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ЧЕХОСЛОВАЦКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ 
Математический институт Чехословацкой Академии наук 

Т. 18 (93) ПРАГА 28. 6.1968 г., No 2 

CONTINUA STRUCTURED BY FAMILIES 
OF SIMPLE CLOSED CURVES 

ARNOLD R . VOBACH, Athens 

(Received September 30, 1966) 

1. Introduction. The object of this paper is to generaHze the concept of two-
manifold to include certain spaces which triangulate like a compact two-manifold 
without boundary. Compact, locally connected, metric continua which partition into 
elements whose boundaries fit together Hke the boundaries of the two-simplexes of 
a triangulation of a two-manifold are considered using results obtained by ANDERSON 

and KEISLER [1, pp. 55-58]. 
If there is a sequence of such partitions, with mesh tending to zero, of such a space, 

M, and if successive collections of bounding simple closed curves can be mapped 
"nicely" onto preceding collections, then, for M homogeneous, easy characteriza
tions, obtained by Anderson and Keisler, exist. These "nice" partitions and maps 
correspond, roughly, to successive subdivisions or refinements of a triangulation of 
a two-manifold. It is shown (Section 3) that a space in which a decreasing mesh 
sequence of partitions exists, but for which the maps of successive boundary collec
tions are not given, i.e., a space for which the given partitions lack the sequential or 
"subdividing" nature suggested above is still a space for which a sequential structure 
exists if the following condition is satisfied: If {Pn}^=i is the sequence of partitions 
and Ce Pn+i is a simple closed curve of the (n + l)st, then С n U"=i-P* is the 
union of a finite number of components. 

On the basis of our theorem, by its homogeneity and the Anderson-Keisler 
characterizations, the Menger Universal Curve is excluded from the class of such 
spaces. 

2. Preliminary developments. The definitions of the Greek-letter collections of simple 
closed curves, of inverse incidence system and of x-inverse incidence limit are as in [1]. 

Since our aim is to generalize, in a sense, the concept of two-manifold to cover 
objects which triangulate like two manifolds, it is desirable to generalize the defini
tions of X, Я, fi, v-collections to allow our simple closed curves to fit together like the 
one-skeletons of the elements of a triangulation of a two-manifold. 
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Definition. A finite collection of simple closed curves, G, is called a x'-collection if: 
1) The intersection of any two is an arc or a point or is null; 
2) The intersection of any three or more is a point or is null. If the point p is in 

exactly /1 (n ^ 3) of the elements of G, then there is an ordering Cj, ..., C„, of these 
elements, such that for / = 1, ..., n, 

fare if j ~ i (mod n) , 
[p if j Ф i (mod n) , 

3) G* is connected, and 
4) Except for a finite point set, each point of G* is in exactly two elements of G. 
The definitions for X\ ß' and v'-collections are analogous to those for the unprimed 

case. It is possible to show that a x-inverse incidence Hmit of ^'-collections is still 
a x-inverse incidence limit of ^^-collections, but the proof is very dull. The argument 
amounts to showing that either may be regarded as an ordinary inverse hmit of 
a sequence of finite collections of simple closed curves and that, for a sequence of 
^'-collections, there is an inverse limit in which both it and an appropriate sequence 
of x-collections appear. This seemingly pointless generalization is justified in the 
sequel, where ^'-collections are vastly more convenient to work with. The primes on 
Greek letters are dropped henceforth. 

3. A characterization. We shall show that if a compact, locally connected metric 
continuum M has a sequence of x-partitions with mesh tending to zero, then, even 
though each does not v-refine the preceding and the connecting maps required of 
a x-inverse incidence hmit are lacking, M is still a x-inverse incidence limit if the 
partitions satisfy a finiteness condition with respect to their intersections. 

Our theorem is not the most desirable theorem here; however, to generalize it by 
removing this restriction appears to present grave technical difficulties. 

Definition. The simple closed curve S biseparates M if M \ S is the sum of two 
components. S locally biseparates M if for p e S and e > 0, there is an open set U, 
containing p, and contained in the e-sphere about p, such that S separates U into two 
components with an arc of S as common boundary. 

Tlieorem. Let M be a compact, locally connected, metric continuum with the 
following property: There exists a sequence of x-partitionings, {F„}^=i, of M such 
that: 

1. Mesh F„ ->0, and 

2. С e F„+i implies С n [J^^^Ff has only a finite number of components. Then M 
is a x-inverse incidence limit. [The x~collection {Cj , . . . , C„} of simple closed 
curves in M x-partitions M if each Ci biseparates and locally biseparates in M.) 

The p roof of the theorem requires three lemmas to justify a basic construction 
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and seven more to show that this construction effects a proof. Hereafter, M and the 
sequence {F„} are to be as in the statement of the theorem. ^ 

Lemma 1. The sequence {F„] is such that for each i there is a (5(/) > 0 such that 
if mesh Fj < ô{i), then no element of Fj contains in the closure of its interior the 
closure of the interior of an element of Fj,, 1 ^ /c ^ /. 

We may suppose, without loss of generality, that the original sequence, {F„}^=i^ 
is such that the closure of the interior of no element of Fj contains the closure of the 
interior of an element of Fj, i < j . 

Lemma 2. Each component of Int C^ n ... n Int C„, Ĉ  G FI, is bounded by the 
union of a finite number of simple closed curves. 

Proof. Suppose n = 2, then Bdry [Int Cj n Int С 2] is the union of a finite number 
of arcs from CI [C2 n Int Cj] and from CI [C^ n Int С2], plus a finite number of 
arcs from Cj n C2. 

