tion procedure of item 7 is not the relativization described in 2, but rather relativiza-
tion only to those subsets of P X R which have the special form D" = P’ x R with
P' < P. (On the other hand, the formation of direct products and sums does seem
satisfactorily general, see 20.7°—8°.)

This indicates that processes on P over R should be factorised modulo an equi-
valence on P x R rather than on P only. However, the set of the resulting equivalence
classes should have a canonic cartesian product structure. Thus the first task is to
select a suitable type of equivalence relations; and since in any case we shall have to
employ direct generation of processes, one may be guided by the maps treated in 2.9.
This will be sketched in the following item.

15. An equivalence relation ~ on P x R may be termed time-dependent iff

(11) (x, %) ~ (y,B) implies a=f;

iff, furthermore, (x, «) ~ (y, «) implies (x, 8) ~ (y, 0) for all 0 € R, then ~ may be
termed stationary. This latter case occurs iff ~ is of the form ~ = ~ x 1 with ~an
equivalence relation on P (i.e. the case considered in item 7). Obviously (11) implies
that ~ determines (and is determined by) an otherwise arbitrary system {~, |« € R}
of equivalence relations ~, on P.

Now let e : P x R - (P x R)[~ be the canonic surjection; according to (11), e is
of the form e = (¢/, 1) (and e = ¢’ x | for stationary ~). To introduce a cartesian
product structure for the image-set (P x R)/~, it may be considered as a subset of
(exp P) x R; it suffices to identify e(x, o) with (x’, «), where

x'={yeP:(y,a)~(x,a)}cexp P

(exp P denotes the set of all subsets of P).
Finally, let there also be given a process p in P over R; then the process p’ in exp P
over R directly generated by p and

e:P x R— (P xR)[~c(expP) x R
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may again be termesd the factor process of p modulo ~. For time-independent
~ = =~ x 1, p’ may also be considered as a process in P/~ < exp P over R; since
the corresponding solution-space lies within (P/~) x R, this cannot lead to am-
biguities.

The compatibility relations are easily extended to time-dependent equivalence
relations: po ~ « ~ o p for strict compatibility, and

poNOP—lCN, N[D]CD

for compatibility. (A natural example of time-dependent equivalences appears in
18.13°.)

16. (Suggested further results on the relativization of processes.)

1° Exhibit an example showing that in the situation of item 2, p [ D’ need not be
partializable. Formulate partializability of p [ D’ in terms of time-convexity (cf.
1.4.10).

2° Show that the relativized process may possess end-pairs other than those
originally present in its domain. (Suggestion: relativize the differential process in R!
associated with dx/df = 1 to some closed interval.)

3° Let p be a process in P over R with local existence, and D’ = P x R. Describe
a necessary and sufficient condition on D’ (and p) for the corresponding relativized
process to have local existence.

4° Assume that a process p defines a local semi-dynamical system in P over R, let
P’ = P be given, and let p’ be the relativization of p to P’ X R. Using the preceding
subitem, obtain necessary and sufficient conditions for p’ to define a local semi-
dynamical system.

5° For k=1, 2, 3 let p, be a process in P over Rsuch that p, isarelativization of p,
and p; < p,. Show that p; is a relativization of p, iff it is a relativization of p,; in
particular, then, the relativization procedure is compositive.

€° Let p be a process in P over R, and J the system of its interval components;
foreachieJset p; = p | (P x i). Show that each p; is a process (directly or using
1.18.4°), and that

r=Vp: = Up:, piApi=p;np;=0 for i+j in J.

Prove that each p; is extensive (i.e. has a unique interval-component, cf. I,1.8), and
that, for any extensive process q < p, there is ¢ = p; for some i € J. The system
{p; ] ield } may be termed the canonic resolution of p into extensive processes.

7° Show that additivity (and also r-symmetry) carry over from a process to all
members of its canonic resolution, and conversely.
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8° Let p be a process with unicity in P over R, D’ < D, and p’ the relativization
of p to D’. Show that the escape times ¢’ of p’ satisfy

g(x,0) =sup{A:4 =0 and u4p, x imply (u, 0)e D’} ;

obtain hence a direct description of p’.

9° Let p be the process defined by the Carathéodory solutions of a differential
equation in a normed linear space P, determined by a partial map f: P x Rt - P
as in 1,2.11.4°, let D’ = domain f and let p’ be the process associated similarly with
f| D’. Show that p’ is the relativization of p to D'

17. (Suggested further results on direct products and sums of processes.)

1° Obtain an example of processes p, p’ with p+ O + p’ but px p’ = O.
(Hint: utilize B = B, in item 5.)

2° Show that each component J of p, x p, has the form J = J, n J, for
appropriate interval-components J; of p;; also extend to finitely many factors. (Hint:
use the proof of (4).)

3° In the situation of item 4 show that d(x, a) > inf §,(x;, «) is possible only if,
simultaneously, inf g,(x;, «) = inf §,(x;, «), 8(x, @) = + oo, I isinfinite. (Hint: inf ¢, >
> inf §; < J implies existence of a § with 6; < 0 < ¢;, @ < §, and one can show that
this leads to a contradiction; then prove that 6 < + o0 or I finite imply infe; >
> inf §;.)

