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Czechoslovak Mathematical Journal, 18 (93) 1968, Praha 

ON SOME COVERING PROPERTIES OF METRIC SPACES 

ROMAN DUDA and RASTISLAV TELGARSKY, Wroctaw 

(Received May 15, 1966) 

1. Introduction. The well known theorem of LINDELÖF reads (cf. [2], p. 49): there 
is a countable subcover of each open cover (a subset) of a separable space, i.e. of 
a space whose topology has a countable base. A. LELEK raised the question whether 
metric separable spaces possess a stronger property: is there a countable subcover 
of each open base consisting of sets of diameters tending to 0? JAN MYCIELSKI has 
pointed out that the answer is "no" (cf. (4.5) below) and the present paper contains 
some results originated while discussing the Lelek's question. 

Notions and notations not defined here come from [2] and [3]. 

2. Preiiminaries. Throughout the paper all spaces are assumed to be metric (not 
necessarily separable) unless the contrary is explicitly stated. By a zero sequence of 
a metric space X of diameter ö(X) > 0 we shall mean any sequence {An}„ = 1,2,,.. ^^ 
its subsets such that ô(A„) < ô(X) for n = 1, 2, ... and Mm ^(^„) = 0. For the sake 

n->oo 

of elegance it seemed natural to us to suppose also that a metric space consisting of 
one point only contains a zero sequence, too. The effects of this last supposition can 
be seen here and there (for instance, under this supposition Lelek's "strong Lindelöf 
property" is now completely equivalent to our Property III) but, as a rule, we shall 
not attract attention to it later on. 

In what follows we shall be interested 'mainly in zero sequences consisting of open 
sets only. A zero sequence of open sets which is simultaneously a cover (resp., a base) 
will be called shortly a zero cover (resp., a zero base). 

The paper is devoted to the first two of the following three (the third will be 
treated more completely by Lelek in [4] and [5]), more and more stronger properties 
possessed by some metric^) spaces: 

^) Because a uniform structure in the sense of N. BOURBAKI [1] is similar to a metric structure 
of a topological space in that it allows to compare the size of any two subsets of the space, we 
could extend the definition of a zero sequence in a metric space to such a sequence in a uniform 
space and, consequently, to define Properties I —III for uniform spaces. However, this is not the 
case we are interested in. 
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I. There exists a zero cover. 
II. There exists a zero base. 

III. Each base contains a zero base. 

Clearly, III => II and II => I. However, the converse implications are not true. 
Actually, in the space Ж of irrational numbers of the segment [0, 1], which obviously 
has Property II, Lelek has defined in [4] a base which contains no zero base. Thus Ж 
does not possess Property III, which shows that II 4-> III. Furthermore, any metric 
space which possesses Property II is necessarily separable. However, there exists 
a metric space enjoying Property I which is not separable (e.g., the space Z defined 
in IV of § 3 below). Hence I -f-̂  II either. (In fact, it is not difficult to construct, follow­
ing the idea of constructing Z, also a metric separable space which enjoys Property I 
but not Property II.) 

Note also that, in view of our additional supposition, a one point metric space 
satisfies all three Properties I —III. 

As Jan Mycielski has pointed out, a 0-dimensional Baire space, which is known 
to be homeomorphic to Ж ([6], p. 177), does not possess Property I and thus does 
not possess Property II either. This means that Properties I and II are of metric 
but not of topological character. However, the similar question concerning the 
character of Property III remains open. 

3. Some examples. Now we shall describe some examples and prove some of their 
properties related to our basic Properties I —III. 

I. The space J^. It is the space of irrational numbers of the segment [0, 1] with 
the ordinary metric 

^(^5 y) = \^ — y\ for all X, у E J"^. 

The space Ж has Property II and has not Property III. In fact, if ^^ is a finite 
00 

open cover of J^ consisting of sets with diameters equal to 1/2^ then U ^jt is a zero 
k = 2 

base. On the other hand, however, Lelek has defined in [4] a base ß for Ж which 
contains no zero subbase. 

II. 0-d imensional B a i r e s p a c e . ^ i s the set of all sequences of positive integers,, 
where the distance ^({«^}, {bk}) between two distinct sequences {aj,} and {b^} is the 
inverse Ijk of the least index к for which aj^ ф bj. ([6], p. 175). 

As is well known, the metric space ^ is separable and complete. 
It is also known that J* is homeomorphic to Ж ([6], p. 177). However, we shall 

proceed to show (see (4.5)) that J' , in contrast with Ж , has not Property I and so 
has not Property II either. 

The space J* together with some its subspaces forms a basic set of examples and 
counter-examples to many questions related to Properties I —III. One of its surprising 
features which seems to be largely responsible for it, is that each totally bounded 
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subset of ^ is nowhere dense in ^. In fact, we shall prove this in a shghtly more 
complicated case of its subspace J*o but the proof with obvious simplifications 
works to the same effect in M itself. 

III. The s u b s p a c e 'M^ of M. It is homeomorph of J*: to any sequence {â }̂ of 
positive integers we assign a "rarefied" sequence 

г{а^, 0.2, ...} = {«1, ..., «1, a,, ..., a2, ...} 

in which each «;, is repeated a^^-times, ^Q is the subspace of Ш consisting of all 
"rarefied" sequences. 

