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ON A CERTAIN CLASS OF Л-STRUCTURES. I. 

STANISLAV TOMÂSEK, Libérée 
(Received December 12, 1965, in revised form August 31, 1968) 

Introduction. The purpose of this paper is to present a systematic discussion of 
Л-structures on uniform spaces.*) 

The concept of a Л-structure was introduced by M. KATETOV in [17] and [18]. 
Further resuUs were obtained by M. KATETOV (cf. [19], [20]) and by D. A. RAIKOV 
(cf. [26]). Some aspects of the algebraic part of Л-structures have been partially 
studied in the integration theory (cf. [4], [16]). This point of view was applied for 
the first time in [25] as a tool of investigation in some questions of compactness in 
locally convex spaces. 

In further considerations we shall be concerned with Л-structures on uniform 
spaces. The case of a completely regular space may be included in the preceding one. 

The main idea of Л-structures consists in embedding of any uniform (completely 
regular) space X into a locally convex space E{X) (cf. [18]). This embedding depends 
on the continuity structure of X and may, of course, satisfy different sorts of con
tinuity. The space E(X) endowed with an algebraic-topological structure makes it 
possible to apply the technics of locally convex spaces to diverse investigations of 
uniform and topological properties of continuity structures. 

Let us briefly sketch the contents of this paper. In Section 2 we define the concept 
of a Л-structure following [17]. In Section 3 we estabhsh some elementary properties 
on the dual of a Л-structure. Some Л-structures projectively generated by continuous 
mappings are characterized in the following section. Section 5 is devoted to a norm 
topology. In Section 6 we present some characterizations of completion of uniform 
spaces. The Banach-Stone theorem is generalized in the last section. 

*) Revised and augmented. Originally submitted under the titles: On a certain class of A-
structures. /., An application of A-structures to the compactness, A dual characterization of pseudo-
compact spaces. 

The author would like to apologize for a delay in publication which was caused by certain 
unfavourable and unusual circumstances. 
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In the second part of this paper we shall study mainly the completion of yl-struc-
tures, the compactness in locally convex spaces and certain generalizations of the 
extension theorem of V. PTAK (cf. [24]). 

Some results of these articles were communicated at the Seminar of Professor M. 
KATETOV and at the Seminar of Professor D. A. RAIKOV. The present arrangement 
of the subject coincides with that in [27]. 

We refer to [2], [3] and to [22] as for the terminology and theorems used through
out this paper. 

The author wishes to express his gratitude to Professor M. KATETOV for his helpful 
suggestions and would like to take this opportunity of thanking to Professor D. A. 
RAIKOV and to Professor V. PTAK for their valuable remarks and conversations. 

L PRELIMINARY RESULTS AND NOTATION 

Let X be an infinite set. The vector space (cf. [17], [18]) of all finite formal linear 
combinations 

where x̂  e X, k^ are real numbers, will be denoted by E{X). 
For any function/ on X the corresponding linear extension/to E{X) is defined by 

(2) <zj> = E^K^i./) 

where z is of the form (1). We shall use frequently the same letter for the function/ 
as for its linear extension / . All functions considered here are assumed to be defined 
on the whole set X and to be real-valued. 

Throughout this paper we suppose, in reality, that X is a uniform (completely 
regular) space and that all functions are uniformly continuous (continuous). The 
context will make it clear whether X is taken as a uniform space or as a completely 
regular space. The uniformity on any completely regular space is defined in a natural 
way below. For convenience we shall study from now onwards only (infinite) separated 
uniform spaces. 

If '^ is a uniformity on X we write (Z, ^). P{X) denotes the Banach algebra of all 
uniformly bounded and uniformly continuous functions on X. The norm of an 
element / e P{X) is defined by 

ll/ll =sup|<x, /> | . 
xeX 

The linear space PQ{X) consists of all uniformly continuous functions on X. We 
write Ж ~ Ж{Х) for the family of all uniformly bounded and uniformly equicon-



tinuous subsets of P[X). Similarly Жо = Ж\(Х) represents the collection of all 
uniformly equicontinuous subsets of PQ{X) bounded in the weak topology (i.e. for 
arbitrary xeX and any Я e Ж^, { < x , / > , / e Я} is a bounded subset of real numbers). 

The topology on E(X) defined by the system Ж or Жс^ will be denoted by t = t(X) 
or by 0̂ = ^o(-^) respectively. If Я is a topology on E{X) we write {E{X), A). 