We show now how these arcs may be expressed as union of a finite number of 
simple closed curves. Consider, in a three-face of a Hilbert cube, a simple closed 
curve identified as Cj. The configuration is completed by adding arcs in the Hilbert 
cube which are copies of each of the open arcs of C2 n Int Cj. At the points cor
responding to those at which C2 crosses Cj from Int C^ to Ext C^, we tie the ends 
to Cj. Where the endpoints of an arc of C2 n Int C^ are endpoints of arcs, possibly 
degenerate, shared by C^ and C2, we terminate them on C^ and identify the arcs 
of Cj (the copy) corresponding to these arcs of Cj n C2 in M. Now, given an orienta
tion on Cj and starting from a point of C^ in Int C2 (We do not really have a problem 
if there are no such points.), we proceed to an intersection with an arc of the copied 
arcs of C2 if such an arc (and intersection) exists. 

Suppose such an arc does not exist. Then either Ext Cj in M is contained in Int C2 
or CI (Int C2) c: CI (Int Cj). We exclude the first case by requiring each of the 
original F / s to contain more than one element and by recalhng the stipulation about 
the Fj's following Lemma 1. In the second case, Int C^ n Int C2 is bounded by C2. 

If intersections of Cj with the closures of the copied arcs of C2 do exist, then we 
proceed, in the given orientation along C^ to such an intersection. This point of inter
section may be a point at which C2 crosses Cj in M or an endpoint of a common 
arc of СI and C2. If this point is a crossing, we turn off on the arc of C2 leading into 
the interior of C^ (See Figure la). 

If the common arc, possibly degenerate, of Cj and C2 is bounded at both ends by 
arcs leading into Int Cj, we turn off onto the first of these in the given orientation 
(See Figure lb). If the arc of C2 n Int C| at which we have arrived leads into Int Cj , 
we turn onto it from C^ (See Figure Ic). (To stay on Cj past the endpoint of the 
common arc and into its interior would be to traverse points which are not boundary 
points of Int Cj n Int C2.) If the arc of C^ n C2 at which we have arrived is bounded 
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at this end by an arc of С2 coming from outside C^, we stay on the common arc of 
СI n C2 and turn off into Int Ĉ  along the arc of C2 at the other end (See Figure Id). 

At the other end of the copy of an arc of C2 n Int C ,̂ we turn onto the arc of Cj 
which is interior to С2 or common to Ĉ  and С2, etc. 

Figure 1 

The set of points traversed in this way is one dimensional, has no cut points and no 
local cut points of order greater than two — a simple closed curve. The same proce
dure for other arcs of C^ n Int C2, not already traversed, gives other simple closed 
curves, and after finitely many circuits all the boundary points (in our copy) of 
Int С Y c\ Int С 2 are covered in this way. The boundary of Int Ĉ  n Int С 2 is a finite 
number of non-overlapping (in the sense that no arc of one is shared with another) 
simple closed curves. 

The proof of the assertion for boundaries of components of Int C^ c\ .., c\ Int C„, 
Ĉ  G Ff, п > 2, is an easy generalization of the argument above. For example, Int C3 
is intersected with the components of Int Ĉ  n Int C2, each of which is bounded by 
unions of curves — instead of just one — and so on. 

Definition. Let, for i > 1, B(Ci, ..., Ĉ ) denote the boundary, the union of a finite 
collection of simple closed curves, of Int Ĉ  n ... n Int C ,̂ Cj G FJ. It will also be 
convenient to denote by P{Ci, ..., Cj) the finite set of points (Lemma 2) common to 
two or more of the simple closed curves of B(Ci,..., C )̂. 

Lemma 3. The sequence {F„}^=i is such that for each z, each B[Ci, ..., C,) and 
each finite subset Q{Ci,..., Ĉ ) of points of B{C^, ..., C )̂, there is a ô = ô{i; C ,̂ ... 
• ••5 Cii ß(Ci,. . . , Ci)) > О such that if mesh Fj < ô, then there is, for each pair of 
maximal open arcs A^ and A2 {or for each pair of simple closed curves or pair of 
maximal open arc and simple closed curve) in B(C^,..., Cf)\Q(Ci,..., Ĉ ) con
nected by a component 0/Int Ĉ  n ... n Int C ,̂ an arc of Fj with endpoints in A^ 
and A2 {or in the pair of simple closed curves or in the arc and in the simple closed 
curve) and otherwise missing B{Ci,..., C,). 
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(This says that for small enough mesh %-collections, Fp the boundary simple 
closed curves of a component of Int Cj n . . . n Int Ĉ  are connected in the Ff 
structure of M.) 

Proof. Consider a component, /<", of some Int Cj n .. . n Int Ĉ - Ф 0, fixed /, 
bounded by the union, Bj^, of some subcollection of the simple closed curves deter
mining -B(Ci, ..., Ci). Consider a pair of maximal open arcs A^ and A2 in Bf^\ 
\ Q{Ci, ..., Cf), with fixed collection ö(Ci, ..., C^). Let С be an open arc in K\Bj^ 

with endpoints in each of A^ and A2- Then there is a ^(C, A^, A2) > 0 such that, 
for an Fj of mesh < ô{C, Ai, Л2), there is a (not necessarily simple) chain, D, of 
closures of interiors of elements of Fj which contains CI С such that there is an arc 
of Bdry D[CZFJ) from A^ to A2 in К\Вк. ô{C, A^, A2) can be chosen as the ô of 
a sufficiently small ^-neighborhood of С in M, 

Since there are only finite numbers of pairings of open arcs like A^ and Л2 in K^ 
and of components in Int C^ n . . . n Int Ci, there is a (5 small enough to serve all 
simultaneously. The argument for a pair of simple closed curves or for a pair con
sisting of a maximal open arc and a simple closed curve is similar. 

