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1. Introduction. The well known theorem of LINDELGF reads (cf. [2], p. 49): there
is a countable subcover of each open cover (a subset) of a separable space, i.e. of
a space whose topology has a countable base. A. LELEK raised the question whether
metric separable spaces possess a stronger property: is there a countable subcover
of each open base consisting of sets of diameters tending to 0? JAN MYCIELSKI has
pointed out that the answer is “no” (cf. (4.5) below) and the present paper contains
some results originated while discussing the Lelek’s question.

Notions and notations not defined here come from [2] and [3].

2. Preliminaries. Throughout the paper all spaces are assumed to be metric (not
necessarily separable) unless the contrary is explicitly stated. By a zero sequence of
a metric space X of diameter 6(X) > 0 we shall mean any sequence {4,},- 5, of
its subsets such that 6(4,) < 6(X) for n = 1,2,... and lim §(4,) = 0. For the sake

n—-o
of elegance it seemed natural to us to suppose also that a metric space consisting of
one point only contains a zero sequence, too. The effects of this last supposition can
be seen here and there (for instance, under this supposition Lelek’s “‘strong Lindelof
property” is now completely equivalent to our Property III) but, as a rule, we shall
not attract attention to it later on.

In what follows we shall be interested mainly in zero sequences consisting of open
sets only. A zero sequence of open sets which is simultaneously a cover (resp., a base)
will be called shortly a zero cover (resp., a zero base).

The paper is devoted to the first two of the following three (the third will be
treated more completely by Lelek in [4] and [5]), more and more stronger properties
possessed by some metric') spaces:

1y Because a uniform structure in the sense of N. BOURBAKI [1] is similar to a metric structure
of a topological space in that it allows to compare the size of any two subsets of the space, we
could extend the definition of a zero sequence in a metric space to such a sequence in a uniform
space and, consequently, to define Properties T—1II for uniform spaces. However, this is not the
case we are interested in.
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I. There exists a zero cover.
II. There exists a zero base.

III. Each base contains a zero base.

Clearly, III = 1I and II = 1. However, the converse implications are not true.
Actually, in the space 4" of irrational numbers of the segment [0, 1], which obviously
has Property II, Lelek has defined in [4] a base which contains no zero base. Thus A~
does not possess Property III, which shows that II -+ III. Furthermore, any metric
space which possesses Property II is necessarily separable. However, there exists
a metric space enjoying Property I which is not separable (e.g., the space Z defined
in IV of § 3 below). Hence I - II either. (In fact, it is not difficult to construct, follow-
ing the idea of constructing Z, also a metric separable space which enjoys Property I
but not Property II.)

Note also that, in view of our additional supposition, a one point metric space
satisfies all three Properties I—1III.

As Jan Mycielski has pointed out, a 0-dimensional Baire space, which is known
to be homeomorphic to A~ ([6], p. 177), does not possess Property I and thus does
not possess Property II either. This means that Properties I and II are of metric
but not of topological character. However, the similar question concerning the
character of Property III remains open.

3. Some examples. Now we shall describe some examples and prove some of their
properties related to our basic Properties I—III.

I. The space A", It is the space of irrational numbers of the segment [0, 1] with
the ordinary metric

o(x,y) = |x — y| forall x,ye .
The space 4" has Property II and has not Property III. In fact, if %k is a finite
open cover of " consisting of sets with diameters equal to 1/2%, then U B, is a zero

base. On the other hand, however, Lelek has defined in [4] a base /3 for N Wthh
contains no zero subbase.

II. 0-dimensional Baire space 4 is the set of all sequences of positive integers,
where the distance o({a;}, {b;}) between two distinct sequences {a,} and {b;} is the
inverse 1/k of the least index k for which a, + by ([6], p. 175).

As is well known, the metric space 4 is separable and complete.

It is also known that & is homeomorphic to A~ ([6]; p. 177). However, we shall
proceed to show (see (4.5)) that %, in contrast with .4, has not Property I and so
has not Property II either.

The space # together with some its subspaces forms a basic set of examples and
counter-examples to many questions related to Properties I—III. One of its surprising
features which seems to be largely responsible for it, is that each totally bounded
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subset of Z is nowhere dense in 4. In fact, we shall prove this in a slightly more
complicated case of its subspace #, but the proof with obvious simplifications
works to the same effect in 4 itself.

III. The subspace #, of 4. It is homeomorph of #: to any sequence {a,} of
positive integers we assign a “‘rarefied” sequence
. - )
rlag, as, ..} ={ay, ...agas, ..y as, ..}
in which each a, is repeated a,-times. %, is the subspace of # consisting of all
“‘rarefied” sequences.

We shall prove now some propertics of 4.