With respect to the duality of <£(X), -P(^)> we can define the weak topology 
G = a{E{X), P(Z)> on E{X). For the same reasons GQ — ao{E{X), Po{X)) is a weak 
topology on E(X) of the dual pair (^E{X), Ро{Х)у. It is evident that CF ^ t ^ ÎQ, 
GQ ^ 0̂ (the ordering relation has the same sense as in [2]). 

If F is a locally convex space, we write F* for the space of all continuous linear 
functions on F. The canonical embedding со : Z -> E{X) is defined by ш : x -^ 1 . x. 

Throughout this paper we identify X with œ{X). Let us recall (cf. [26]) that со is an 
isomorphism of X into {E{X), Я) where Я = t.ÎQ. This implies that any equiconti
nuous subset on {E{X), i) is of the form Я = {/; /e Я}, Я e Ж{Х). The same is true 
for the system Жо{Х). Particularly it holds (£(Z), (jf = P{X) and ( E ( X ) , G^Y = 
= Po(X), 

Because the system Ж is stable with respect to the operation of forming the abso
lutely convex envelope and to the closure operation in the topology G(P{X\ X) = 
= G{P{X), E(X% it follows from the Mackey theorem (cf. [3]) that IE{X), tf = 
= P{X). Similarly we have (£(Z), ^o)* = Po{X) (cf. [26]). 

2. THE Л-STRUCTURE ON X 

Now we introduce the concept of the yl-structure on a uniform space. 

Definition 1. The linear space E{X) with a locally convex topology will be called 
a Л-structure on X. 

For example, the spaces (£(X), Я), where A = f, ÎQ, G, GQ, represent some Л-struc-
tures on X. 

The yl-structures {E{X), t) and (£(X), ô) ^riay be regarded as a certain locally 
convex extensions of the uniform space X. This implies the possibihty of applying the 
theory of locally convex spaces to some properties of uniform spaces. For example, 
a subset Л of a uniform space X will be called bounded if Ä is bounded in {E(X), ÎQ). 
Evidently this definition coincides with that given in [13]. Some results proved in 
[13] can be obtained in such manner directly from the theory of locally convex spaces. 

If Л is a subspace in X, then evidently E[A) is algebraically isomorphic to a linear 
subspace in E(X). We can of course identify E[Ä) with its canonical image in E(X). 
The Л-structure £(Л) with the weak topology G[E[Ä), Р{Л)) may be regarded as 
a subspace of (£(Z), G). This follows from a result of M. KATETOV (cf. [21]). An 



analogous statement for the topology (TQ is not true. Evidently, (£(Л), (То(^)) ŝ 
a subspace in {E(X), СГО(Х)) if and only if any function fe Po{^) admits a uniformly 
continuous extension to X. Such an extension does not, in general, exist (cf. [5], 
[1]). The canonical embedding {E(Ä), (УО{^)) -^ {E{X), (TO{X)) is obviously conti
nuous. For the same reasons [E(Ä), ^O(^)) is not, in general, a subspace of {E{X), 

to{X)). For the topology t the question seems to be open. If ̂  is the completion of the 
uniform space X, then (E(X), t(X)) is a subspace of (£(^) , t{X)). The simple proof of 
this statement may be left to the reader. 

Thus the concept of a Л-structure indicates another approach to the questions 
stated above. Further applications will be given in the following sections. 

Let X = (X, T) be a completely regular space, C(X) the Banach algebra of all 
bounded and continuous functions on X with the usual norm. We denote by ̂  the 
system of all uniformly bounded and equicontinuous subsets M of C(X). Similarly as 
above we put f̂  for the uniformity on X (topology on E{X)) defined by the system Jf, 
It is easy to see that t^ is compatible with the topology т. The space of all uniformly 
bounded and uniformly continuous functions on (X, t^ is identical with C(X). 
Obviously the family ^ is identical with Ж(Х, t^). 

Proposition 1. Let и be a mapping ofX into a uniform space Y. Then the following 
assertions are equivalent: 

(a) и is a continuous mapping of(X, т) into Y, 
(b) и is a uniformly continuous mapping of(X, t^ into Y. 

Proof. It suffices to prove (a) => (b). This follows from the fact that for any uni
formly bounded and uniformly equicontinuous subset H ^ P(Y) the system Hon 
is an element of ^ . 

Similarly, by foc we mean the uniformity on X (topology on E{X)) determined by 
the family ^Q of all equicontinuous and weakly bounded subsets in the vector space 
Co{X) of all continuous functions on X. 