Since there is only a finite number of non-empty intersections of interiors of 
elements of {F„}^= 1 and since the union of the sets P{Ci,..., C^ is a finite point set, 
there is a ô{ï) sufficiently small to insure that for Fj of mesh < <5(i), there is for each 
component К of each Int C^ n .. . n Int C ,̂ C^ e Fj,, an arc of F* between each 
pair of the maximal open arcs (or simple closed curves, etc.) of Bdry К \ P{Ci, . . . , C,) 
if Bdry К n P{Ci,..., Cf) Ф 0. We shall suppose, hereafter, that F,-+i is always of 
fine enough mesh to connect the boundary components of each component of each 
Int Ci n ... n Int СI in the above manner. 

We now construct a manifold associated with each collection (F^ , . . . , F^}: Con
sider a copy of Uk=i^*' For each component К of each Int C^ n ... n Int C„ Ф 0, 
Ĉ^ E Fj^, 1 ^ к S п, in M, consider a two-sphere with tubes leading off and "sewn-
in" along each of the boundary simple closed curves (Lemma 2) of К (in the copy 
of Uü = 1^*)? the "end" of one tube for each of the curves. For a component bounded 
by a single simple closed curve, the corresponding manifold is just a disk. In fact, in 
general we shall refer to the component-of-intersection "manifold" corresponding, 
in the copy, to iC in M even though identification of finite numbers of points of the 
bounding simple closed curves makes this inaccurate. It is clear that these component-
of-intersection manifolds - allowed to intersect only on Ufc=î ^* ~ fi^ in all the simple 
closed curves identified with boundaries of intersections, Int Ci n . . . n Int C„ ф 0 
in M and that even along the arcs of the copy Ufe=i^*? we get a space which is locally 
E^ since each "side" of an arc is used as a boundary for a "sewing" just once. 

It must be mentioned here that the tubes leading to the bounding simple closed 
curves of a component-of-intersection manifold cannot be sewn on in a purely 
arbitrary fashion. We might, for example, fill in with a component-of-intersection 
manifold to yield a non-orientable manifold when M was an orientable manifold to 
start with. 
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To make sure the two-spheres with tubes filling in the boundary simple closed 
curves of a component of intersection do so "properly", we must examine an addition
al F^-structure, m > п. Let К be a component of intersection of interiors of elements 
of Fl , ..., F„, in M. Let К have as boundary the collection of simple closed curves B, 
with point set union ß*. By Lemma 3, F„+i is of small enough mesh that the simple 
closed curves of В are all connected by arcs in F*+i. Consider the manifold deter
mined by a copy of the union of {F^, • • -, F„, F„+ J in which the copies of boundaries 
of components of intersections of interiors of elements of F„+i with interiors of 
elements of the other collections are filled in with two-spheres and tubes leading off to 
boundary simple closed curves in an arbitrary sewing. Now the copy of В bounds 
a "manifold" which is a two-sphere with tubes leading to the simple closed curves oï В 
and possibly added crosscaps and handles introduced by the F„+i-structure. If each 
of these extra features is inclosed in a biseparating simple closed curve such that the 
simple closed curves so obtained are pairwise disjoint, and if the closure of the 
interior of each such simple closed curve is identified to a point, the resulting "mani
fold" is a two-sphere with tubes leading off* to boundary simple closed curves. Making 
these identifications for each of the collections F^, ..., F„, gives a manifold determined 
by ( F J , ..., F„} which is "consistent" with later structurings. 

Two observations remain to be made regarding this process: First, there may be 
more than one way to decompose a component-of-intersection manifold in the mani
fold determined by {Fj, ..., F„, F „ + J to get a two-sphere with tubes leading to the 
boundary simple closed curves. However, the "sewing" to the boundary curves are 
at least determined as they must be for finer future structures — orientability or 
non-orientability preserved, for example. Second, since we shrank out the handle-
producing ones in the decomposition manifold, it is clear that it does not matter how 
the two-spheres with tubes filling in interiors of elements of the copy of F„+i are 
sewn in. 

If it is desired — and it will be -- to construct such a copy in a particular Hilbert 
Cube, one might start with a copy of Ufe=i^* ^^ ^ three-face and then, for each 
component-of-intersection manifold added, retreat into a higher dimensional face to 
avoid unwanted intersections. 

It is also natural at this point to require that each component-of-intersection 
manifold, in each such imbedding, have diameter no more than some fixed ö > I 
times the diameter of its boundary. 

Note that there is a natural comparison between M', determined by {F^, ..., F„}, 
and M'\ determined by (F^, ..., F„, F„+i, ..., F^^+j}, j ^ 1. Each is x-partitioned by 
a copy of F;,, 1 ^ /c ^ n. Also, corresponding to each component K, in M, of each 
Int Ci n . . . n Int Cf, C,, e Ffc, 1 ^ /c ^ /, is a component-of-intersection manifold /C„ 
in M' and one, Kn + j , in M'\ By the note following Lemma 3, F„+i represents a "fine 
enough" structuring of M that all the boundary simple closed curves of К are con
nected in the F„+i "framework" of M and hence K^+i is the two-sphere with tubes 
of K„ with, possibly, additional crosscaps and handles. This says that the existence 
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of a x-partitioning collection, P\ of simple closed curves in M' implies the existence 
of a x-partitioning homeomorphic copy, P", in M" of P' in M'. Further, P" may be 
chosen so that the closure of the intersection of F''* with the interor of an element 
OÏ Ff^ in M" is homeomorphic to the closure of the intersection of P'* with the interior 
of the "same" (corresponding) element of F .̂ in M\ 

Consider the manifold Mj determined by the first N of the F^'s. Since it is a two-
manifold, there is a x-partitioning, F, which v-refines each of the x-partitionings of 
the copies of the F^'s. It will be convenient to locate the distinguished points (those 
common to more than two of the curves) of F on U"=iFf for some sufficiently large 
n ^ iV in a manifold M„ structured by copies of each of F^, ..., F ^ , . . . , F„. 