We shall prove now some properties of .^Q. 

(3.1) Each totally bounded subset of ^Q is nowhere dense in ^Q. 

Proof. First of all observe that if ^ is a totally bounded subset of ,^o and 
r{ai, aj, ...} is any point of A, then for each k there are infinitely many points 
r{ai, a2, ..., ßf/c-i, ^ку •••} of ^ 0 which do not belong to the closure Ä of A. In fact, 
the distance between any two of these points is equal to ijn, where n is an index of X;̂  
in the "rarefied" sequence r{ai, a2, .-., a^-i, Xj^, ...}, and a totally bounded set 
(closure of a totally bounded set is totally bounded too) cannot contain infinitely 
many points such that the distance between any two of them is larger than some 
positive number. 

To conclude the proof of (3.1) it suffices now to observe that for each point a e A 
and for a positive integer m there exists a point b G ^Q — A such that д(а, b) ^ l/m, 
and this is quite obvious in view of the above. 

It is a matter of a simple exercise to check that ^Q is a closed subset of .^. Hence 
and from the completeness of # we infer that J*o is a complete space too ([3], I, 
p. 315). Consequently, by virtue of the Baire category theorem ([3], I, p. 321), 

(3.2) ^Q is not a union of countably many totally bounded sets. 

One more property of J'o will be of importance to us: 

(3.3) For each rj > 0 there exists a zero cover {A„] of J*o ^^^^^ that ö(A^ < rj 
for n = 1,2, ... 

Proof. Let Q be the set of those "rarefied" sequences of positive integers (i.e., of 
those points of ,#o) the first number of which is k. Obviously, each Q is open (even 
closed-open) in ^Q and of diameter ^ ( Q ) = l/(/c + 1). If WQ is a positive integer 

00 

such that 1/̂ 0 < /̂, then the sets Qo^^, m = 1, 2, ..., form a zero cover of (J Q 

consisting of sets with diameters less than rj. It remains then to construct such a zero 
no- 1 

cover for the set (J Q , but since it is a finite union of open sets, it suffices to do it for 
k=l 

each Q , к = 1,2, ..., Пд — 1, separately. 
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For that purpose observe that there are only countably many sequences of positive 
integers consisting of MQ elements and so, for a given k, there are only countably 
many "rarefied" sequences of natural numbers consisting of UQ elements, the first of 
which is k. If 

a = («1, ..., a^, ..., ai,..., a J 

is such a sequence (i.e. a^ = к and each aj is repeated a^-times with the possible 
i-i 

exception of â  which is repeated HQ — ^ aj times), then the set С of all "rarefied" 

sequences of positive integers which have a as initial segment is open and of diameter 
less than rj, 

(1) Sic-) = - - — 1 — — - < n. 

1 + «1 + . . . + ül 

And since each positive integer N ^ TIQ can be decomposed into the sum 

(2) iV = «1 + ^2 + .. . + off 

of positive integers {a^ = /c) in finitely many ways only, then including yet permuta­
tions of a2, ..., Ö/ in (2) we easily infer from (1) that for each N >, UQ there are only 
finitely many sequences a with à^C) = l/(iV + 1 ) . 

Ordering now all sequences a into a sequence [a""] we obtain a sequence {C"} of 
open sets covering Q , and such that (5(C") < ц and lim (̂C""") = 0. 

и-*оо 

The just proved property (3.3) imphes (cf. (5.5) below) that the space J'o enjoys 
Property II. However, surprisingly enough, 

(3.4) The cartesian product ^Q X ^ Q metrized by the pythagorean formula 

Qili^i^ yi\ (^2, УгЪ = V[^(^i' ^2У + ^(>'ь yif] . 

where Q is the metric in J*, does not possess Property I. 

Proof. We have to show that for each sequence {A„} of open sets such that ô(A„) < 

< ö{^o X ^o) for П = 1, 2, ..., and 

(1) \imô(A„) = 0, 

there exists a point pe ^Q x ^Q not belonging to any A„. 
Let 91 = {A„} be such a sequence. By 33*, where 33 с 91, we shall denote the union 

of all elements of 93. 
To show that (J^o x ^o ) — 91* Ф 0 we shall proceed by induction. To start 

with, denote by Q the set of all "rarefied" sequences of ^Q, the first number of which 
is k. Each Q is a closed-open subset of J*o with the diameter ^(Q) == l/(fc + 1), and 
the distance between any two points x e Q and у e Q . , where к Ф к', is equal to 1. 
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This impHes that for each n = 1, 2, ... we have either A„ cz ^^ x C^ or Л„ с Q ^ 
X J'o (because d{A^ = ^2 = о(Шо x ^Q) otherwise), and for sufficiently large n, 
say for и ^ iV, we have A„ с Q x C^ for some к = k(n) and / = l{n) (because 
(1) wouldn't hold otherwise). 

Since N sets A^, ..,, A^ meet only finitely many sets ê o x Ci and Q x ^ o , then 
there exist k^ and /o such that 

iV 

(2) U ^ n ( Q , X UC,)==0. 
l=lo 

Denote by Щ the subfamily of 41 consisting of all A„ with the diameters ô(^A„) ̂  
^ l/(/ci + 1). By virtue of (1) the subfamily 4li is finite. Since each A„ meeting 

00 

^kt X и ^f is contained in some Q^ x C/, then by virtue of (2) there exists /̂  such 
that ^ = ̂ « 

( Q , X C, J n a t = 0 . 