Under a Л-structure on a completely regular space X we mean in further discussion 
the Л-structure on the uniform space (X, Я), where À = t^, ?oc- Therefore the results 
concerning the completely regular spaces will be formulated only exceptionally. 

Added in proof. It is to be noted that by DUGUNDJI'S theorem (cf. Pacif. J. Math. 1 (1951), 
353—367) any continuous mapping/: A -^ E, A closed in a metric space Xand E locally convex, 
admits a continuous extension f : X-> E. From here one deduces that (E(A), t^ç) is in this case 
a topological subspace of(E(X), ^^ç). If, moreover,/is bounded, then we observe the corresponding 
extension / presented in the quoted paper satisfy the same property. Consequently the embedding 
(E(A), tç) ~> (E(X), to) is a topological one. These statements answer partially a question raised 
in Section 2. Furthermore, it may be proved that the mentioned operator of extension / - - > / 
maps ^Q(A) into ^MQ{X) and Л{А) into ^ ( Z ) . 



3. THE DUAL SPACE 

In this section we shall establish some elementary statements concerning the dual 
spaces of the above considered Л-structures. Later we shall obtain two theorems 
characterizing precompact and pseudocompact spaces. 

For a uniform space X the space P{X) is algebraically identical with {E{X), r)*. 
Now we intend to elucidate the question what kind of topology is induced on P{X) 
by the strong dual space {E{X), t). Next we shall describe the structure of all bounded 
subsets in {E[X), t). 

Evidently Z is a bounded subset of {E{X), t), therefore any scalar multiple of the 
absolutely convex envelope ГХ of X is bounded in {E{X), t). Conversely it holds 

Propositioe 2. Let В be a bounded subset of {E(X), t). Then for some suitable 
integer n the subset В is contained in n ГХ, 

Proof. Suppose that В is bounded and that В is not contained in any set of the 
form n ГХ, n = 1,2, . . . Then for any n = 1, 2, . . . we can choose an element z„ e B, 
2„фп ГХ, z„ = ^A^y;; obviously ^}Щ > ^' Let /„ be a function on P(Z), - 1 й 
Sfnuhn== 1, 2, ..., with/„(x^) - 1 for я;? > 0 and/„(x^) - - 1 for Я̂  < 0. 

Evidently the subset Я of all (n)"^^^/„, n = 1, 2 , . . . , is an element of Ж, hence 
{<z,/>; zeB.feH] is a bounded subset of the real line. This contradicts the 
choice of Я, because it holds (n)~^^^ fn{z„) > (n)^^^. 

The following theorem is a generalization of the above mentioned statement of 
D. A. Raikov. ^ 

Theorem 1. The canonical mapping f <-^f is a topological isomorphism of the 
locally convex structure of P(X) onto the dual space {E(X), f)* with the strong 
topology. 

Proof. It suffices to note that the canonical image of the unit ball in P{X) is 
identical with the polar set of Z in {E{X), r)*. The rest of the proof follows immedi
ately from Proposition 2. 

Corollary. Let X be a uniform space, then {E[X), f)* is a complete space in the 
strong topology. Particularly, if X is precompact, then (E{X), t)^ is a complete 
space in the topology of precompact convergence. 

Remark . It should be noticed that the last statement may be obtained directly by 
an elementary reasoning. In the same way it can be proved that for a precompact 
space X the dual space P{X) is complete in the Mackey topology т(Р(Х), Ê) where Ê 
is the completion of {E(X), t). This follows in another way from some theorems on 
completion of Л-structures (see below). 

The following theorem was suggested by a theorem of A. GROTHENDIECK (cf. [12]). 



Theorem 2. Let U be the absolutely convex envelope of X in E(X). The uniformity 
of the Banach space P(X) will be denoted by ^*. Then the following assertions are 
equivalent: 

(a) X is precompact. 

(b) The uniformities t and a are identical on U. 

(c) Any H e Ж is relatively compact in P{X). 

(d) The uniformities ^* and о are identical on each H e Ж, 

Proof, (a) -=> (d). ПИеЖ then the uniformity a = o(?(X\ E(Z)) coincides on Я 
with the uniformity p defined by the family of all precompact subsets of (T.(X), i). 
Evidently we have о ^ Q^ ^ p. This implies (d). 

(d) => (c). If (d) holds, then each Я e ^ is relatively compact in P(X). 

(c) => (b). It suffices to note that U is equicontinuous on the space (Р(-АГ), ^*). 

(b) =^ (a). Immediately. 