(3.1) Each totally bounded subset of &, is nowhere dense in %,,.

Proof. First of all observe that if A is a totally bounded subset of #, and
r{ay, a,, ...} is any point of A, then for each k there are infinitely many points
r{aq, ayy ..y x5 X5 ..} Of B, which do not belong to the closure 4 of A. In fact,
the distance between any two of these points is equal to 1/n, where n is an index of x,
in the “‘rarefied” sequence r{al,az, ey Q15 Xp» }, and a totally bounded set
(closure of a totally bounded set is totally bounded too) cannot contain infinitely
many points such that the distance between any two of them is larger than some
positive number.

To conclude the proof of (3.1) it suffices now to observe that for each point a € 4
and for a positive integer m there exists a point b € %, — A such that ¢(a, b) < 1/m,
and this is quite obvious in view of the above.

It is a matter of a simple exercise to check that %, is a closed subset of %. Hence
and from the completeness of # we infer that %, is a complete space too ([3], 1,
p. 315). Consequently, by virtue of the Baire category theorem ([3], I, p. 321),

(3:2) &, is not a union of countably many totally bounded sets.
One more property of %, will be of importance to us:

(3.3) For each n > 0 there exists a zero cover {A,} of %, such that 6(A,) <n
forn=1,2 .. .

Proof. Let C, be the set of those “rarefied” sequences of positive integers (i.e., of
those points of %,) the first number of which is k. Obviously, each C, is open (even
closed-open) in %, and of diameter §(C,) = 1/(k + 1). If n, is a positive integer

such that l/no < 1, then the sets C,p4m m = 1,2, ..., form a zero cover of |J C,
consisting of sets with diameters less than 5. It remains then to construct such l:;oero
cover for the setnoo le, but since it is a finite union of open sets, it suffices to do it for
each C,, k = 1,k:f.., no — 1, separately.

68



For that purpose observe that there are only countably many sequences of positive
integers consisting of n, elements and so, for a given k, there are only countably
many ‘‘rarefied” sequences of natural numbers consisting of n, elements, the first of
which is k. If

a={ay,..,ay,..,a;,...,a;}

is such a sequence (i.e. a; = k and each a; is repeated a;-times with the possible
-1

exception of a, which is repeated n, — Y. a; times), then the set C* of all “‘rarefied”
j=1

sequences of positive integers which have a as initial segment is open and of diameter
less than #,

1
1 6(C?) = <n.
M () l+a,+...+a

And since each positive integer N = n, can be decomposed into the sum
®) N=a;+a, +..+aq

of positive integers (a1 = k) in finitely many ways only, then including yet permuta-
tions of a,, ..., a, in (2) we easily infer from (1) that for each N = n, there are only
finitely many sequences a with 6(C°) = 1/(N + 1).

Ordering now all sequences a into a sequence {a"} we obtain a sequence {C*"} of
open sets covering C,, and such that (C*") < 7 and lim §(C*") = 0.

The just proved property (3.3) implies (cf. (5.5) below) that the space %, enjoys
Property II. However, surprisingly enough,

(3.4) The cartesian product B, x B, metrized by the pythagorean formula

Ql[(xl’ yl)s (xz, Y2)] = \/[Q(xla xz)z + o(y1, }’2)2] s

where g is the metric in %, does not possess Property I.

Proof. We have to show that for each sequence {A4,} of open sets such that 6(4,) <
< 6(%, x By)forn=1,2,..., and

(1) lim 8(4,) = 0,
there exists a point p € B, x %, not belonging to any A4,.

Let %A = {4,} be such a sequence. By 8*, where B < A, we shall denote the union
of all elements of B. '

To show that (B, x %,) — A* + 0 we shall proceed by induction. To start
with, denote by C, the set of all “rarefied” sequences of %,, the first number of which
is k. Each C, is a closed-open subset of %, with the diameter §(C,) = 1/(k + 1), and
the distance between any two points x € C;, and y € C;., where k # k', is equal to 1.
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This implies that for each n = 1, 2, ... we have either 4, =« %, x C,or 4, = C, x
x %, (because §(A,) = \/2 = 6(B, x %,) otherwise), and for sufficiently large n,
say for n = N, we have 4, = C; x C, for some k = k(n) and I = I(n) (because
(1) wouldn’t hold otherwise).

Since N sets Ay, ..., Ay meet only finitely many sets %, x C, and C, x %,, then
there exist k; and [, such that

N 0
(2 U4,n(C,x UC)=0.
N n=1 I=1o
Denote by 91, the subfamily of U consisting of all A, with the diameters 0(4,) =
= 1/(ky + 1). By virtue of (1) the subfamily 9, is finite. Since each A, meeting
0

C,, x UC, is contained in some C,, x C,, then by virtue of (2) there exists /; such
that '='o
(Ckl X Cln) N glf =0.

