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ABELIAN GROUPS WITH IDENTICAL RELATIONS

WILFRIED IMRICH, Wien

(Received May 20, 1966)

Recently there have appeared some papers about the definition of groups by one
postulate. Most authors show that classes of groups or the class of all groups can be
defined by imposing one postulate on group division (For convenience group division
will be denoted by a dot or juxtaposition). The principal aim of this paper is a genera-
lization of results by J. MorGADO [ 1], HIGMAN and NEUMANN [2] and SHOLANDER |[3].

Suppose the groupoid (G, .), consisting of a nonempty set G = {a, b, c...}
and a binary operation . defined everywhere in G, satisfies the identity b = a(cb . ca).
Further let the unary operation ’ (inversion) be defined by a’ = aa . aand seta o b =
= ab’. Then, as Higman and Neumann have shown, the ordered triple <G, o, ') is
an abelian group.Conversely, if (G, o,’> is an abelian group and . is defined by
a.b = a. b theidentity b = a(cbh . ca) is satisfied in <G, .).

We remark that the correspondence between {G, o,’> and <G, . is one-to-one
if {G, o, ") is a group, as can be easily seen from the following equations:

aob=albb.b)=ao((bob)od) =aobh

’

a = aa.a = (ao.d)od =ada

This permits us to formulate the following theorem:

Theorem 1. The ordered triple {G, o, " is an abelian group if and only if one of
the following equivalent conditions is satisfied in {G, .):

MA: ab.c=ad.e implies b=d.ce
HA: = a(ch . ca)
SA: b = a(ac. bc)

Condition MA is from J. Morgado [1], HA, as mentioned before, from G. Higman
and B. H. Neumann [2] and SA from Sholander [3].

The class of all abelian groups is the class of all groups satisfying the identity
a'ob'oaob =1 where I is the unit element. Now suppose W(x,, X, ..., x,,) is
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a word in the group <G, o, "> and consider the class of all groups satisfying the rela-
tion W = I. Further let W'(yy, ..., y,) be another such word. Then the class of all
groups satisfying both W= I and W’ = I is the class of all groups satisfying

(1) W(xy, X2, o0 X)) o W(pps oo o) =1,

for if we set y; = y, = ... = y, = I in (1) we get W(xy, ..., x,,) ="I. Similarly one
deduces W’ = I from (1). Analogously the class of all groups satisfying any finite set
of identical relations is identical with the class of all groups satisfying a single
appropriately chosen relation.

If Wis a word in the group {G, o, ") we can transform W into a word w in {G, .)
by making use of the relations a o b = a(bb . b) and a’ = aa . a. In addition to it we
can always retransform w into W by virtue of ab = a - b’ and the group properties
of (G, o, .

Theorem 2. Let w(x;, ..., X,,) be a word in the groupoid {G, .>. Then {G,o,") is
an abelian group satisfying the identical relation corresponding to w = I if and
only if one of the following equivalent conditions is satisfied in {G, .):

Al: ab.c=ad.e implies b= dw.ce
A2: b =aw.(cb.ca)
A3: = aw . (ac . bc)

Proof. It is easily seen that A1, A2 and A3 are satisfied if {G, -, "> is an abelian
group satisfying the identical relation corresponding to w = I. To show the converse
it suffices by Theorem 1 to show that Al implies MA, A2 implies HA, A3 implies SA
and that A1, A2 and A3 each imply w = I.

1. Al implies MA. Since ab . c = ab . c we have by Al

) b=bw.cc forall b,ceG.

Now suppose ab = ac. Then ab.d = ac . d and this implies by Al b = cw . dd,
which gives by (1) b = c. So we have the left cancellation.

From bw.cc = bw. dd, which holds by (1) for any ¢, d € G, it follows by left
cancellation that cc = dd. Thus, cc does not depend on ¢ and we set cc = i. Now
clearly, by (1), w = ww. cc = ii = i. Thus

) b= bi.i
By the foregoing ai . ai = aa . i, which implies by Al i = aw.(ai.i). By (2) it
follows i = aw . a. However, also i = aw . aw, so that by left cancellation a = aw,

and this means A1l implies MA. Therefore <G, -, "> is a group and w = i = cc =
=coc =1
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2. A2 implies HA. Let R(a) be a mapping of G into G defined by x R(a) = xa
(R(a) applied to x gives xa), let L(a) be defined by x L(a) = ax and let J denote the
identity mapping. Then A2 can be written in the form:

(3) L(c) R(ca) L(aw) = J .