Theorem 3. het X be a completely regular space, U the set defined in Theorem 2, 
^* the uniformity of the Banach space C(X). Then the following properties are 
equivalent: 

(a) X is pseudocompact. 

(b) The uniformities t^ and a coincide on X. 

(c) The uniformities t^ and a coincide on U, 

(d) Any M e ^ is relatively compact in C{X), 

(e) The uniformities a and Q^ coincide on each M e Л. 

Proof. First we recall that X is pseudocompact if and only if any uniformity on X 
compatible with the topology on X is precompact^). From Theorem 2 it follows 
(a) => (e) => (d) => (c). Evidently (c) => (b). To prove (b) => (a) we consider a uni
formity r on X compatible with the topology. Since r ^ t^, it follows that {X, r) is 
precompact. This completes the proof. 

Remark . Let us note that the equivalence of properties (a) and (d) has been 
established in [10] (cf. Theorem 2, (/)) . The above stated proof is of topological 
character and eUminates therefore the integration theory applied in [10]. 

Now we turn our attention to the case of the unbounded topology tQ. To be more 
accurate we consider only the topology t^^ and a locally compact (and paracompact 
if necessary) space X. 

^) This theorem is due to T. ISHIWATA. For an elementary proof we refer to [6] (see Appendix; 
exercises 5.8, 4.4). 
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Proposition 3. Let X be a locally compact and paracompact space. A subset 
В я (E(X), tQc) is bounded if and only if for some compact К Я X and an integer n 
it holds В Ç n ГК, 

Proof. Let Z be a locally compact and paracompact space. For any x e Z , we 
choose an open and relatively compact neighbourhood U{x). The family {U(x); x e X} 
forms an open covering of Z and we take a continuous pseudometric (cf. [7], p. 538) 
Q with the property that for any x eX there exists some y eX such that o(x, z) ^ 1 
imphes z e U[y). Evidently (z; Q[X, Z) < 1} is relatively compact for any xeX. 

n 

Let В be a bounded subset in {E{X), ÎQ^). For any z = ^ Я^х, e E(X), /^ ф 0 we 
put [z] = {x,.; 1 ^ i ^ n} and '^^ 

(3) 5o = и H . 
zeB 

It suffices to prove that BQ is contained in a compact subset К Я X, Indeed, since 
t S tg, the subset В is bounded in {E{X), t). According to Proposition 2 we have 
В с n ГХ and the required inclusion В ^ n ГК follows from BQ С J^. 

Lemma. Let В be a bounded subset of {E[X), tQ^), BQ defined by (3). Then for 
a suitable compact subset К ^ X it holds BQ ^ K, 

Proof. Suppose that the assertion is not true. For any x e Z we denote by F(x) 
the relatively compact subset of all zeX, Q(X, Z) < L If XQ is an arbitrary point of Z , 
then we choose x^ e BQ, X^ ф F(xo). Evidently, the subset K^ ~ V{XQ) U V{X^ is 
relatively compact and therefore there exists X2 e BQ, X2$K^. Successively we obtain 
Xo, Xi , . . . , x„_i, Xj-eZ, 0 ^ I ^ n — 1 and the relatively compact subsets K^, . . . 

r 

..., K,,_i, Kj. = \J F(x^), х^фКг-i, 2 ^ r g n — 1. Similarly as above for some 
i = 0 

x„ G BQ we have x„ ^ X„_ j . Evidently the sequence {x„; n = 1,2,...} has the property 
^(x„, x^) ^ 1 for n Ф m. Let W(x) be the subset of all z eX with ^(x, z) <l for each 
X 6 Z . For any integer n we choose an element z„e В such that x„ e [z„]. Let Я„ Ф 0 
be the scalar corresponding to x„ in the representation z„. We now take a continuous 
function /„ on Z,/„(x„) = njk^JXy) = 0 for any у e [ z j , у Ф x„ and /„(y) = 0 for 
у Ф ï'^'(x„). The family {W{x„); n = 1, 2, . . .} is locally finite, hence {/„; n = 1, 2, ...} 
is an element of J^Q^X). Since fn{z„) = n, the subset В is not bounded in the topology 
tQc- This contradicts the assumption. 

An immediate consequence is 

Theorem 4. Let X be a locally compact and paracompact space, CQ{X) locally 
convex space of all continuous functions on X under the topology of compact con
vergence. Then the correspondence f ^-> f is a topological isomorphism of CQ{X) 
onto the strong dual {E{X), ^OC)*-



Remark. Let X be a locally compact space. Then by the same argument as in 
Theorem 2 we obtain 

(a) Any M e Jiç^ is relatively compact in Co(^). 