Let p be a distinguished point of F (if there is such a point) which is not contained 
in Uf= 1^*- A homeomorphic copy, F(l), of F may then be chosen in the manifold M2, 
determined by {F^jfJ"/, so that the distinguished point corresponding to p is in 
^^+1 П Int Ci n ... n Int Cjv where Ĉ  is the element of F̂ - in whose interior p lay 
in Ml. This may be accomphshed by "shding" the copy of p in F(l) in M2 over to 
the F;v+i"Structure. Likewise, for a second distinguished point q of P in M\, we may 
require the copy of q in M3, determined by {Fi}^=^, to be contained in F* + 2- The 
net effect of all of this is that from some n = iV + /c on, we have a manifold M,, 
which is x-partitioned by a v-refinement of each of F^, ..., F^ and such that all the 
distinguished points of F lie on U'/=i^f-

Now we need to say something about the "size" of crosscaps and handles in a mani
fold Mfc, determined by {Р}}\=1, some k. Actually, all we really need to discuss is the 
"size" of handles and crosscaps in an M determined by a single F^ —as we shall see 
below. 

In such an M\ consider a handle and denote by U the union of the closures of the 
disk-interiors of a sub-collection of the elements of F,-. U may be thought of as 
bounded by the union, possibly empty, of a finite collection of simple closed curves, 
Bdry U. Let и be such that it contains in its interior a simple closed curve inscribed 
on the given handle which is not homotopic to a constant in M\ We say U contains 
the handle if each such simple closed curve is still not homotopic to a constant in the 
decomposition manifold obtained from U by identifying each of the boundary simple 
closed curves, if any, to a point. This says, that, in some sense, U provides a "base" 
for the handle. 

We define the diameter of the handle in M' to be the minimum of the diameters, 
in the metric of M, of the collections of elements of F^ determining sets U which con
tain it. It is a measure, in terms of the structuring of M' by F,-, of the size of the 
handle. 

Similarly, for a given crosscap, define its diameter to be the minimum of the 
diameters of the collections of elements of F,- determining, with their disk-interiors, 
the sets which contain it. 

We shall wish in the sequel to be able to identify as the "same", handles and crosscaps 
in different manifolds determined by different collections {Fj^^i . To do this we 
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make the following -- promised — basic construction: Consider the manifolds M„, 
determined by {Fj}"=i, imbedded successively in the same Hilbert cube. Let the 
imbeddings be such that each M„ is contained in a finite-dimensional face of the 
Hilbert cube and such that the imbedded manifolds intersect in exactly the copies of 
the Ff^'s. This second condition may require retreating to higher-dimensional faces 
with each such successive imbedding to prevent component-of-intersection manifolds 
from intersecting except along boundaries. If the diameters of component-of-intersec
tion manifolds are kept bounded by a common factor of ô times the diameters of 
their boundaries, as has been our practice, the limit set of the sequence is clearly M. 
We shall presume, henceforth, that such an imbedding has been made for a sequence 

{M„}r=i-
Now handles and crosscaps on some M„, produced by the Fj-structures, can be 

identified with corresponding handles and crosscaps on an M^, m > n, in terms of 
the common points of Ui=i^*- Of course, the corresponding handles or crosscaps 
in the more finely structured M^ may themselves be studded with handles and cross-
caps. 

We may always choose an n > к such that the M" determined by {Fj}"=i repro
duces at least those crosscaps and handles of M\ determined by {Fj}%i9 which are 
obtained by sewing together the manifolds bounded by elements of Fj,, Each such 
crosscap or handle may, as noted above, have additional crosscaps and handles sewn 
on it by the component-of-intersection structurings of the other F/s. Without loss of 
generality, we shall henceforth assume that the basic sequence { F j ^ i of the theorem 
has the property that the manifold M", obtained by filling in with disks the interiors of 
elements of a copy of F^+i is, except for possible additional crosscaps and handles, 
a homeomorph of M\ the corresponding manifold obtained for Fj-. This is what we 
have indicated as possible above, relative to the given sequence of imbeddings in the 
Hilbert cube and with each of the crosscaps and handles in which we were interested 
possibly carrying further crosscaps and handles produced by the other Fj-structurings. 
In fact, since F. + i is already of small enough mesh to connect boundary components 
of a component of intersection, Int Ci n ,.. n Int C ,̂ Cj e Fp and thus to reproduce, 
with possible additional features, the component-of-intersection manifolds chosen 
for Mf, determined by {F-\]=i, we may more generally require that M^+j, obtained 
from {FjYjt.\y is, except for possible additional crosscaps and handles, à homeomorph 
of M .̂ 