Now let C, ., denote the set of all “rarefied” sequences F{N (s ey Ry Xy 1
Xt 25 } of #,, where ny, ..., n,, are fixed. Each set C, .  isthe union of count-
ably many closed-open in %, sets C,, . ., wheren =1,2,..., and the distance
between any two points x € C,,, and ye C,, ., _ ., wheren # n',is equal
to o(x,y) = 1)(ny + ... + n,_ + 1). The diameter of C,, is equal to
oC,,om) = 1(ng + ... + 0, + 1).

The set C,, is then the union of countably many closed-open sets Cy, ,, k = 1,2, ...,
such that the distance between any two points x € C, ; and y € Cy, ., where k + k',
is equal to 1/(k, + 1). In view of the definition of 3, each 4, e A — 9, meeting
Cy, x C, iscontained in some C,, ;, x C,,. Denote by 2, the following subfamily of 2

s Mm

1
3 WUy ={A4,:6(4,) =2 —.
®) = Ay z )
By virtue of (1) the family 2, is finite and therefore a set C;, ,, must exist such that
(4) (Cryer X Cp) 0 AT = 0.

The first step of induction is completed. Its purpose is to define two sequences of
positive integers {k,} and {I,} such that for each m = 2,3, ...

) (Coprootn X Cry )N A =0,

where

©) ", = {A,, . 5(4,) = ! }

L+L+...+1,-,+1

Since we have already defined k,, k, and I; with (3) and (4) let us suppose that
there are already known ky, k,, ..., k,, and [, I, ..., I, with (5) and (6).
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The set C;,, ..., is the union of countably many closed-open sets C;,
I'=1,2,..., such that the distance between any two points xe C; ,  , and
Y€ Cuy,. 1m_y1» Where [ # ', is equal to 1/(I; + ... + I,_; + 1). By virtue of (6),
(7) each A,e A — A, _; meeting Cy, . X Cy, ., is contained in some

Ck;,...,k,,.

Denote by 9, the subfamily of A

(8) A, =14,:6(4,) = S
ks + ...+ k, + 1

In view of (1) the subfamily 9, is finite. We have either 9,, = 2, _; or 3, —
- Wy + 0. If 4,€A,_,, then by (5) it is disjoint with C,, 4. x C, ..

voslm=-12
and if 4, € A, — A,,_; and meets Cy, 4, % Cy,. 5., then by (7) it is contained
in some Cy, ;. % C;, ... _, . Hence in both cases there must exist /,, such that

(9) (Ck;,...,k,,, X Ch,..‘,lm) N ‘)NI: =0.

Similarly, the set C, ., is the union of countably many closed-open sets
Chyyono k=1,2, .., such that the distance between any two points x €
€Cyy,. i and y € Cy, 4 oo, where k = k', is equal to 1/(k; + ... + k,, + 1).

.....

Hence by virtue of (8),

(10) each A,eq — A, meeting C, . . % C is contained in some

..... Lin

Chtyoiome X Cyy

Denote by 2, the subfamily of 2

A, = {A,, :5(4,) = l—l————_} .

TSP Ny R |

In view of (1) the subfamily 2, is finite and so in view of (9) and (10) there must
exist k,, . such that

(Ckl,...,k,,.,km+1 X Ct,,...,t,,.) NAY=0.

Hence the induction is completed.

Now to finish the proof observe first that the diameter of each set D,, = C;, ;X
I, 18 equal to

m m—1
D) =J(Xki+ )2+ (X L+, m=23,..
i=1 i=1
and so we have
lim §(D,,) = 0.

m—> o0
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The space %, is complete and so is B, x %, (cf. [3], I, p. 313). On the other hand,
all the sets D, are closed in %, X %, and form a decreasing sequence of diameters

o) 0
tending to 0. Hence (cf. [3], L, p. 319) N D,, + 0. Let p = () D,,. Since p e D,, for

m=2 m=2

each m = 2,3, ..., then, by (5) p ¢ 9 for any m = 1, 2, 3, ... However, U A, = A
«© m=1
and so U A = 9*. Hence p ¢ A*.

IV. Non-separable metric spaces. Let W, be any uncountable set with the
metric

l if x+y
ox,y)=3n ’
0

if x=y,

and let Z be the set U " with the metric
n=1

fo/x.y) if x,yeW, forsome n=1,2 ...,

ol 7) = 1\/2 otherwise .

(3.5) The metric space Z has Property I but not Property II.