4° Show that, nevertheless, 6(x, o) > inf d,(x;, «) is indeed possible. (Hint: choose
p: and (x;, o) so that o < §(x;, &) < &/x;, «) = a for i > c0; then x = [x;] has
&(x, @) = o = inf §,(x;, @), hence it is an end-pair, whereupon §(x, &) = + 00.)

5° Let p = Ilp; for stationary processes p; with local existence. Prove that p has
local existence iff all the p;, with only finitely many exceptions, have global existence.
(Hint: one part follows from (2) in 5; for the other choose suitable x; e P; with
&{x;, 0) > 0.) (This was first obtained for local dynamical systems in [3], I11,3.2.)

Let R < R! be fixed, and consider the following category Procy: its objects are
processes over R, and its morphisms r: p — p’ in Procy are those set-theoretical
partial maps r : carrier p — carrier p’ which have

(rx Dopo(rx1)"teyp,

i.e. are admissible relative to p — p’ in Proc. (Hence Procy is a non-full subcategory
of Proc.)

6° Prove that direct sums in the category Procg coincide (up to isomorphism, of
course) with the direct products of processes as defined in item 4. (Hint: Essentially,
only two further facts need be established: that if p = ITp,, then the natural projec-
tions proj; partialize on carrier p to morphisms in Procy; and that if also r; : p’ — p;
in Procg, then [r; x] e carrier p for each x e carrier p'.)

394



7° Prove that free sums in Procg coincide (up to isomorphism) with the direct
sums as defined in item 13. Also show that the canonic resolution into extensive
processes (cf. 16.6°) describes a free sum in Proc, but usually not in Procg.

8° Characterize direct and free sums in the full subcategory of Procy consisting
of the full processes. (Hint: relativize direct products so as to obtain a full process.)

9° Describe the behaviour of processes which define local or global (semi-) flows or
(semi-) dynamical systems under formation of direct products and sums. (Hint: for
the stationary situation 6° yields necessary and sufficient conditions.)

10° Describe direct products and sums of differentiable processes.

18. (Suggested further results on compatibility of equivalence relations and factori-
zation of processes.)

1° Let p be a stationary process on P over R with global existence and global

unicity; show that U (,P0) ™" o 4P is an equivalence relation on P strictly compatible
az0

with p. Describe the corresponding factor-process in the category Procg.
2° Obtain necessary and sufficient conditions on p and ~ for (8) to hold.

3° Verify that a process p in P is compatible with the identity on P iff p has global
unicity. (Suggestion: direct verification, but a satisfactory indirect proof utilizes 12.1°.)

4° Obtain an example showing that compatibility and strict compatibility need not
be preserved under orientation-change of the process concerned. Then define the
appropriate bilateral versions of (strict) compatibility, and apply to bi-processes.

5° Collect results to prove the following assertions: The property of processes of
defining (in the sense of I,4.18) a local or global semi-flow or semi-dynamical system
is preserved under factorization modulo a compatible equivalence relation; similarly
for flows of dynamical systems, modulo bilaterally compatible equivalence relations.

6° For processes p in P over R admitting a period, the stationarization procedure
of 1,4 may be modified to obtain a considerably simpler phase-space. Let g be the
stationarization of p as in I,4.11, so that g is a stationary process on P x R over the
subgroup R’ generated by R in R!; also assume, for simplicity, that the period
admitted by p is precisely 2z. Now define an equivalence relation ~ on P x R by
letting (x, &) ~ (v, ) iff x = y and & = n(mod 27). Then the factor process g/~
may be termed the cylindrical stationarization of p. Describe g/~ and its carrier
directly, using the 1-sphere S' = {¢’: ¢ e R} as a representation of R (mod 2r).

7° In the preceding situation show that ~ is strictly compatible with ¢; that it is
compatible iff p has global unicity; and that (x, e”) is a t-periodic pair (cf. 1,4.3) iff
X z4.Pe x and © = 2kn for some k e C'.

8° Let r : P — P be a symmetry of P (i.e. r o r = 1, cf. 1,4.15). Show that the rela-
tion ~ on P defined by letting x = y iff either x = y or x = ry is an equivalence
relation on P; and that ~ is strictly compatible with each r-symmetric process.
Describe the corresponding factor process and its carrier.
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9° For a time-dependent equivalence relation ~ on P x R define ~, for « € R
as in item 15: x ~, y iff (x, &) ~ (y, a). Describe (strict) compatibility between ~
and a process p in P over R in terms of the ~, and ,pj.

10° Obtain results similar to those in 5° for time-dependent equivalence relations.

11° Consider a functional-differential equation

dx
12 — = f(xq| J, 0
(12) 5~ l2.0)
with J = (—o0, 0] and partial f : C(— o0, 0] x R" > R' (x, is the O-translate of x
as in 1,1.22); and assume that f depends on a bounded time-lag only, in the sense
that for some interval I = [—t, 0] = J,

(13) x|I=y|I implies f(x,0)=f(y,0) forall 6.