Let us now return to our earlier discussion, in which we assume a x-partitioning P 
of M„, determined by {Fj"=,i, which v-refines each of the first N of the F/s and such 
that the distinguished points of P all lie in U"=i^f • Before the next lemma, we need 
to say what we mean by the statement that the arc Л с P*, connecting distinguished 
points of P, separates in the manifold M^ to within e. Suppose we have a not-
necessarily-partitioning copy of P in Mfc, determined by {F^}^=i, к ^ n, such that 
all of A, except for e-small sets containing its endpoints, is contained in \j\=N+i^t' 
This will be the situation in the sequel. Suppose, further, that the copy of P would be 
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a x-partitioning of M^, were it not for the possible existence of crosscaps and handles 
in the interiors of elements of F^ whose diameter-determining collections of elements 
in the collections Fj, j > N, are of diameter ^ s and intersect A n Ui=]v+i-^* in 
their interiors. What this amounts to is that F would be in Mj^ a %-partitioning 
except, possibly, for г-small crosscap and handle "leaks" in the neighborhood of A, 
With this definition and M„ and P as above, we have: 

Lemma 4. Let A be an arc of P* intersecting the distinguished points of P only in 
its endpoints, p and q. Let A be contained in CI (Int C), С e F„, For each a > 0 
there is a к > n such that in the interior of С in Mk, determined by {i^Ji^i, there 
is an arc, A{e), between p and q which separates to within в [A copy of P may be 
inscribed in My. which agrees with P in M„ on P* n U"-i^*) ^^d which is contained 
in P*, except for two mutually separated sets of diameters < e, each containing 
one of p and q. 

Proof. Let к be large enough that д times the mesh of P^ îs < г, {ô the bound on the 
size of the component-of-intersection manifolds), (^/2) /c < e, and that p and q in M^ 
are in the closures of the interiors of disjoint elements of P^ in M, Further, let к be 
large enough that p and q do not lie in the closures of the interiors of any elements 
of Pfc which are in minimal diameter collections containing handles or crosscaps of 
diameter ^ г. Our imbedding of the manifolds in the Hilbert cube, agreeing on the 
P*'s, again permit us to identify those handles and crosscaps for which diameter-, 
defining collections, when they appear, will always be as big as e in each manifold. 
Still further, let к be large enough that there exists, for each crosscap and handle of 
diameter ^ e, a minimal diameter collection containing it, with closure missing С 
Consider M^ minus the interiors of those elements of F^ which are elements of a mini
mal diameter collection determining the P^^-diameter of each crosscap or handle of 
diameter ^ e, one such collection for each crosscap or handle. (This may require us to 
choose an P^ of still smaller mesh.) Subtract also those arcs of P* which in this new 
space have had the interiors of elements on "both sides" removed — but only if they 
were removed as interiors of the same crosscap or handle collection. We are, in effect, 
leaving the "outer" boundary of each such collection intact. 

We claim that what is left of M^ is connected : Each of the sets — let us denote them 
by C/j, . . . , t/,„, some m — which has been removed is the union of the interiors of 
elements of Fj^ plus common boundary arcs. Hence, each of these sets, and each com
ponent of Uj n [Ji^jUi, j = 1 , . . . , m, is an open set bounded by the union of a finite 
number of simple closed curves in P*. Removing these non-overlapping open sets 
(the components) does not disconnect the manifold M^. It is now possible to pass an 
arc in the remainder of the P*-structure interior to С from near ( < 8) p to near q. 
Any crosscaps or handles preventing separation by such an arc will necessarily be of 
diameter < e (less than ô times mesh P/,, in the usual sense, for component-of-inter
section manifolds in Int C). To complete our arc A[s), and to get it to terminate at p 

203 



and q, it will, in general, be necessary to leave the F*-structure — but only within e 
of each of p and q — and finish the arc in what is left of M^. The remaining arcs of 
a copy of P may now be inscribed with the result that the arc A{s) of P separates to 
within г in M^. 

Lemma 5. Let A be an arc of P connecting distinguished endpoints p and q 
€ U " = i ^ * Ш CI (Int C), С E F„ in M„. Let A contain no other distinguished points 
of P. Then there is a sequence of arcs, {Л(|)}^^1, each Л(г) of which separates to 
within 1/2̂  in M„, determined by (^y}"Li, HJ ^ n,_i ^ . . ^ n; each is contained, 
except for two disjoint sets of diameter < \\2\ each containing one of p and q, in F*., 
and each is such that the limiting set of the sequence is an arc. A, between p and q. 

Proof. By Lemma 4, each A{i) exists; the problem here is to show that they may 
be chosen so that the hmit set is also an arc. 

Since A{i) separates to within 1/2' in M„. and A(^i 4- 1) to within 1/2'"*"̂  in М„.^^, 
we may choose n, + i sufficiently larger than ni, and mesh F„.^^ sufficiently smaller 
than mesh F„., that A[i -\- 1) n F„.^^ need be "perturbed" by no more than (5/2', the 
bound on the diameters of crosscaps and handles it must skirt but A(i) n F*. need not, 
from the position of F(i) n F*. in the Hilbert cube in which all are imbedded. Further, 
even the corresponding subsets (at each end) of A{i + 1)\F*.^^ and of A{i)\F^. 
in M„.^j need not be more than (5/2' apart. In short, A[i + 1) and A(i) need be 
"crooked" with respect to each other on sets of diameters no greater than (5/2'. 

This allows us to assert the existence of a homeomorphism hi : A(i) -> A{i + 1) 
such that hi{p) = p and hi{q) = q and the distance in the Hilbert cube (or in M) 
between x e A{i) n F*. and /ij(x) is Kôjl'. We are requiring, as we may, that hi(A{i) n 
n F*.) с A(i + 1) n F*.^^. We wish now to show that the family, {A{i)}'^=i, of arcs 
is equicontinuous^) and hence that the hmiting set. A, is also an arc. 