In fact, each set W, is open in Z (even closed-open) and since 5(W,) = 1/n < /2,
then {W,,} is a zero cover of Z. However, the space Z is obviously non-separable and
so it cannot possess Property II.

(3.6) The metric space Z x Z metrized by the pythagorean formula does not
possess Property I.

Proof. To prove it we shall show that for any countable cover {4,} of Z x Z
consisting of sets with diameters §(4,) < 2 = §(Z x Z) the second condition of
Property I, i.e., lim 6(4,) = 0, does not hold. For, if 2 = {4,} were such a sequence,
then we must have 4, =« W, X Z or A, =« Z x W, for each n = 1, 2, ... and some
k = k(n), because 6(4,) = 2 otherwise. Moreover, for all n sufficiently large, say
for n = N, we must also have 4, c W, x W, for some k = k(n) and I = I(n),
because 0therw1se we would not have lim §(4,) = 0. Hence k1 and [, must exist

such that U A, (W, x U W,) = 0. Now if 4, meets W,, x U W,, then it must be
I=lo =1
contamed in some W,, x W, wherel = Iy, [, + 1, ... Since lim §(4,) = 0 by assump-

n—aoo

tion, then there are only finitely many A, with diameters 6(4,) = 1/k; and so there

o0

exists I/, such that if A, meets W, x U W,, then it is contained in some W,, x W,
1=

I=1y, Iy +1,..., and has diameter 5(4,) < 1/k,. However, since the distance

between any two points (a, b), (c, d) of W,, x W, such that a # c is not less than
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1/k,, then each A4, meeting W,, x W,, is contained in some {z,} x W,,. This, however,
is a contradiction, because the cover 2 is countable and there are uncountably many
sets {z} x W,,zeW,,.

4. Property I. This is the weakest property from the three ones and has the worst
formal properties. We shall show, for instance, that it is neither hereditary (in a rather
strong sense) nor productive, and is only finitely additive.

Property I is possessed by all metric spaces X which can be represented as finite
unions of sets with diameters less than the diameter 6(X) of the space X itself (but
not exclusively, as the example of the space Z defined in IV of § 3 shows). In particular,
if X is any metric space with a finite diameter, then adding to X a new point p and
fntroducing into the space X; = X U {p} metric ¢; by the formula

o(x, y) if xeX and yeX,
Ql(x, J’) = . .
5(X)+ 1 ifeither x=p or y=p but x=*y,

we get a new metric space X, which contains X isometrically and has Property I
independently of whether X itself has it or not. Hence, in contrast to Property II,
Property I is not hereditary.

However,

(4.1) Property I is hereditary with respect to dense subsets, i.e., if X is a metric
space which has Property I and D is its dense subset, then D also has Property I.

The proof is trivial, because 6(4) = 5(4 N D) for each open 4 < X, and thusiif {4,}
is a zero cover for X, then D n 4, is a zero cover for D.

Let us recall that a property P of a metric space is productive if the product of two
metric spaces (X, ¢,) and (¥, 0,) enjoying it and metrized by the pythagorean formula

Q[(xn J’1), (xz, YZ)] \/[91(361, xz) + Qz()"n J’z)]

enjoys it too (cf. [2], p. 133). As the example of the cartesian square Z x Z of the
metric space Z enjoying Property I shows (see (3.6)), Property I is not preductive.
The “not” is so decisive that even the cartesian square X x X of a metric separable
space X enjoying the by far stronger Property II may not possess Property I (see

G4

(4 2) Property I is finitely additive, i.e. if X is a metrlc space, X = U X,, and
each X, has Property I, then X has Property I too. "=

Proof. Let, foreachn = 1,2, ..., N, {4, ,},=1 »,.. be a zero cover of X,. Choosing
now a number &, > 0 such that

sup 8(4,,) + 2¢, < 8(X,),
k
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consider a generalized open ball A, = K(4, s &,/k), i.e. the set of all those points
x € X whose distance from A, ; is less than e,,/k. Each 47, is open in X and, in view of

8(Ay i) < 0(A, ) + 28k < 8(X,) = §(X),
we have 6(4),) < 8(X). Moreover,

lim 3(AF,) < lim 8(4,,) + lim 2¢,/k = 0.
k— o k=

k— o0

Ordering then N sequences {4, ,},-1.,... in a single sequence we get a zero cover

of the entire X. Hence (4.2) is proved.

yeen

However, Property I, in contrast to Property II, is not countably additive. In
fact, take a union of countably many copies of the space Z defined in § 3. As was
shown in (3.5), Z has Property I. However, if we introduce into this union a metric ¢’
by the formula

o(x,y) = o(x, y) if x and y belong to the same copy ,
’ 2 otherwise ,

then this new metric space does not possess Property I, because each countable cover
of it consisting of sets (not necessarily open) with diameters less than 2 contains
a countable subfamily composed of sets with diameters larger or equal to 1, and
hence it cannot be a zero cover.