Now let C„̂  „̂^̂  denote the set of all "rarefied" sequences r{ni, ...,n^, x^+i, 
^m+29 •••} of ^o> where n^, ..., ?î  are fixed. Each set Ĉ ^̂  „̂ _̂̂  is the union of count-
ably many closed-open in ^Q sets Qi,....«m-i,«» where n = 1, 2, ..., and the distance 
between any two points x e Ĉ ^̂  „̂ _̂̂  „ and у e C„̂ ^ „^_^ „., where n ф n', is equal 
to Q{X, y) = l/(wjf + ... + rifn-i + 0- T^^ diameter of C„̂  . „̂^ is equal to 
4^nu...,nJ= VK + ... + /i,„ + 1). 

The set Q^ is then the union of countably many closed-open sets Q^ ^, к = 1,2,. . . , 
such that the distance between any two points x e Q^^ and у e QI,/C'J where к Ф k\ 
is equal to ij^k^ + 1). In view of the definition of Ши ^^ch А^еШ ~ ^i meeting 
Q i X Ci^ is contained in some Q^ ^ x C^̂ . Denote by 41^ the following subfamily of 41 

(3) 9Ii = | л : ^ ( Л ) ^ - ^ - | . 

By virtue of (l) the family 41^ is finite and therefore a set Q^ ^̂^ niust exist such that 

(4) (Q . , , , X C,,) n 'ЛГ = 0. 

The first step of induction is completed. Its purpose is to define two sequences of 
positive integers {k^„} and {/„J such that for each m = 2, 3, ... 

where 

(6) «Ж-1 = | ^ „ : ô{A„) ^ ; L _ - - 1 . 
1 h + h + ••• + hn-i + I j 

Since we have already defined fej, fc2 and l^ with (3) and (4) let us suppose that 
there are already known fej, fcj, •••> K, and / j , /2^ •••> 'm-i with (5) and (6). 
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The set C'̂ ^ ^̂ ^̂ _̂  is the union of countably many closed-open sets Cj^j^^^^^j 
/ = 1,2,. . . , such that the distance between any two points x e Ci^j^^^_^i and 
ye Ci^^^^^j^^^jr, where / Ф l\ is equal to l/(/i + ... + /,„-i + 1). By virtue of (6), 

(7) each у4„бЭД— W„,„| meeting Q^̂ ...̂ ^̂ ^ x Ci^j^^^_^ is contained in some 

Denote by Ш,п the subfamily of UI 

(8) §„. == и : Ô{A„) ^ -^ ^ - T T I • 
( k^ + .. . + k,, + I j 

In view of (1) the subfamily %„ is finite. We have either Ш^ ^ *^m-i or ®m ~" 
- ^m- i + 0 . If Л^еад^_1, then by (5) it is disjoint with Ck^„..,k,,^ x Q^,...j^_^, 
and if Л„ e Ш;̂  - W,„„i and meets C^,^,„^k„, x Qi,...,/,„-!' ^̂ ^̂ ^ ^У W î  ^̂  contained 
in some Qj,...,^,^, x Q^ ... ^̂^̂_̂  j . Hence in both cases there must exist /,„ such that 

(9) (^ . . . . .л . X Q , , . . . , J ^ 5 i : = o . 

Similarly, the set Cj^^j,^^ is the union of countably many closed-open sets 
Qi,...,fc ,̂fc» / c = 1,2, ..., such that the distance between any two points xe 
^ <^ku...,km,k and yeCk,,„,,k„^x^ where к Ф k\ is equal to l/(/ci + ... + k„, + 1). 
Hence by virtue of (8), 

(10) each Ä„e 4Ï — 51̂ « meeting Q^ . ;̂ ^ x Ci^^j^ is contained in some 

Denote by 5I,„ the subfamily of ^ 

9Г„ = Ь„ : 5(Л„) è Ц -I 

In view of (l) the subfamily 2t,„ is finite and so in view of (9) and (10) there must 
exist k„^i such that 

(Ck, it ft . , X Q, , ) n 9 ï * = 0 . 

Hence the induction is completed. 

Now to finish the proof observe first that the diameter of each set D,,j = Q^ ^̂^̂  x 

w m — 1 

^Ш = VKI .̂- + 0^' +Œh + 1)"] > m = 2, 3, ... 

and so we have 
lim Ô{D,;) = О . 
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The space J'o is complete and so is PJ^Q X 0^Q (cf. [3], I, p. 313). On the other hand, 
all the sets D^ are closed in ,^o '^ ^o and form a decreasing sequence of diameters 

tending to 0. Hence (cf. [3], I, p. 319) fl î m Ф 0. Let p = П ^m- Since peD^ for 
m — 2 m — 2 oo 

each m = 2, 3 , . . . , then, by (5) p ф 21* for any m = 1, 2, 3 , . . . However, (J 5I,„ = 9Ï 
oo ш = 1 

and so и 21* = Й*. Hence ;? ̂  21*. 