In the Hilbert cube, the limit set. A, of the A(f)'s is a continuum containing p and q. 
We may require of the /i/s that, in fact, for all x e A(i), the distance in the Hilbert 
cube between x and hi{x) is less than SjlK Now, given г > 0, first let / be large 

00 

enough that 2ô ^ 1/2̂  < sj2 and then let 0 < y' < e/2 be small enough that if xy is an 
j= i 

interval of A[i) of diameter less than y', each of the intervals /zf_\(xy) and h^^h^^^ ,.. 
. . . hj}i{xy), 1 ^ ^ ^ f — 2, is of diameter less than s. This last takes care of the 

00 

first / homeomorphs of xy and the diameters of the rest are less than y' + 2^ ^ 1/2-' < 

< e. Thus, if we choose our y' to be the y of the definition of equicontinuity, we have 
shown {A[i)}^=i to be equicontinuous and then, as is well-known, A is an arc. 

^) A collection G of arcs is equicontinuous if, for every s > 0, there is a y > 0 such that if x 
and y are any two points of an arc .̂^ e G at a distance apart less than y, then the diameter of the 
interval xy of g is less than e. 
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Lemma 6. There exists in M a copy of P in which each of the arcs between distin
guished points {and containing none in its interior) is the limit of a sequence of arcs 
of the Ä[iytype described in Lemma 5. 

Proof. We have already seen in Lemma 5 how to obtain in M one such of the arcs 
connecting distinguished points of P. Let us suppose that, given an ordering of the 
finite number of such arcs composing P, we have constructed, in M, the limit arcs, 
{^j}j= 1, of the first к of them and wish to construct the [k + l)st. 

Even though they may share endpoints, there is an open set O^, i = I, ..., k, 
containing the interior of each Л ,̂ / = ! , . . . , к, in M such that the O -̂'s are pairwise 
disjoint, and such, in fact, that their closures intersect only at the distinguished 
endpoints of the arcs they contain. We may require the 0 / s to contain only points 
sufficiently near their respective Л/s that M - \j]=i^j is connected. In addition, we 
require the O/s to be small enough in M about their respective arcs that for n ^ 
^ some N there is enough of the copy of F* \ U)=iOj left to provide in M„, deter
mined by { F J " = I , homeomorphs of each of the crosscaps and handles in each of the 
elements of F^ in Мдг. In other words, the 0^'s are to be "unobtrusive'' enough to 
permit, for some N, the F^-structure except, possibly, near ( ^ mesh F^) its distin
guished points. 

Now in a sequence of arcs, {^/c+i(0}r=b l/2'-separating approximations for A^+i 
in the M„'s, from some / on, corresponding to some sufficiently richly "veined" 
F„.-structure, the ^ + i ( / ) ' s can be chosen, except for l/2'-small sets containing their^ 
endpoints, in U"=iF* \ U i= iö j iî  ^m- Hence, the hmiting set, Д + i , will intersect 
Uj-=i^j, if at all, only in its endpoints — from which the conclusion of the lemma 
follows. 

Lemma 7. Each simple closed curve С of the x-collection P, constructed in 
Lemma 6, separates {and biseparates) in M. 

Proof. Before we can claim С separates in M, we must indicate the subset claimed 
to be the interior of С We proceed to a definition of the "interior" of C: Our con
struction, one at a time, of the limit arcs Aj, j = 1, ..., L, which determine P in M 
was undertaken in Lemma 6 so that approximations to the [k + l)st arc avoided, 
for large enough subscripts, those parts of F^-structures contained in certain open 
sets (of M), {OjYj=i, containing the interiors of the first к limit arcs. This says that for 
some sufficiently large io, all approximations Äj{i), i > io, are disjoint except, possibly 
in small open sets containing their distinguished endpoints. In each of these sets, in 
each of the M„.'s, we can alter, without affecting the limit arcs, the approximating 
arcs Aj{i) — which needn't be carried in U"=i^i here anyway - so that the ^ / 0 ' ^ 
intersect only at the distinguished points of F. The result is a %-collection of simple 
closed curves with union homeomorphic to F*, each element of which separates to 
within 1/2' in M„. ~ with the natural extension for simple closed curves of our defini
tion of l/2'-separation for arcs. Let us denote by C(f) the simple closed curve cor-
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responding to С in the copy of P in M„., i > ÎQ. Each C(i) has a naturally defined 
"interior", i.e., those points of M^. which would be interior to C{i) were it not for the 
possible existence of crosscap and handle "leaks" of diameter < 1/2'. To put it another 
way, each of the crosscaps and handles of diameter < l / 2 ' in M„. is contained in 
a set made up of the interiors of elements of F„. and of arcs of JF*. adjoined on both 
sides by these interiors. If each of these connected sets is decomposed to a point, then 
in the decomposition space, what is left of C(i), not necessarily a simple closed curve 
anymore, separates. Those points of M„. which were in the interior of С in the copy 
of P in M„. and which are separated from the rest of M„., decomposed, by C(i), 
decomposed, we call the interior of C{i). ^ 

We define the interior of С in M to be the limiting set of the sequence of interiors 
of C(i), i = 1 , . . . It is easy to see that С separates the interior of C, so defined, from 
the rest of M: Suppose p is in the interior of С and ^ is a point of M in neither С 
nor interior C. Then, if С does not separate p from q in M, there is an arc Ä in M, 
missing C, with endpoints p and q. A is contained in a chain, not necessarily simple, 
of closures of interiors of elements of F̂ -, each i, in M. For large enough i > some ZQ, 
and small enough mesh F^, these chains will also miss С Each such chain of Fj,-
elements, к > ÎQ, then contains an arc A^ in F* in M (and in M„., Uj ^ k) from the 
element of Fj, whose closure contains p to the element whose closure contains q. 
Consider what must happen for a fixed к > ÎQ with Aj, missing С Since M„ .̂, some 
Uj > /c, contains Aj, and since M„. contains only crosscaps and handles of diameter 
> 1/2', for some i, the l/2'-separating simple closed curves, C(f), must intersect A^ 
from some i on. This implies the Hmiting set С intersects Aj, as well, a contradiction. 