Now let X be a metric space and let A(X) denote the greatest lower bound of those
real numbers n for which X can be represented as a countable union of its (not
necessarily open) subsets 4, such that

(1) 5(A4,) <n for n=1,2,... and limd(4,) = 0.

(4.3) A metric space X has Property I if and only if A(X) < 6(X).
Proof. First of all observe that the value of A(X) will not change if we restrict

@
ourselves to open sets A4, only. In fact, if X = (J 4,, where A, are arbitrary subsets
n=1

of X satisfying (1), then for each & > 0 the generalized open balls A; = K(4,, &/n)
are open in X and §(4;) < 6(4,) + 2¢/n.

Hence X = U 4, 6(4) <n +¢ for each n =1,2,..., and limd(4;) = 0.
n=1 n— o

This means that the g.l.b. for open sets is not larger than that for arbitrary sets, and
the converse inequality is quite trivial.

Applying this we can now say that if (X) > 0, then no sequence {4,} of open
sets such that :

5(A4,) < A(X) for n=1,2,... and limd(4,) =0

n—*o
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is a cover of X. This means that if 2(X) = 6(X), then the space X does not possess
Property I.

On the other hand, if A(X) < §(X), then for each #, A(X) < n < §(X), there exists
an open cover {4,} of X which satisfies (1). Since # < §(X), then it is a zero cover
and thus the space X has Property I. The proof of (4.3) is completed.

(4.4) For a 0-dimensional Baire space # we have ((B) = §(%) = 1.

Proof. It suffices to show that if 2 = {4,} is a sequence of open subsets of £ such
that ’

1) 5A4) <1 for i=1,2,... and limd(4;) =0,

i w
then 2 is not a cover of #. For that purpose let 2, denote the set of those 4;, for
which 6(4;) = 1/n, and let 2* (resp. A be the union of all elements of A (resp. 2A,).
By virtue of (1), each 2, is finite and 2, = 0.

Let ny be the least positive integer for which 2, ., + 0. The diameter of each
element A; € A, ., is then 8(4;) = 1/(ny + 1) and this means that to each element
A; €U, ;4 there corresponds a sequence {cy, ..., ¢,,} of ny positive integers such
that 4, is contained in the set of all sequences of the form {¢,, ..., ¢,0, Xy 4 1, Xpgs 25 --+}>
where X, ; are arbitrary positive integers.

Since A, ., is finite, then there must exist a sequence of n, positive integers
{ay, ..., a,,} such that no sequence {ay, ..., @y, X0 1> Xpos 25 - -} belongs to WX |

Assume now that for some k = n, we have already defined a sequence consisting
of k positive integers {ay, ..., a,} such that no sequence {ay, ..., ay X4y, ...}
belongs to 2}, ,. The family 2, , differs from the family 2, , , for finitely many sets
each of which has diameter equal to 1/(k + 2) and thus is contained in the set of all
sequences of positive integers {cl, ooy Chats Xkg2s }, where ¢y, ..., ¢ are fixed.
Hence a positive integer a,,; must exist such that no sequence {al, Ayy ooy Ayy Apyqs
Xi42s - .-} belongs to AW,

In this inductive way we have constructed a sequence {al, a,, } which is not

covered by 2, because it does not belong to any ;" and obviously U A = A*,
k=1

It is a simple corollary of (4.3) and (4.4) that

(4.5) 0-dimensional Baire space % does not possess Property I.

Let us recall (see [3], I, p. 318) that o X) denotes the greatest lower bound of those
real numbers # for which metric space X can be represented as a union of finitely
many (but not necessarily open) sets with diameters <.

Obviously,

(4.6) For any metric space X, A(X) < o(X) < §(X).

Hence and from (4.3) we infer that
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(4.7) If X is a metric space such that o(X) < 8(X), then X has Property I.

However, there exist metric spaces which have Property I and for which «(X) =
= §(X). Such is, for instance, the metric space Z of §3 for which A(Z) = 1 and
«Z) = §(Z) = 2.

We shall complete this section with two formal properties of the function 2,

(4.8) A is monotone, i.e., if Y = X then J(Y) < AX).

The proof is trivial, because if X = U A,,, where 8(4), < n forn = 1,2, ... and
lim 6(4,) = 0, then Y = U Yn A, and 5(YmA) <nfor n=1,2,...as well as
lim (Y 4,) = 0.