IV. N o n - s e p a r a b l e me t r i c spaces . Let W„ be any uncountable set with the 
metric 

r \ - if X Ф у , 
«̂(•̂ ' y) = s^ 

[O if X = у , 
00 

and let Z be the set (J FP;, with the metric 
/ 1 = 1 

С \ ~ \ ^"(^' y^ ^^ X, у G Wn for some n = 1, 2, ... , 
I ^2 otherwise . 

(3.5) The metric space Z has Property I but not Property IL 
In fact, each set W„ is open in Z (even closed-open) and since S(W„) = ijn < ^'2, 

then [W^ is a zero cover of Z. However, the space Z is obviously non-separable and 
so it cannot possess Property П. 

(3.6) The metric space Z x Z metrized by the pythagorean formula does not 
possess Property I. 

Proof. To prove it we shall show that for any countable cover {A„} of Z x Z 
consisting of sets with diameters ô(A„) < 2 = ö(Z x Z) the second condition of 
Property I, i.e., lim ô(A„) = О, does not hold. For, if 91 = {A„} were such a sequence, 

n-*co 

then we must have ^„ c: Ж,̂  x Z or Л„ c: Z x W^ for each n = 1,2,. . . and some 
к = k{n), because ô(A„) = 2 otherwise. Moreover, for all n sufficiently large, say 
for n ^ N, we must also have A„ a Wj, x Wi for some к = k(n) and / = l(n), 
because otherwise we would not have lim ö(A„) = 0. Hence k^ and IQ must exist 

N 00 n-* 00 oo 

such that \J A„n (W^^ x \J Wi) = 0. Now if A„ meets Wj,^ x \J Wi, then it must be 
n = l / = /o l = lo 

contained in some W^^ x Wi, where / = /оЛо + 1, • • • Since lim 5(Л„) = О by assump-
П-* CO 

tion, then there are only finitely many A^ with diameters S(A„) ^ 1/̂ :̂  and so there 
00 

exists /i such that if A„ meets W,,^ x U Щ^ then it is contained in some Wj,^ x Wi, 
l = h 

I = /^, /̂  -f 1 , . . . , and has diameter S(An) < l/fei. However, since the distance 
between any two points (a, b), (c, d) of Wj.^ x Wi^ such that a ф с is not less than 
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l//ci, then each л „meeting Ж;,̂  x 1̂F̂^ is contained in some {z„} x FF̂ .̂ This, however, 
is a contradiction, because the cover Ш is countable and there are uncountably many 
sets {2} X Wi^, z e W,^. 

4. Property I. This is the weakest property from the three ones and has the worst 
formal properties. We shall show, for instance, that it is neither hereditary (in a rather 
strong sense) nor productive, and is only finitely additive. 

Property I is possessed by all metric spaces X which can be represented as finite 
unions of sets with diameters less than the diameter ö(X) of the space X itself (but 
not exclusively, as the example of the space Z defined in IV of § 3 shows). In particular, 
if X is any metric space with a finite diameter, then adding to X a new point p and 
Introducing into the space X^ = Z u {p} metric QI by the formula 

g (x y) = H^' >̂* if xeX and yeX , 
\ô[X) + 1 if either x = p or y = p but л; ф y , 

we get a new metric space X^ which contains X isometrically and has Property I 
independently of whether X itself has it or not. Hence, in contrast to Property II, 
Property I is not hereditary. 

However, 

(4.1) Property I is hereditary with respect to dense subsets, i.e., if X is a metric 
space which has Property I and D is its dense subset, then D also has Property I. 

The proof is trivial, because о(Л) = ô(^A n D) for each open A с X, and thus if {A^} 
is a zero cover for X, then D n Л„ is a zero cover for D. 

Let us recall that a property P of a metric space is productive if the product of two 
metric spaces (X, Q^) and (F, ^2) enjoying it and metrized by the pythagorean formula 

^[(^1. J i ) . (^'2, У2)] = V[^i(^i ' -̂ 2) + яЦУи yi)] 

enjoys it too (cf. [2], p. 133). As the example of the cartesian square Z x Z of the 
metric space Z enjoying Property I shows (see (3.6)), Property Î is not productive. 
The "not" is so decisive that even the cartesian square X x X of a metric separable 
space X enjoying the by far stronger Property II may not possess Property I (see 
(3.4))! 

N 

(4.2) Property I is finitely additive, i.e. if X is a metric space, X = \J X„, and 
each X„ has Property I, then X has Property I too. "" ^ 

Proof. Let, for each n = 1, 2, ..., N, {^n,fc}it=i,2,... be a zero cover of X„. Choosing 
now a number г„ > 0 such that 

sup ô{A„^k) + 2e„ < ô{X„) ,_ 
к 

73 



consider a generalized open ball A^^j, = К(А„^, sJk), i.e. the set of all those points 
X e X whose distance from A„^^ is less than sJk. Each A^^^ is open inX and, in view of 

ô{Al,) й <5(Л„,,) + 2e„//c < Ô{X„) £ Ô{X), 

we have <5(Л*,,) < <5(X). Moreover, 

lim (5(Л*;,) й lim д{А„^^ + lim lejk = О . 
к-* со /с-*оо k~*cci 

Ordering then N sequences {̂ *,/c}fe = i,2,... ^^ ^ single sequence we get a zero cover 
of the entire X. Hence (4.2) is proved. 