It is clear from the increasingly rich "veining" or "webbing" of the interiors of the 
C(ï)'s, as i increases, that interior С is connected, implying that С not only separates 
but biseparates as well. Another way of seeing this is to observe that the interior of C, 
where "interior" now has the usual meaning, is the limiting set of the sequence of 
connected sets {interior C{i)}f:=i and is thus connected. We shall prove biseparation 
in still another way in the sequel. 

The next, and perhaps most natural step would seem to be to show each element 
of P locally biseparates. This, however, will be a very simple consequence of showing 
that M is the inverse limit, in the ordinary sense, of a sequence of ^-collections each 
of which v-refines the preceding (except, possibly, for local biseparation by each of 
the elements). 

Lemma 8. There exists a x-collection P' in M which v-refines (except, possibly, for 
the local biseparation required in the definition of v-refining) each of F^^+i and the 
K-coUection P of the preceding lemmas. 

Proof. Let PQ be a x-partitioning of M^, determined by {Fj7=i5 some m > N -\-
+ 1, which is homeomorphic to P in M and has all its distinguished points located 
at the corresponding points of P in M (They are also in M^). 

Now P, in M, and F]^+1 may not, as collections of simple closed curves in M, have 
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the finite-number-of-components-of-intersection property of the theorem and the 
sequence {Pj^^i . We may, however, choose Po in M,„ to be such that each simple 
closed curve of PQ intersects each of the curves of Рдг+i in only a finite number of 
components. Let PQ be a v-refinement of each of PQ and P]sr+1- Let n ^ m be chosen 
large enough so that the distinguished points of PQ which are not in P* are in U"= i^f-
This is a convenience we have justified before. 

The strategy for the remainder of the proof will be to alter PQ slightly so that the 
remaining distinguished points of PQ (in P*) are points of P in M. Then, if each of the 
original arcs between distinguished points of P in M can be rederived as unions of 
arcs between original distinguished points and the newly added distinguished points 
of the altered PQ, we shall be able to fit in the remaining necessary limiting set arcs 
for P', a homeomorph of PQ — just as we constructed P in Lemma 6. 

In M„, each arc of PQ, with distinguished points of PQ at each end and none in the 
interior, will, as an arc of PQ*, contain no more than some к distinguished points 
of Po in its interior. Our problem is to find к "accessible" points on each such arc, 
Ä, of P* in M (distinguished endpoints and no interior distinguished points) which 
are available for use as distinguished points of PQ. Suppose, for example, that a "tail" 
of the closure of the interior, in M, of an element of Fiv+i spirals down around 
a point p, possibly distinguished, of P* as "vortex". Clearly, p, now also a point 
of P^+i need not be used as a distinguished point of the v-subcollections of PQ V-
refining the elements of P^y+i in M^ which contain it. It must also not be used as 
a distinguished point of the v-subcollections refining the elements of P in which p -
lies, and we must show that other points of P* are available for such use. 

Each arc A, as above, of P* is either contained in P* + i or contains a segment, A^, 
disjoint from P^+i- Choose n' > n large enough that, in M, each such arc A of P*, 
or arc A^ if it exists, contains at least к different points of F*. Now, back in M„,, 
determined by {Pj /Li , we consider a copy of PQ with distinguished points of PQ 
in Ui=iFf located as before. We modify Po by "sliding" the arcs of Po containing the 
remaining distinguished points of PQ (in PQ) over to the P*-structure at a finite number 
of points to make the remaining distinguished points coincide with points of P* n P*. 
in M. (Our choice of n' guaranteed the existence of enough such available points.) 
The arcs of Po which terminated at these "transported" points may be made to 
"trail along", preserving PQ as a partition. Another way of describing the process 
above is to say that some or all of the arcs of Po, not contained in Uf= ^pf (The arcs 
of Uf=iFf r^P"^ are fixed), be required to contain finite numbers of points of 
F^'\F^^i in M„.. These points are then to be used as the remaining (not already 
fixed in U"= iFf ) distinguished points of P'Q. 

One more comment needs to be made regarding our latest version of PQ. Some of 
the points of Po, which may also have been points of P, may have had to be abandoned 
as distinguished points of the refinement, Po, of both F„+ ^ and Po — for example, the 
"vortex" point p above if it were in F*. Such points, traihng their attendent arcs, get 
carried into "safe" open arcs, like the arc A^ above, and we may find we have 
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"stretched" or "squeezed" the original simple closed curves of PQ (in M^) in our new 
manifold M„, to produce a not-necessarily-x-partition not-necessarily v-refining 
each of PQ and F^v+i- The trouble is that simple closed curves of PQ may now be 
pinched together or they may intersect one another in more than two components — 
contrary to the requirements for a x-partition. It is possible, however, to re-estabhsh 
from PQ a x-partitioning v-refinement of each of F;v+i ^rid the copy (in M„') of PQ, 
determined by PQ, by subdiving interiors of elements of PQ with spanning separating 
arcs finitely often. We shall call, for reasons of notational simphcity, this new collec
tion of simple closed curves PQ again. It is important to note also that this readjust
ment requires the addition of no more distinguished points in P*. Thus, we shall 
presume that n and n' (possibly rechosen) are large enough that all the remaining 
distinguished points (in P*) ^^^ ^^ ^t'^^N+i- Although this amounts to choosing 
two integers greater than or equal to each of the original n and n\ we shall for 
subsequent simplicity keep the same notation for the newly selected integers. 