(b) The uniformity of compact convergence coincides with the uniformity of pointwise 
convergence on each M e Jl^^. 

(c) Any relatively compact subset in Cç^(X) is an element of Мс^Х). 

Problem. Let X be a uniform space; to describe the family of all bounded subsets 
of (£ (Z) ,g . 

4. PROJECTIVELY GENERATED TOPOLOGIES ON E{X) 

Now we shall characterize the topology X and the weak topologies о and CTQ ^"^ Ле 
vector space E(X). The reader is referred to compare these results with those obtained 
in [26]. 

Definition 2. Let X be a uniform space, F a locally convex space. A mapping м of X 
into F is said to be bounded if u{X) is a bounded subset of F. 

Every uniformly continuous mapping of a precompact space in a locally convex 
space is bounded. The canonical embedding of X into (F(X), i) (into (F(X) , a)) is 
bounded in view of the preceding definition. 

If w is a mapping of a uniform space X into a vector space F, then the linear 
extension й : E{X) -> F is defined by the formula w : z -> ^)н^^^ ^i> for any z = 

We turn now 10 the following theorem which shall play an important role in the 
sequel. 

Theorem 5. LetX be a uniform space. Then the topology t on E{X) is characterized 
as the unique locally convex topology on EÇX) with the following properties: 

1° The canonical embedding œ of X into {E{X), t) is bounded and uniformly con
tinuous. 

T For any locally convex space F and for any bounded and uniformly continuous 
mapping и of X into F the linear extension й : E{X) -> F is continuous on 
(£(Z), 0-

Proof. Let w be a bounded and uniformly continuous mapping oïX into a locally 
convex space F. For any equicontinuous subset N ^ F"^ the family N о и is bounded 
and uniformly equicontinuous on X. This implies the continuity of w. The uniqueness 
of such a topology is clear. 



Rernark. The topology t on E{X) may be characterized by the property 1° of the 
preceding theorem and by 

2°' For any Banach space В and for any bounded and uniformly continuous mapping 
и : X -^ В the corresponding linear extension и is continuous on (£(X), f). 

To prove this statement, it suffices to note that any locally convex space may be 
regarded as a subspace of the Cartesian product of Banach spaces. 

Corollary. (a) / /w is a uniformly continuous mapping ofX into 7, then the linear 
extension of и to {E{X), t) is a continuous mapping into {E{Y), t). 

(b) Let F be a normed space, S a bounded open subset of F with the topology induced 
by the norm. Then F is isomorphic to a quotient space of[E[S), t). 

Proof. The proof of (a) is evident. To prove (b), we denote by j the identical 
mapping of S into F, J the corresponding linear extension to E(S). It is clear that J is 
a continuous mapping of E{S) onto F. Putting 

h{x) = 1 . X ~ 1 . Xo 

for an XQ e S, we see that his a. continuous mapping of S into {E{S), t). For an open 
neighbourhood U of the origin in {E(X), t) the inverse image h~^(U) is open in S, 
hence open in F. For an XQ G h~^{U) the set /г~"^(1/) — XQ is an open neighbourhood 
of zero element in F and the assertion (b) follows from »/(t/) 3 h ^(t/) — XQ. 

Now we characterize the weak topology a on E{X). 

Theorem 6. Let X be a uniform space. Then G — o(E{X), Р{ХУ) is the unique 
weak locally convex topology on E(X) with the following properties: 

1° The canonical embedding w of X into {E(X), a) is bounded and uniformly 
continuous. 

T For any bounded and continuous mapping и of X into a locally convex space F 
with the topology a{F, F*) the linear extension of и to E[X) is continuous on 
iE{X),a). 

The p roo f is clear. 

R e m a r k l . A similar result holds for the topology CTQ on E(X). 

R e m a r k 2. The assertion of Theorem 4 is true if we suppose in 2° that F is an 
arbitrary Banach space. 

Proof. Any locally convex space F is isomorphic to a subspace of the Cartesian 
product HB^ where B^ are Banach spaces. Let x' be an element of F*. It suffices to 



prove that x --> <м(х), x'> is continuous on X. Bui any x' e F* (exactly the extension 
of x' to TLB^) is of the form 

леЛ 

where J. is a finite set, x^ e Б* for осе A. 