(4.9) 4 is countably subadditive, i.e., A(U X;) < Y. A(X)).
i=1 =1

0
Suppose the contrary, i.e., that there exists a metric space X such that X = (J X,
i=1

and A(U X;) > Y, A(X,). This means that for each i = 1,2, ... there is a number
i=1 i=1
n: > 0 such that A(X;) < n; and

(1) ,z(igx,.) >,-‘i”i .

By virtue of A(X;) < n; each set X; can be decomposed into a union X; = U Al
n=1
such that §(4}) < », for n = 1,2, ... and lim §(4,) = 0. Ordering all sets 4 into

n—>oo

we infer that X = {J B, and that

k=1

a single sequence {B;}, -,

seoe

5(Bk) Ssupy; = 21’11' < }*( U Xi) s
i i= i=1

and since by (1) the series Zn, is convergent and therefore lim #; = 0, also

i— o

lim 6(B,) = 0. But thisis a contradlctlon with the value of A( U X)).

k=

5. Property IL This Property appears to be the most regular one. For instance, it is
hereditary while Property I is not and Property III only partially, and it is also count-
ably additive.

(5.1) PropertyII is hereditary,i.e.,if X is a metric space which possesses Property
II and Z < X, then Z also has Property II.

Actually, if Z is a single point, then it enjoys Property II by the definition. THus,
let 5(z) > 0. If {4,} is a zero base for X, then {Z n A4,} is a base for Z consisting
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of sets with diameters tending to 0. And since from any base in a metric space
we can remove all sets with large diameter without changing the property “to be
a base” (cf. [3], p. 133), then in order to receive a zero base for Z it suffices to re-
move from the base {Z n A4,} all sets Z n A4, with §(Z n 4,) = §(Z).

o0

(5.2) Property I1 is countably additive, i.e., if X is a metric space, X = U X,,

n=1
and each member X, has Property II, then the space X itself also has Property II.

Proof. Let { }k 1,2,.. be a zero base for X, n = 1,2, ... Choosing arbitrarily
£ > 0 consider the gener dllzed open balls

At = K(A, 0 enk), n k=12,..
Obviously, 5(Ay,) < 6(A4,,) + 2¢/nk and thus, for a fixed n = 1,2, ...,

(1) lim 3(A4%,) = 0 .
k—
This means, in particular, that the sets A,, » Where n is fixed and k=1,2,..., form
a base for X,. Hence we may assume that (after, perhaps, removing some of the sets
Ay with large diameter)

(2) o4y < ! in [1,6(X)] foreach k=1,2,... and n=1,2,...
n

Ordering now the double sequence {{A)}i-;2  }u=1., . into a single one
{B}1=1.2,... we shall show that it is a zero base for X.

Actually, it is a base for X, because it is a base for each X, and X = | X,. More-

n=1
over, it is a zero base, because, by virtue of (1) and (2), for each > 0 there are only
finitely many sets B, with 5(B,) > 7, and this implies 11m 5(3,) = 0. Also, by (2),
5(B)) < d(X) for I =1,2,.
To show that Property II is not productive we need some characterization of it.
Before turning to this question let us insert here, for the sake of completeness, a simple
observation

(5.3) Let f: X — Y be an open mapping of a metric space (X, ¢,) onto a metric
space (Y, 0,), and such that

e1(x, ¥) 2 @[ f(x). f(y)] forall x,yeX.
If X enjoys Property II, then Y does it too. v

Proof. If {4,} is a zero base for X, then the sequence {f(4,)} of sets open in Y is
a base for Y such that

limf(4,) = 0.

n— o0
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Removing now, if necessary, sets f(4,) with diameter [ f(4,)] = 5(Y) we obtain
a zero base for Y.

Let us turn now to some characterizations of Property II.

(5.4) A metric space X has Property I if and only if there exists an increasing
sequence {N,} of its finite subsets N, such that each point of X belongs to K(N,, 1/k)
for infinitely many k =1,2,...

Proof. The condition is sufficient. Actually, the countable family of open balls
(1) K(p,1/k), where peN, and k=1,2,...,

is a base for X, because each point of X is contained in arbitrarily small balls of the
form (1). Since each N, is finite, then ordering balls (1) into a sequence {K,} we have
also lim §(K,) = 0. Removing now, if necessary, from the base {K,} all sets K, with

diameters §(K,) = 8(X) we get a zero base for X.

The condition is necessary. Indeed, if 2 is a zero base for X, then replacing each
U e A with 5(U) < 1 by an open ball K(p, 1/k), where k is the largest integer such that
8(U) < 1]k and p € U, we obtain another zero base for X. This is so, because each U -
is contained in the ball K(p, 1/k) by which we have replaced it and therefore the family
of these balls forms the base for X. Furthermore, if for some k, there would be
infinitely many balls with radius 1/k,, then there would be also infinitely many U’s
from the original base U with diameter 5(U) = 1/(k, + 1) which is impossible as A
is a zero base by hypothesis. It remains then, if necessary, to remove all balls K with
diameter §(K) = §(X).