However, Property / , in contrast to Property II, is not countably additive. In 
fact, take a union of countably many copies of the space Z defined in § 3. As was 
shown in (3.5), Z has Property I. However, if we introduce into this union a metric Q' 
by the formula 

Q'{X, y) = } 
Q(^X, y) if X and у belong to the same copy , 

2 otherwise, 

then this new metric space does not possess Property I, because each countable cover 
of it consisting of sets (not necessarily open) with diameters less than 2 contains 
a countable subfamily composed of sets with diameters larger or equal to 1, and 
hence it cannot be a zero cover. 

Now let X be a metric space and let À(X) denote the greatest lower bound of those 
real numbers rj for which X can be represented ais a countable union of its (not 
necessarily open) subsets A„ such that 

(1) Ô{A„) <ц for n = 1, 2, ... and hm ô{A,) - 0 . 

(4.3) A metric space X has Property I if and only ifX{X) < d{X), 

Proof. First of all observe that the value of k{X) will not change if we restrict 
00 

ourselves to open sets v4„ only. In fact, if Z = (J У4„, where A^ are arbitrary subsets 

of X satisfying (l), then for each £ > 0 the generalized open balls Л* = K(^„, sjn) 
are open in X and à{A^) ^ ^{A^ + 2£/n. 

00 

Hence X = и Л*, (5(Л*) < rj + s for each n = 1, 2, ..., and lim d{At) = 0. 
и = 1 « ->̂  00 

This means that the g.l.b. for open sets is not larger than that for arbitrary sets, and 
the converse inequality is quite trivial. 

Applying this we can now say that if X{X) > 0, then no sequence {A^} of open 
sets such that 

Ô{A^ < X{X) for П = 1, 2, ... and hm ô{A,) = 0 
«-+00 
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is a cover of Jï̂ . This means that if X(X) = o(Z), then the space X does not possess 
Property I. 

On the other hand, if À{X) < ô(X), then for each r], 1{X) < r] < Ô(X), there exists 
an open cover {A„} of X which satisfies (I). Since /7 < ô{X), then it is a zero cover 
and thus the space X has Property I. The proof of (4.3) is completed. 

(4.4) For a 0-dimensional Baire space ^ we have A(^) = d{0) ~ 1. 

Proof. It suffices to show that if ^l == [A^ is a sequence of open subsets of ^ such 
that 

(1) Ö{A) < 1 for i - 1, 2, ... and lim ô{A) - О , 
i - * со 

then И is not a cover of ^ . For that purpose let 9l„ denote the set of those Ai, for 
which ô{A^ ^ Ijn, and let W (resp. ^ * ) be the union of all elements of X̂ (resp. ̂ It„). 
By virtue of (1), each 5I„ is finite and %^ = 0. 

Let UQ be the least positive integer for which ^l^^ + ^ ф 0. The diameter of each 
element Ai e ^„^+1 is then ô[A^) = l/(fîo + 1) and this means that to each element 
y4,Gîr„Q+i there corresponds a sequence {c^, ..., c„J of UQ positive integers such 
that Ai is contained in the set of all sequences of the form (c^, . . . , c,,̂ , X„Q+ 1, ̂ „^+2, • • •}? 
where x„^+j are arbitrary positive integers. 

Since ^„0+1 is finite, then there must exist a sequence of UQ positive integers 
[aI, ..., a„J such that no sequence {ßj, ..., a^j^, -̂HO + I? -^no + ii •••} belongs to ^ * ^ . j . 

Assume now that for some /c ^ «Q we have already defined a sequence consisting 
of к positive integers {a^, ...,«;,} such that no sequence (а^, ..., a ,̂ x^^+i, ...} 
belongs to ^Л*+1. The family ^^k+z diff'ers from the family ^l^+i for finitely many sets 
each of which has diameter equal to !/(/<; + 2) and thus is contained in the set of all 
sequences of positive integers (с^, ..., C/,+ i, x^+2^ •••}> where Cj, ..., C/̂ +i are fixed. 
Hence a positive integer %+i must exist such that no sequence [a^, «2, ..., a ,̂ a^+i, 
^k+2, '••} belongs to ^*+2-

In this inductive way we have constructed a sequence {a^, «2, ...} which is not 
00 

covered by 5Ï, because it does not belong to any Щ* and obviously U 51* = 5(*. 
k= 1 

It is a simple corollary of (4.3) and (4.4) that 

(4.5) 0-dimensional Baire space ^ does not possess Property I. 

Let us recall (see [3], I, p. 318) that a(Z) denotes the greatest lower bound of those 
real numbers rj for which metric space X can be represented as a union of finitely 
many (but not necessarily open) sets with diameters Krj. 

Obviously, 

(4.6) For any metric space Z , À{X) ^ a{X) g ô{X). 

Hence and from (4.3) we infer that 
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(4.7) If X is a metric space such that a(Z) < ô(X), then X has Property I, 

However, there exist metric spaces which have Property I and for which a(X) = 
= ô(X). Such is, for instance, the metric space Z of § 3 for which A(Z) = 1 and 
a(Z) = Ô{Z) = 2. 

We shall complete this section with two formal properties of the function A. 