According to Theorem 5 the embedding со : X -> (E(X), ÎQ) admits a continuous 
extension to {E{X), t) for any precompact space X. Hence we have proved that 
to{X) = t(X) on E{X). But the families Ж{Х) a n d ^ o ( ^ ) ^^^ saturated which implies 
Ж{Х) = ^ o ( ^ ) (cf. [22]). 

Corollary 1. If X is a precompact space, then 

Ж{Х) = Жо{Х) and t(X) - to{X), 

Corollary 2. If X is a pseudocompact space, then 

Ji(X) = Jiç,{X) and t,{X) = tç^lX). 

Remark . On the other hand, from the equality Ji(X) = J^Q[X) it follows imme
diately that X is pseudocompact. Similarly, if the topologies tJ^X) and t^J^X) coincide 
on E(X), thenZis pseudocompact. Let us note that the uniformities tJ^X) and toJ{X) 
coincide on X for every completely regular space X. This fact buttresses the guiding 
motive of introducing the Л-structure as an adequate and finer superstructure over 
the given continuity space X, 

5. THE NORM ON E{X) 

A norm Q is defined on E(X) in this section and some properties of {E{X), t) are 
investigated. 

We denote by l/ = ГХ the absolutely convex envelope of X in E{X). It holds 

Lemma. The set U defined above is a bounded barrel in E(X) with every topology 
compatible with the duality of the dual pair (^E(X), Р{Х)у. 

Proof. It suffices to prove that U is closed in {E(X), a). Let z e E[X) be an element 
of the form (l), 2фи. This implies ^|Я^| > L We choose a function f e P(X), 
| | / | | S 1 such that/(x,.) = 1 for;.,- > 0,/(x,.) = - 1 for Я̂  < 0. We have |<3^,/>| й 1 
for any у eU and 

<z,/> = Ея,<х,,/> = 2:|д,| > i . 

This concludes the proof. 
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Now we define a norm Q on E(X): the unit ball for Q is U. Evidently (т й t S Q-
We denote by (Ê(Z), Q) the completion of E(X) by ^. The space l\X) is defined as the 
set of all À = (Я^; x e X} satisfying |Я|| = Xl^^l < oo. A linear function/on {E{X), Q) 
is continuous if and only if the restriction of/ to X is a bounded function. This fact 
enables us to identify the dual space (£(X), QY with the space /^(X) of all bounded 
functions on X. Now we are going to describe the completion (£(X), Q). 

Theorem 7. The vector space (Ê(X), Q) is linearly isometric to V(X). 

Proof. For any z = ^Я^х^ it holds Q(Z) ̂  XP îi* ^^^^ polar of U in /'°(X) is 
evidently the unit ball which implies 

Q{Z) = sup l<z,/>| . 
\\f\\ui,fel'^(X) 

L e t / b e a function in Г{Х) with/(x,) = 1 for À^ > 0 and/(x^) = - 1 for Я,- < 0. 
Then ^(z) ^ |<z, /> | = Xl^i|- Thus we have proved the equality Q(Z) == X!P'i| ^̂ *̂ ^^У 
z = X ĵX^ e £(X). Now it is easy to see that {Ê(X), g) is linearly isometric to l\X). 

In view of the relation t ^ Q з, natural question arises under what conditions the 
topology t will be equal to the greatest lower bound of all norm topologies o- greater 
than /. The answer is contained in 

Proposition 4. Suppose that E is a family of all norm topologies a on E(^X), 
Ü ^ t. Then the following properties are equivalent: 

(a) It holds t = inf {a; a e Z}. 

(b) The space {E(X), t) is the inductive limit of all spaces {E(X), CJ}, (T e E . 

(c) The space {E(X), t) is bornological, 

(d) It holds t = Q. 

(e) The uniformity of X is discrete. 

Proof. The following statements 

( d ) = ^ ( a ) ^ ( b ) ^ ( c ) 

are clear. 

(c) ^ (d): follows from Proposition 2. 

(e) => (d): is evident. 

(d) =^ (e): if f = ^, then ( E ( Z ) , tf = /^(X). For any x e X we put fj^y) = 1 for 
J = X, j ; e X and/^(j;) = 0 for j ; Ф x, x e X. The family F = {/^; x e X} is contained 
as a subset in the unit ball of /°°(X). The subset Fof all (y, z) in the Cartesian product 
X X X satisfying \fx{y) - fx{^)\ < i for all x e X is a uniform neighbourhood in X. 
But due to the choice of the family F the subset Fis equal to the diagonal in X x X. 
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Remark 1. The space {E(X), t) is not barrelled. Indeed, if (E(Z) , t) were barrelled, 
then и would be a neighbourhood in {E(X), t) which impHes t = Q. But it is well 
known that {E{X), Q) is not a barrelled space. 