Now, since the family of balls K(p, 1/k) forms a zero base for X, then denoting
by N the set of centers of balls with radius l/l, we obtain a sequence of finite sets
{N7}1=1.2,.. with the property that each point of X belongs to K(N, 1/I) for infinitely

i :

many I = 1,2, ... Putting then N, = U N; we get a non-decreasing sequence of
finite sets with that property. =1
The coefficient A(X ), which has helped us to give a characterization of metric

spaces that have Property I (cf. (4.3)), enables us also to prove the following simple
characterization of metric spaces that have Property II.

(5.5) A metric space X has Property Il if and only if A(X) = 0.

Proof. If X has Property II, then there exists a base {4,} for X such that
5(A4,) <é(X) for n=1,2,... and limd(4,) =0.

Given any 7 > 0, we remove from the base {4,} all sets A, with 5(4,) = n and
thus remain with a base {B} such that

(1) 8(Bl) <n for m=1,2,... and lim 5(Bl) =0,

which proves that A(X) = 0.
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Conversely, if A(X) = 0, i.e. if for each # > 0 there exists an open cover {B},, -1 2.
of X for which (1) holds, then considering the sequence of covers {B,/*},,_; , _ for
k = ko, ko + 1, ..., where k, is a positive integer such that l/ko < (X)), and ordering
this sequence of sequences of open sets into a single one, we can easily verify that it
is a zero base for X.

Now we may show that Property II is not productive. Indeed, as we have already
proved in (3.3), the metric space %, satisfies A(%,) = 0 and so, by (5.5), it enjoys
Property II. However, by virtue of (3.4), the cartesian square %, x %, possesses
even not so much as Property I!

Further on we shall establish a sufficient condition under which the cartesian
product of two metric spaces enjoying Property 1I does it too (cf. (6.7) below).

It is a trivial conclusion from (5.1) that if a metric space X has Property II, then it
has it locally, i.e., for each point p € X there exists an open (even arbitrarily small)
neighbourhood U which has Property II. In what follows we shall need a lemma which
concerns the converse of this remark for metric separable spaces.

(5.6) If a metric separable space X has Property II locally at each pointpe X — A
and A(A) = 0, then X has Property II globally.

Indeed, if for each point p e X — A there exists an open neighbourhood U which
has Property II, then by Lindelf Theorem ([2], p. 49) there is a countable subcover
{Uik=1.2,.. of a subset X — A, and thus X = A U | U,. Since each member on the

k=1
right-hand side of the last equation has Property II, then by (5.2) we infer that X -
itself also has Property II.

Now we are about to draw some conclusions from what we have proved so far.
First of all observe that for a totally bounded metric space X we have «(X) = 0 and
s0, by (4.6) and (5.5),

(5.7) Each totally bounded metric space has Property II.

By a countably totally bounded metric space we mean any metric space which is
a union of countably many totally bounded sets. From (5.2) and (5.7) we infer that

(5.8) Each countably totally bounded metric space has Property II.

It is well known that compact metric spaces are totally bounded (cf. [3], 1L, p. 2).
Hence and from (5.1) and (5.7) it follows that
(5.9) Each subspace *) of a compact metric space has Property II.

An F,-absolute space is a union of countably many compact spaces. Lemmas (5.1)
and (5.8) imply the following generalization of (5.9):

(5.10) Each subspace of an F,-absolute metric space has Property II.

2) By a subspace of a metric space (X, ¢) we mean any metric space (Y, ¢) such that ¥ < X
ando’ = |Y X Y.
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In particular, if X is a complete metric and F_-absolute space, thei X has Property I1.
However, there exists a complete metric space which enjoys Property II but is not
F,-absolute (e.g., the space %, of § 3).

A locally compact metric separable space is by Lindelof Theorem an F-absolute
metric space. Hence we infer from (5.10) that

(5.11) Each subspace of a locally compact metric separable space has Property I.

In particular, .

(5.12) Each subspace of a Euclidean space has Property II.

Although conclusions (5.7) to (5.12) may lead to the conjecture that the family of
metric spaces which possess Property Il is enormously vast, it.is good to remember
that equally many metric spaces have not that Property. For instance, 0-dimensional
Baire space # and any metric space containing & isometrically do not enjoy Property II.

From this it follows, by a comparison with (5.12), that no metric space containing %
isometrically (in particular, 2 itself) can be embedded isometrically into an Euclidean
space. However, it is well known (cf. [6], p. 177) that Z can be embedded topological-
ly into 1-dimensional Euclidean space.