(4.8) Я is monotone, i.e., if Y a X then X{Y) й K^). 
CO 

The proof is trivial, because if X = IJ Л„, where ô{Ä)f^ < /7 for n = 1, 2, . . . and 
00 / 1 = 1 

lim ô{A^ = О, then Y = \) Yr\ A^ and d{Yn A^ < ;̂  for n = 1, 2, .., as well as 
и -* 00 и = 1 

lim(5(7n Л„) = 0. 
и-+оо 

00 . 00 

(4.9) я is countably subadditive, i.e., A( (J Xf) ^ ^ Я(Х^). 
i = 1 t = 1 

00 

Suppose the contrary, i.e., that there exists a metric space X such that X =^ [J Xi 
00 00 i = 1 

and À{\J X^) > YJK^I)' ^^^^ means that for each i = 1, 2, ... there is a number 

?7,- > 0 such that Я(Х,) < /;̂ - and 
00 СХЭ 

(1) л(и^,) >!'/;• 
/ = 1 i=l 

GO 

By virtue of À{Xi) < rji each set Xi can be decomposed into a union X^ = (J Л,̂  

such that ^(v4,') < f]i for TÎ = 1, 2, . . . and lim ^(^^) = 0. Ordering all sets A^ into 
«-+ 00 

00 

a single sequence {^л}^^1,2,... we infer that X = \J B^ and that 

00 00 

ô{B,) й sup r,i й}:т<К^х,), 
i 1 = 1 i = l 

00 

and since by (1) the series ^rji is convergent and therefore lim f]i = 0, also 
i = l * 00 i-+oo 

lim ö(B,^) = 0. But this is a contradiction with the value of Я( (J X,). 
ft -> 00 i = 1 

5. Property П. This Property appears to be the most regular one. For instance, it is 
hereditary while Property I is not and Property III only partially, and it is also count-
ably additive. 

(5.1) Property II is hereditary, i.e., ifX is a metric space which possesses Property 
II and Z cz X, then Z also has Property IL 

Actually, if Z is a single point, then it enjoys Property II by the definition. Thus, 
let <5(z) > 0. If {Л„} is a zero base for X, then {Z n A„} is a base for Z consisting 
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of sets with diameters tending to 0. And since from any base in a metric space 
we can remove all sets with large diameter without changing the property "to be 
a base" (cf. [3], p. 133), then in order to receive a zero base for Z it suffices to re­
move from the base {Z n ^„} all sets Z n A,^ with ô[Z n A,^) = ô(Z). 

GO 

(5.2) Property 11 is countahly additive, i.e., if X is a metric space, X = [J Â ,„ 
n --= 1 

and each member X„ has Property II, then the space X itself also has Property IL 

Proof. Let (^„,/c}/c=:i,2,... be a zero base for X,„ n ^^ 1, 2, ... Choosing arbitrarily 
s > 0 consider the generalized open balls 

Al, = K{A,^„slnk), П,/c = 1,2, ... 

Obviously, ô(A^j^)-^ <^{^n,k) + ^e/n/c and thus, for a fixed n = 1,2,..., 

(1) lim ô{Al,) =^ 0 . 

This means, in particular, that the sets У1*Д, where n is fixed and ic = 1,2,..., form 
a base for X„. Hence we may assume that (after, perhaps, removing some of the sets 
Л* fc v/ith large diameter) 

(2) (5(Л*д) < - min [1, ô{xy] for each k=l,2,... and n = 1, 2, ... 
n 

Ordering now the double sequence {{^*,/Jfc=i,2,...}« = i,2,... ii^to a single one 
{^/}/-i,2,... we shall show that it is a zero base for X. 

00 

Actually, it is a base for X, because it is a base for each X„ and X == \J X„. More-

over, it is a zero base, because, by virtue of (l) and (2), for each t] > 0 there are only 
finitely many sets Б^ with ô(Bi) > ц, and this impHes lim d{Bi) = 0. Also, by (2), 
ö{Bi) < ö{X)forl = 1 , 2 , . . . '-^"^ 

To show that Property II is not productive we need some characterization of it. 
Before turning to this question let us insert here, for the sake of completeness, a simple 
observation 

(5.3) Let f : X -> Y be an open mapping of a metric space (X, Qi) onto a metric 
space (Y, Q2), and such that 

Qi{x, y) ^ Q2[f(x), f{y)] for all X, yeX . 

If X enjoys Property II, then Y does it too. 

Proof. If [A„} is a zero base for X, then the sequence {f(A„)] of sets open in У is 
a base for 7 such that 

Ит / (Л , ) = 0 . 
7J-*00 
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Removing now, if necessary, sets/(^„) with diameter (5[/(^J] = Ô(Y) we obtain 
a zero base for Y. 

Let us turn now to some characterizations of Property II. 

(5.4) A metric space X has Property 11 if and only if there exists an increasing 
sequence {Nj,} of its finite subsets iV/̂  such that each point of X belongs to K(NJ^, ijk) 
for infinitely many к = 1,2, ... 