Remark 2. With regard to the completeness we note only that (£(X), t) does not 
posses any property of this kind. It is easy to show that {E(X), t) is not sequentially 
complete. The completion of {E(X), t) will be investigated in Section 8. 

Remark 3. The topologies ô ^^^ Q ̂ re, in general, not comparable. If X is 
a discrete uniform space, then {E{X), ÎQY is algebraically isomorphic with the KÖTHE 

space ù)[X) (cf. [22]). In this case ô is the finest locally convex topology on E{X). 
Some results of this section were indicated in [17]. 

6. THE COMPLETION OF UNIFORM SPACES 

The aim of this section is to present a characterization of the completion of uniform 
spaces. Let X be a uniform space. The embedding x -> x of X into P*(X) defined by 
the formula 

<x,/> = </,x> 

admits an extension to E(X). In this way we identify any x e E(X) with the correspon
ding X e P*(X). Similarly we denote by the same letter t the extended topology of 
.^-convergence on P*(X). 

Putting Ê = {Ê{X), t) for the completion of (£(Z), t), we denote by X the closure 
of Z in £ with the topology a(Ê, P(X)) and by t the closure of X in (Ê(X), t). 
Evidently X is the completion of X and X £ X. We start our discussion with 

Theorem 8. Let X be a uniform space. Then it holds 

X = l . 

Proof. If y e (Ê(X), t), y e X, then there exists a net {x ;̂ ae A] in X, lim x^ = y 
in the topology (r(Ê, P(X)). Next we prove 

Lemma. For any neighbourhood Vof the origin in (Ê(X), t) there exists an index 
Œy e A such that 

Xß EX^^ + V 

for some confinai subset В я A of indices ß. 

Proof. On the contrary, suppose that VQ is an absolutely convex and closed 
neighbourhood of the origin in (Ê(X), t) not having the required property. Let / be 
a uniformly continuous function on (£(X), t) with 

/(0) = 1 , f{x) = 0 for all X G Ê{X) \ Fo , 0 ^ / g 1 . 
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If we put /^(z) = f{x - z), then /Дх) = 1, Цу) = О for all у ^ x + KQ. We denote 
by/x the restriction of/^ to X. It is easy to see that the family {fxl xeX}is an element 
of Ж (see also [9]). The same is true for the set H of all max (/^^,.. .,Л„), x̂  e X, 
1 й i й n, n an arbitrary integer. Let £ be a real number, 0 < e < ^. From у e X 

n n 

it follows that for some convex mean ^ Я^х .̂, Я̂  ^ 0, ^ Я,- = 1 it holds 

| i ;A;<x.„/>-<y, /> |<e 
for а п у / е Я . 

In view of the choice of V we can find to each a,-, 1 ^ i ^ n, an index ßi e Ä, 
1 ^ i Sn, such that Xß ф x^^ + VQ for all ß ^ ßi, 1 ^ i S п. If ßo e Л, ß^ ^ jg,., 

m m 

1 ^ i ^ n, then for some convex mean ^ i"ŷ :̂ '̂ ., Ây ̂  0, ^ ßj = 1, jß} ^ ßo we have 

m 

for a l l / е Я . Hence 

\i^i<x.,jy-j:ßjWjjy\ < 2 в < 1 
for a l l / 6 я . 

In particular, for the function /Q = max (/^^ , . . .,/^^ ) we obtain the relation 

1 - Y.^Mß/Jo> < I • 

The function /o is equal to zero for every element which belongs to the complement 
n n 

of U(^a, + ^̂ o). From хд,^^и(^а.. + Vç,), l u i um it follows <x^,..,/o> = 0, 

1 g J g m. This contradiction establishes the result. 
Making use of the preceding lemma we finish now the proof of Theorem 8. 

Let F be an absolutely convex and closed neighbourhood of the origin in (JÊ(Z), t). 
The set x^^ + V being convex and closed for the topology t, we conclude by Mackey 
theorem that the same holds for the weak topology. But y = lim (x^; a e A], hence 
y e x«^ + V. From the symmetry of V we derive x^^ e y + V. Thus we have proved 
that J is a closure point of X in the space {È[X), r), hence y elC. This concludes the 
proof of Theorem 8. 