6. Nucleus X. We shall say that a metric space X is locally, at a point p, countably

totally bounded if it contains an open neighbourhood U of p such that U = {J P,
k=1

where each P, is totally bounded. The set of all points g at which X is not locally
countably totally bounded will be called a nucleus and denoted by X.
(6.1) If X is a metric space, then the nucleus X is closed in X.

Indeed, if pe X — X, then there exists an open neighbourhood U of p which is
a union of countably many totally bounded sets. Hence each point g of U also
belongs to X — X and so U =« X — X. This means that X — X is open or, in other
words, that X is closed.

(6.2) If X is a metric separable space, then £ = X, i.e., X is at no point of it
locally countably totally bounded.

Proof. To prove that X = X suppose the contrary. For some point p e X there
exists then its open (in X) neighbourhood V which is countably totally bounded

(1) V=U W, and W, is totally bounded for each k = 1,2, ...
e

=1

Let U be an open subset of X such that U n X = V(cf. [3], I, p.25). Hence the set

(2) U= (U — X)uV isan open (in X) neighbourhood of p.
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Since X is closed in X, then U — X is open in X. For each x € U — X there exists
then an open in X neighbourhood U, = U — X which is countably totally bounded.
By virtue of Lindelsf Theorem there is a countable subcover {U,} of U — X. Let

p

1

(3) U, =

iC s

ij» Where P is totally bounded foreach i,j =1,2,...
J

In view of (1), (2) and (3) we have then

U=U UPijL’]UWks
i=1 j=1 k=1
whence we infer that pe X — X. A contradiction.

(6.3) Let X be a metric separable space. Then X = 0if and only if X is countably
totally bounded.

i Actually, if X is countably totally bounded, then obviously it is also locally totally
bounded at each of its points, which means that X = 0.
Conversely, if X = 0, then for each point x € X choose an open neighbourhood U,
which is countably totally bounded. By virtue of Lindelof Theorem there exists then
a countable subcover {U, } of X and this means that X is countably totally bounded.

(6.4) If X is a separable metric space, then A(X) = A(X).
Indeed, by (4.8) and (4.9) we infer that
AX) S AX) < AX) + (X - X).

And since as trivially follows from the definition of nucleus, the nucleus of X — X
is an empty set, then by (6.3) the set X — X is countably totally bounded and
therefore, by (5.8), enjoys Property II. In view of (5.5) we have then (X — X) =0
and so, finally, A(X) = A(X).

It is an easy consequence of (5.5) and (6.4) that

(6.5) ret X be a separable metric space. The space X has Property Il if and only
if (X) = 0.

However, as the example of the space %, defined in § 3 shows, the spaces which
have Property II (cf. (3.3) and (5.5)) but whose nucleus X is not empty (cf. (3.2) and
(6.3)) do exist.

(6.6) If X x Y is the cartesian product of two metric spaces X and Y, then
S :
XxY=XxYuXx?

T
Proof. If (p,g)€ X x Y — X x Y, then by (6.1) there exists its open neighbour-

S
hood U disjoint with X x Y which is a union of countably many totally bounded sets
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U = U U, Since the projections ry : X x Y — X and ry, : X X Y — Yare open and
n=1

preserve total boundedness, then ry(U) = U rx(U,) is an open neighbourhood of p
n=1

which is a union of countably many totally bounded sets and therefore pe X — X.
Similarly, g€ Y — ¥. Hence

o~ R R
XxY-XxYce(X-X)x(Y-1Y).
However, since (cf. [3], I, p. 12)

(X-X)x(Y-=9)=(XxY)— (L x YUX x T),

S
then X x YUX x Y X x Y.

Conversely, if (p,g)eX x Y— (8 x YUX x ¥), then peX — X and ge
€ Y — Y. This means that there exists an open in X neighbourhood U of p which is

. 0
a union of countably many totally bounded sets U,, U = | U,, and similarly, there
n=1

exists an open in Y neighbourhood V of g which is a union of countably many totally

bounded sets V,, V = | V,. Since each product U, x V, is totally bounded (cf. [3],

n=1

I, p. 115), then an open in X x Y neighbourhood U x V of the point (p, q)

is a union of countably many totally bounded sets, U x V = U U, x ¥V}, and this
k, =1

S T
means that (p,g)e X x Y — X x Y.HenceX x Yo & x YU X x Yand the proof
is completed.

As a simple corollary of (6.6) and (6.3) we obtain

(6.7) Let X and Y be two metric separable spaces both enjoying Property II. If
both nuclei X and Y are empty, then the product X x Y metrized by the pythagorean
formula enjoys Property II.
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