Now we make use of the fact that if S and T are two single-valued mappings of G
with ST = P, where P is a permutation of G, then Tis onto G and S is one-to-one.
Thus L(aw) is onto G and L(c) is one-to-one. Since ¢ can be any element of G the
application L{aw) is one-to-one. Now L(aw) is a one-to-one mapping of G onto G,
that is a permutation, and has an inverse. Hence (3) becomes:

(4) L(c) R(ca) = L(aw)™*
and R(ca) is onto G. Because the right side of (4) is independent of ¢ we have
(5) L(c) R(ca) = L(b) R(ba),

or, by applying both sides to a, ca . ca = ba . ba for all a, b, c. By substituting ca
for a this gives (¢ . ca)(c.ca) = (b.ca) (b . ca). Now let a and c¢ be fixed elements
of G. Then the right side of this equation is also a fixed element of G, say i. Since
R(ca) is onto G there is a b for any d such that b . ca = d. Thus we have

(6) i=dd forany d.

By A2 w = ww.(ww.ww), which gives by (6) w = i. This, A2 and (6) yield
i = ai.(i.ia). On the other hand, L(aw) = L(ai) is a permutation and i = ai . ai.
Thus,
7 ai = i.ia

By applying both sides of (5) to i we get ci.ca = bi. ba, which implies ci.i =
= i. ic, wherefrom it follows by (7),
(8) ai = ai.i

Now, since R(ca) is onto G and i = ii, the application R(i) is onto G, too. Therefore
every element b of G can be represented in the form ai. So we have by (8) b = bi.
Hence A2 implies HA and {G, o, ') is a group withw =i =cc=coc’ = L.

3. A3 implies SA. With the same definitions as before we can write A3 in the form

R(c) L(ac) L(aw) = J .

It follows that R(c) is one-to-one and that L(aw) is an application onto G. That is, to
every d there is a ¢ with d = qw . ¢. Substituting aw for a and b in A3 we have

©) aw = (aw.w).dd
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For d = w and by left multiplication with aw . w we get (aw . w) . aw = (aw . w).
. (aw . w) (ww). By A3 the right side of this equation is w, so we have

(10) (aw.w).aw =w.

By another left multiplication with aw.w we have (aw.w).(aw.w)(aw) =
= (aw . w) w; hence, by application of A3 again, it follows for every a,
(11) a=(aw.w)w.

By setting a = d = w in (9) we get ww = (ww . w).ww. On the other hand, it
follows from (10), (ww . w) . ww = w. Thus w = ww. For d = w in (9) we have again
aw = (aw . w) w, but the right side is a by (11). Hence aw = a and A3 implies SA.
Thus, (G, o, ") is an abelian group and from a o w' = aw = a it follows that w = I,
because the unit element is unique.

For non-abelian groups the following theorem holds:

Theorem 3. Let w(xy, ..., X,,) be a word in the groupoid G, .). Then {G,.,">
is a group satisfying the identical relation corresponding to w = I if and only if
one of the following equivalent conditions is satisfied in {G, .):

H: a.((aa.w)b.c)((aa.a)c)=0>b
BI: ab.c=ad.e implies ¢ = ew.bd

Condition H is from Higman and Neumann [2], BI from G. BARON and the author
[7]. The proof of Theorem 3 under condition BI can easily be led in such a way to
prove also:

Theorem 4. The ordered triple {G, o,”> is a group if and only if the following
condition is satisfied in {G, .>:

I: ’ ab.c=ad.e implies c¢c=-e.bd

Condition I looks very much like MA for abelian groups and is simpler than the
equivalent condition
BM: a(bb . b).(cc.c) = a(dd.d).(ee.e) implies b =d.ce,
which has been found independently by G. Baron [4] and J. Morgado [5]. The
above- mentioned close relationship between axioms for abelian and non-abelian

groups (conditions I and MA) has an analogoue. SLATER has shown [6] that the
ordered triple G, o, "> is a group if and only if the following condition is fulfilled:

S: (aob)oc=(aod)oe implies b=do(eoc’)
By the same method it can be shown that {G, o, ") is an abelian group if and only if

SA: (aob)oc=(aod)oe implies ¢ =eo(dob’).

538



Reference

[1] José Morgado: Defini¢do de quasigrupo subtractivo per um unico axioma, Gazeta de Mate-
matica, 92— 93 (1963) 17—18.

[2] Graham Higman and B. H. Neumann: Groups as groupoids with one law, Publ. Math.
Debrecen, 2 (1952) 215—221.

[3]1 Marlow Sholander: Postulates for commutative groups, The American Math. Monthly, 66
(1959) 93—95.

[4] Gerd Baron: Eine Bemerkung zur Gruppenaxiomatik, Monatshefte fir Mathematik, 69
(1965) 289—293.

[5] José Morgado: A single axiom for groups, The American Math. Monthly, 72 (1965) 981—982.

[6] Michael Slater: A single postulate for groups, The American Math. Monthly, 68 (1961)
346—347.

[7] G. Baron and W. Imrich: Charakterisierung von Gruppenklassen mit Hilfe der inversen
Operation, Monatshefte fiir Mathematik, 70 (1966) 289—298.

Author’s address: Karlsplatz 13, 1040 Vienna, Austria (3. Institut fir Mathematik, Technische
Hochschule).

539



		webmaster@dml.cz
	2020-07-02T20:45:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