Proof. The condition is sufficient. Actually, the countable family of open balls 

(1) K{p, Ijk) , where peNj, and /c = 1, 2, ... , 

is a base for X, because each point of X is contained in arbitrarily small balls of the 
form (l). Since each iV̂^ is finite, then ordering balls (l) into a sequence {K„} we have 
also lim (5(iCj = 0. Removing now, if necessary, from the base {K„} all sets K„ with 

diameters (̂-K„) = ô[X) we get a zero base for X. 
The condition is necessary. Indeed, if ЭД is a zero base for X, then replacing each 

и E% with ô(U) < 1 by an open ball K(p, ijk), where к is the largest integer such that 
ô(U) < Ijk and p eU,we obtain another zero base for X. This is so, because each U 
is contained in the ball K(p, ijk) by which we have replaced it and therefore the family 
of these balls forms the base for X. Furthermore, if for some /CQ there would be 
infinitely many balls with radius l//co, then there would be also infinitely many U's 
from the original base 41 with diameter ô{U) ^ l/(^o + 1) which is impossible as ^ 
is a zero base by hypothesis. It remains then, if necessary, to remove all balls К with 
diameter ô{K) = ô{X). 

Now, since the family of balls K(p, ijk) forms a zero base for X, then denoting 
by N[ the set of centers of balls with radius ijl, we obtain a sequence of finite sets 
{N[}i=i,2,... with the property that each point of X belongs to X(iVJ, 1//) for infinitely 

k 

many I = 1,2, ... Putting then Nj, = [J N\ we get a non-decreasing sequence of 
finite sets with that property. ^" ^ 

The coefficient Я(Х), which has helped us to give a characterization of metric 
spaces that have Property I (cf. (4.3)), enables us also to prove the following simple 
characterization of metric spaces that have Property II. 

(5.5) A metric space X has Property II if and only if ^{X) = 0. 

Proof. If X has Property II, then there exists a base {A^} for X such that 

Ô{A„) < Ô{X) for n = 1, 2, . . . and Hm ö{A„) = 0 . 
И-> 00 

Given any rj > 0, we remove from the base {A„} all sets A^ with ô(A„) ̂  rj and 
thus remain with a base {B^J such that 

(1) ô{Bl) <rj for w = 1, 2, ... and Hm ô{Bl) = 0 , 
m-^oo 

which proves that À(X) = 0. 
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Conversely, if 2(Z) — 0, i.e. if for each .»7 > 0 there exists an open cover {^5^ ,̂̂  j 2,... 
of X for which (1) holds, then considering the sequence of covers {^i'"'}m=i,2,... ^^^ 
к = ко,кд + 1, ,.., where kg is a positive integer such that l//co < S[X), and ordering 
this sequence of sequences of open sets into a single one, we can easily verify that it 
is a zero base for X. 

Now we may show that Property II is not productive. Indeed, as we have already 
proved in (З.З), the metric space ^Q satisfies Я(^о) = ^ and so, by (5.5), it enjoys 
Property II. However, by virtue of (3.4), the cartesian square ^Q X ^Q possesses 
even not so much as Property I! 

Further on v/e shall establish a sufficient condition under which the cartesian 
product of two metric spaces enjoying Property II does it too (cf. (6.7) below). 

It is a trivial conclusion from (5.1) that if a metric space X has Property II, then it 
has it locally, i.e., for each point p eX there exists an open (even arbitrarily small) 
neighbourhood U which has Property II. In what follows we shall need a lemma which 
concerns the converse of this remark for metric separable spaces. 

(5.6) If a metric separable space X has Property II locally at each point p eX — A 
and 1{A) = 0, then X has Property II globally. 

Indeed, if for each point p eX — A there exists an open neighbourhood U which 
has Property II, then by Lindelöf Theorem ([2], p. 49) there is a countable subcover 

00 

{Uk]k=i,2,„. of a subset X — A, and thus X = A и \J Uj,. Since each member on the 
/ c = l 

right-hand side of the last equation has Property II, then by (5.2) we infer that X 
itself also has Property II. 

Now we are about to draw some conclusions from what we have proved so far. 
First of all observe that for a totally bounded metric space X we have a(X) = 0 and 
so, by (4.6) and (5.5), 

(5.7) Each totally bounded metric space has Property IL 

By a countably totally bounded metric space we mean any metric space which is 
a union of countably many totally bounded sets. From (5.2) and (5.7) we infer that 

(5.8) Each countably totally bounded metric space has Property IL 

It is well known that compact metric spaces are totally bounded (cf. [З], II, p. 2). 
Hence and from (5.1) and (5.7) it follows that 

(5.9) Each subspace ^) of a compact metric space has Property IL 
An F ̂ -absolute space is a union of countably many compact spaces. Lemmas (5.1) 

and (5.8) imply the following generahzation of (5.9): 

(5.10) Each subspace of an F „-absolute metric space has Property IL 

"̂ ) By a subspace of a metric space (JT, Q) we mean any metric space ( Г, Q') such that Y cz X 
and ^' = ^ I r X r. 
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In particular, if X is a complete metric and F^-absolute space, then X has Property И. 
However, there exists a complete metric space which enjoys Property II but is not 
F^-absolute (e.g., the space ^Q of § 3). 

A locally compact metric separable space is by Lindelöf Theorem an F^-absolute 
metric space. Hence we infer from (5.10) that 

(5.11) Each subspace of a locally compact metric separable space has Property IL 

In particular, 

(5.12) Each subspace of a Euclidean space has Property II. 

Although conclusions (5.7) to (5.12) may lead to the conjecture that the family of 
metric spaces which possess Property II is enormously vast, it is good to remember 
that equally many metric spaces have not that Property. For instance, 0-dimensional 
Baire space J* and any m.etric space containing ^ isometrically do not enjoy Property II. 