Secondly, consider the process p in C(—o0, 0] over R', associated with (12) as in
1,2.11.8°; and also the equivalence relation ~ on C(—oo, O] defined by

(14) x ~y iff x|I=le.

Prove that ~ is strictly compatible with p, and that it is compatible iff p has unicity
(i-e. (12) has positive unicity in the customary sense); also describe the corresponding
factor process and its carrier.

12° Describe the modification of 11° appropriate to a difference-differential equa-

tion

j_;‘ — £(x0, x(0 — <), 0)

with given time-lag 7, 0 < 7 e R'. (Replace (14) by x ~ y iff x0 = y0 and x(—7) =
= ¥(=7)) .

13° In (12) allow time-dependent lag bounds, in the sense that (13) is to be replaced
by

(15) x|[-10,0] = y |[—70,0] implies f(x,0) = f(»,0)

foreach 0 e R', where 7 : R' - [0, + o0) is a given map. Then define a time-dependent
equivalence relation ~ on C(—o0,0] x R' by letting (x,0) ~ (y, 0) iff x, y,0
satisfy the premiss of (15). Prove that ~ is strictly compatible with the corresponding
process p if

(16) ’“‘;ﬁgl forall a4 f in R,
o
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and in the positive case that ~ is compatible with p iff p has unicity. Describe directly
the solution-space and carrier of the factor process, and also in the case that (16) is
not satisfied. (Hint: if (16) is not assumed, also consider t*0 = 0 — inf (A — 74).)
14° Paralleling 12°, modify 13° to apply to a difference-differential equation
dx[d0 = f(x0, x(0 — 10), 0) with given time-dependent lag 7 : R' - [0, + c0).
15° Prove that solution-completeness carries over from a process to its factorization
modulo a time-dependent equivalence relation.

19. This item concerns the construction of direct and inverse limits of processes.
To fix terminology and notation, the corresponding construction for abstract sets
will first be recalled.

Let I be a partially ordered (index-) set; and consider a system {r}|i = j in I} of
maps with the property that

(17) riorf=ri for izjzk in I

and that each r} is an identity map. For convenience set P; = domain r}, so that (17)
yields ri: P; — P,

Form, first, the set T1P;; its subset P_, defined as consisting of all [x;] e ITP,
with x; = rix; whenever i = jin I; and then maps ', : P_, — P, for i €I, defined
as the composition of the maps in the diagram

P_, c TP, p,.

@
Then obviously rjorl, = rl . The set P_, together with the system {r’,, |iel}
is called the inverse limit of the rl’: (or of the P; relative to the r;), and occasionally
one writes
P_, =liminvP,, ri_ =Iliminv r}.
Jjo -

(There is an appropriate and obvious extremal property of {r"_oo | i eI} in the
category of all sets and mappings.)

For the second construction assume that I is directed (upward directed, i.e. to any
i, jin I there is a common “roof” keI withi < k = j), and, for convenience, that the
P/s are disjoint. Now form the set XP;, and also

P+oo = (ZPI)/N >
with ~ the following equivalence relation: x; ~ x; with x; e P;and x; e P;iff rix; =

= r’}xj for some k = i,j in I; and finally — maps r® : P; » P, for some i eI,
defined as the composition of the maps in the diagram

P."CEP:‘“L—)(EP;)/” =P,y
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with e the natural surjection. Then obviously r;* o rj. = rj*°°. The set P, ,, together
with the system {r;"® | i €I} is called the inductive or direct limit of the (P, relative
to the) r}, and occasionally one writes

P, = limdir P;, rj” = limdirr.
i+

(There is an appropriate and obvious extremal property of {r;® | i € I} in the category
of all sets and mappings.)

1° In the situation described above assume that each r} is admissible in Proc
relative to p; — p;, where p; is a process in P; over R. Define the inverse limit p_
of the p; relative to r} as the relativization of ITp; (in IIP; over R) to P_, x R.
Show that each r’  is admissible relativeto p_, — p; in Proc. Describe p_,, directly.

2° With the preceding notation, show that

(18) e_op([x:], @) < infefx;, o) = limsup e(x;, ),

i»—o

interpreting lim sup as inf sup. Also prove that if all p; have global unicity then so
i+ —oo i js<i

does p_, and equality obtains in (18). (Hint: in TIP;, x € P_, and (x, 0) ITp; (x, %)
imply x' € P_,,.)

3° In 1° define the direct limit p, ,, of the p; relative to r} as the factor process
of Zpi (in YP; over R) modulo the equivalence relation ~ described in item 19.
Show that each r;*® is admissible relative to p; = p;, in Proc. Describe p,
directly.

4° Verify that ~ is compatible with Zl’x if all p; have global unicity, whereupon
P+, also has global unicity.

5° Let p be a process in P over R; denote the set of the positive periods which p
admits by I; for Ael let g, be the cylindrical stationarization of p corresponding
to A, cf. 18.6°; finally define a partial order in I by letting 2 < p iff /Z/,u is an integer.
Describe the direct and inverse limits of the g, relative to the appropriately defined
maps 4.
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