We are now in a position to apply Lemma 6, with N -{- 1 replacing N, and PQ 
(or P ' in M) replacing P in the statement. In fact, much of the construction of P' 
in M (P'* n P*) is already completed. If the arcs of PQ with distinguished points as 
endpoints and containing no distinguished points in their interiors are, enumerated, 
{Л,.}^=1, then since the distinguished points are all in \J1=xFf, we may proceed as in 
the proof of Lemma 6 — with the following convention. Whenever the arc Aj^ of PQ 
is a subarc of an arc of Po, the hmiting set arc Af, of the sequence {Ak{i)}'^= i has already 
been produced for us as a subarc of an arc of P* in M. The result of the construction 
is a homeomorphic copy, P\ of PQ, each element of which biseparates in M, and which 
v-refines (except, possibly, for local biseparation) each of P and Pjv+i-

Lemma 9. M can be represented as an inverse limit space, lim ( { P j ^ i , {fi]T=i)y 
where each P^ is a x-collection of biseparating simple closed curves v-refining 
[except, possibly, for local biseparation) Pj_i and fi :Pi+i -^ Pi is any natural 
map taking the interior v-subcollections of P^^^ onto their boundary simple closed 
curves in Pi, i.e., the identity on Pf+i n Pf. 

Proof. We note that the mesh of P above is ^ mesh Fj^ ^ 1/2^ and mesh P ' 
above is ^ mesh P̂ v + i — ijl^'^^. Lemma 8 is the inductive step in the construction 
of a sequence, {P,},^i, of the x-collections of biseparating (Lemma 7) simple closed 
curves of mesh < l / 2 ' each of which v-refines (except, possibly, for local biseparation) 
the preceding. Since the meshes of the P,'s tend to zero, the interiors of the simple 
closed curves of the P /s and the interiors of simple closed curve bounded open sets 
with boundaries in the P /s form a basis of open sets for M, and the representation 
of M as an ordinary inverse hmit of the P,-sequence is immediate. 

Finally: 

Lemma 10. Each of the simple closed curves of each of the P /s above locally 
biseparates. 
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Proof. Let p be a point of a simple closed curve, C, of P,-, some /. Then p is interior 
to an arc of each of two simple closed curves formed, possibly, by the union of two or 
more simple closed curves of some Pj, j > z", such that each simple closed curve 
separates M, and their union is of suitably small diameter and their union is bounded 
by a single simple closed curve which contains p in a spanning separating arc of C. 

Now, finally, we can remove the nagging parenthetical restriction regarding 
v-refinement by the P /s above. 

Note. Since M is connected and each С e Pi, separates and locally biseparates, it 
biseparates M. This is another proof of earlier observation. Since Clocally biseparates, 
there is a connected open set in its interior, of which it is a boundary component, and 
also a similar connected open set in its exterior. These connected open "bands" on 
either "side", since M is connected, provide places for arcs to link pairs of points in 
the exterior and in the interior of C-biseparation. 

Proof of Theorem. Since we now have in M a sequence of ^-collections, { P j ^ i , 
each of which x-partitions M (which requires biseparation and local biseparation) 
and each of which v-refines the preceding, with mesh tending to zero with i, we have 
shown M to be what we called a x-inverse incidence limit ~ the conclusion of the 
theorem. 

4. Conclusions. Since the converse of the theorem is obviously true for %-inverse 
incidence limits, we have obtained a characterization of such spaces. Neither of these 
is, perhaps, surprising. It is however, surprising that the Universal Curve should not 
have a "nice" (in the sense of the theorem) sequential, or %-inverse incidence limit, 
structure. 

The Universal Curve has a neighborhood basis in which the boundary of each 
element is a simple closed curve which biseparates and biseparates locally. If, however, 
a given Universal Curve had a sequence {P„}^= i, of x-partitionings with mesh tending 
to zero, such that for С G P„4. i, С n \J% ^Pf was a finite number of components, and 
such that the elements of Pj, j = 1, ..., biseparated and biseparated locally, then it 
would be a x-inverse incidence limit. Hence, by its homogeneity and the Anderson-
Keisler theorems it would be a P or T-sphere and thus two-dimensional. In short, for 
a given Universal Curve, one or both of two things must happen: First, there is no 
decreasing mesh sequence of x-partitions, nice with respect to one another. Second, 
if there is such a sequence, there is a non-zero lower bound on the mesh of the parti
tions. The first possibility seems unlikely, but the natural generalization of our 
theorem, which would imply the second, is beyond the author. 

While this is a negative sort of characteristic to ascribe to the Universal Curve, it 
does suggest how higher dimensional universal spaces ought not be to constructed. 
Further, since the techniques we have used depend on simple considerations of mani
fold theory, generalizations of our definitions and results to higher dimensional 
cases, with collections of bounding two-spheres, for example, are naturally suggested. 

209 



Acknowledgment. The author wishes to express his gratitude to his thesis advisor, 
Professor R. D. ANDERSON, whose incisive observations and vast patience made 
possible the present work. 

References 

[1] Anderson R. D.: Homeomorphisms of 2-dimensionai continua in General Topology and its 
Relations to Modern Analysis and Algebra, Proceedings of the Prague Symposium, 1961; 
Publishing House of the Czechoslovak Academy of Sciences, Prague. 

Author's address: Athens, Georgia, U.S.A. (The University of Georgia, Department of 
Mathematics.) 

210 


		webmaster@dml.cz
	2020-07-02T20:53:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