From this it follows, by a comparison with (5.12), that no metric space containing ^ 
isometrically (in particular, J* itself) can be embedded isometrically into an Euclidean 
space. However, it is well known (cf. [6], p. 177) that J* can be embedded topological-
ly into 1-dimensional Euclidean space. 

6. Nucleus Jc, We shall say that a metric space X is locally, at a point p, countably 
00 

totally bounded if it contains an open neighbourhood U of p such that U = \J Pj^, 
k=i 

where each Pj^ is totally bounded. The set of all points q at which X is not locally 
countably totally bounded will be called a nucleus and denoted by Jl. 

(6.1) If X is a metric space, then the nucleus X is closed in X. 

Indeed, if p E X — X, then there exists an open neighbourhood U of p which is 
a union of countably many totally bounded sets. Hence each point q of U also 
belongs to Z — ^ and so U cz X — JC. This means that X — X is open or, in other 
words, that ^ is closed. 

(6.2) If X is a metric separable space, then X = X, i.e., X is at no point of it 
locally countably totally bounded. 

Proof. To prove that X = X suppose the contrary. For some point p e Jt there 
exists then its open (in ^) neighbourhood V which is countably totally bounded 

00 

(1) V = \J W,, and Wf, is totally bounded for each Ic = 1, 2, . . . 

Let и be an open subset of X such that U n X = F (cf. [3], I, p. 25). Hence the set 

(2) и = (U — J{) и V is an open (in X) neighbourhood of p . 
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Since ^ is closed in X, then U — Ê is open in X. For each x eU — Л there exists 
then an open in X neighbourhood U^ a JJ — X which is countably totally bounded. 
By virtue of Lindelöf Theorem there is a countable subcover {L/J of Î7 — ^ . Let 

00 

(3) и. = (J p.J, where P̂ y is totally bounded for each ij = 1, 2, . . . 

In view of (l), (2) and (3) we have then 

00 00 00 

u = [J \JPijyjVw,, 

whence we infer that p eX — X. A contradiction. 

(6.3) Let X be a metric separable space. Then ^ = 0 if and only ifX is countably 
totally bounded. 

\ Actually, if Z is countably totally bounded, then obviously it is also locally totally 
bounded at each of its points, which means that X = 0. 

Conversely, if Ẑ  = 0, then for each point xeX choose an open neighbourhood L̂ ^ 
which is countably totally bounded. By virtue of Lindelöf Theorem there exists then 
a countable subcover {U^J of Z and this means that X is countably totally bounded. 

(6.4) If X is a separable metric space, then ^{X) = À(X). 

Indeed, by (4.8) and (4.9) we infer that 

À{X) S К^) S К^) + К^ - X). 

And since as trivially follows from the definition of nucleus, the nucleus ofX — X 
is an empty set, then by (6.3) the set X — X is countably totally bounded and 
therefore, by (5.8), enjoys Property II. In view of (5.5) we have then Я(Х -- ^ ) = 0 
and so, finally, À(Ê) = Я(Х). 

It is an easy consequence of (5.5) and (6.4) that 

(6.5) Let X be a separable metric space. The space X has Property II if and only 
if Я(х) - 0. 

However, as the example of the space ^Q defined in § 3 shows, the spaces which 
have Property II (cf. (3.3) and (5.5)) but whose nucleus X is not empty (cf. (3.2) and 
(6.3)) do exist. 

(6.6) If X X Y is the cartesian product of two metric spaces X and У, then 

X X Y= Î X YKJX X f. 

Proof. If (JP, ^) e X X Y — X x 7, then by (6.1) there exists its open neighbour­

hood и disjoint with X x У which is a union of countably many totally bounded sets 
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и = \JU„, Since the projections VxiX x 7-> X and r^ : X x 7-^ 7are open and 
n = l 00 

preserve total boundedness, then rx{U) = (J rx{U„) is an open neighbourhood of p 
и = 1 

which is a union of countably many totally bounded sets and therefore peX — Ê. 
Similarly, q e Y — f. Hence 

X X Y- X X 7 с (X - X) X (7 - 7) . 

However, since (cf. [3], I, p. 12) 

(X - X) X ( 7 - Î ) = (X X 7) - ( 1 X 7 u X X 7 ) , 

then X x 7 u X x t c X x 7 

Conversely, if (p, q)eX x 7 — (X x 7 u X x f), then peX — X and q e 
eY — Y This means that there exists an open in X neighbourhood U of p which is 

00 

a union of countably many totally bounded sets U„, U = \J U„, and similarly, there 
n = l 

exists an open in 7 neighbourhood F of q which is a union of countably many totally 
00 

bounded sets F„, F = U F„. Since each product Uj, x Vi is totally bounded (cf. [3], 

I, p. 115), then an open in X x 7 neighbourhood U x V of the point {p, q) 
00 

is a union of countably many totally bounded sets, U x V ^^ \J U^ x Vi, and this 
means that (p, ^) e X x 7— X x 7 Hence X x 7 c = ^ x 7 u X x î^and the proof 
is completed. 

As a simple corollary of (6.6) and (6.3) we obtain 

(6.7) Let X and Y be two metric separable spaces both enjoying Property IL If 
both nuclei X and fare empty, then the product X x Ymetrized by the Pythagorean 
formula enjoys Property IL 
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