Let X"" be the closure of X in P*(X) with the weak topology a(P*(Z), P{X)). 
Evidently 

Z = Z^ n (Ê(Z), t). 

According to Theorem 8 we can write 

(4) 1 = Z^ n (E(Z), t). 

The last equality is basic for future considerations. 
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R e m a r k 1. The assertion of Theorem 8 can be modified in the following manner. 

(a) The topology on X induced by the uniformity t coincides with the topology 
induced on X by the weak uniformity a. 

(b) Any Я e c^ is equicontinuous on X in the weak topology. 

The proof of this statements does not present any difficulty. 

R e m a r k 2. If X is a uniform space, then aX = X"" with the weak topology possesses 
analogous properties as the Cech-Stone compactification ßX, To this point, we state 
only the relation between ßX and aX. Any function feP(X) can be extended to 
a continuous function/ on ßX. If we define on ßX the equivalence relation R by: 
X, у e ßX, X R у if and only if/(x) = f{y), then the quotient space with the uniformity 
induced by the collection {fife P{X)] is uniformly isomorphic to aX. 

R e m a r k 3. The construction of the family Я in the proof of Theorem 8 was 
applied for the first time in [9]. In fact, the idea of the present proof is based — roughly 
speaking — on the method of the sliding hump. 

In the rest of this section we show how the complete envelope of any uniform space 
can be described as a collection of extremal points of the unit ball in P*(X) satisfying 
some complementary conditions. This result will generahze the well-known dual 
characterization of the Cech-Stone compactification ßX. 

The collection of all points z in P*(Z) with 

(5) z{e) = 1 , z ^ 0 

will be called the polar set in the unit ball of P*(X) (briefly the polar set) and will be 
denoted by K, Here e means the function on X identical to the unit, z ^ 0 means 
(^z,fy ^ 0 for all / e P{X), / ^ 0. Evidently К is convex and weakly compact in 
P*(Z). 

Lemma. The family of all extremal points of the polar set К coincides with the 
subset X"". 

Proof. 1Ï xe X"" then x is an extremal point of the unit ball in P*(X), hence x is 

also an extremal point of X. On the contrary, the weakly closed and convex envelope 

CO X"" OÏX is equal to K. Indeed, for any z e i^, z ^ со X'̂  we find a function/G P ( X ) , 
(^z,fy > 1, <y, /> < 1 for all j^ecoZ*^. Hence f ^ e which implies <z, /> g 
^ <z, e> = 1. To prove the rest of the lemma, we note that according to Krein-
Milman theorem any extremal point of со X'^ is contained in X"^. 

By a theorem of GROTHENDIECK (cf. [U] ) the completion {Ê{X), t) is identical.to 
the collection of all linear functions on P(Z) continuous on each H e Ж with the 
pointwise topology a{P{X), X). From (4) we obtain 
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Theorem 9. The completion X of the uniform space X coincides with the family 
of all extremal points of the polar set К continuous on each H e Ж with the pointwise 
topology o{P{X), X), 

R e m a r k 1. Particularly, if we consider a uniform space X with the weak unifor
mity CT, then the completion X"" oï(X, о) coincides with the space of all maximal ideals 
of the Banach algebra P{X). This enables us to identify the space A"̂  with the family of 
all (isotone) homomorphisms of the Banach algebra onto the real line. The same can 
be applied to a rather general case, namely, if the uniformity ^k on X is induced by 
a linear algebra of functions separating points on X m the strong sense (cf. [14]). 

R e m a r k 2. By an analogous procedure as in [23] it can be shown that the family 
of all extremal points of the polar set К is identical with the collection of all elementary 
normed linear functions on P{X) (i.e. satisfying (5) and having the property: 0 ^ /г ^ 
^ z, h e P ( A ) implies h = ccz for a suitable scalar a). In this terms the characteriza
tion of the complete envelope of a uniform space may be formulated in the same way 
as in [9]. 

7. THE GENERALIZATION OF THE BANACH-STONE THEOREM 

We end this paper by applying the preceding results to prove a generalization of the 
Banach-Stone theorem. 

If A and У are two completely regular spaces then any linear isometry between C{X) 
and C{Y) induces a topological homeomorphism between the Cech-Stone compacti-
fications ßX and ßY. The basic idea of this assertion consists — roughly speaking ~ 
in the fact that a morphism (with additional conditions if necessary) between "dual" 
objects induces a morphism between original objects. 

A question arises for which "dual" objects and under what conditions the above — 
mentioned statement admits a generahzation for uniform spaces. First we state. 

Example . Let X be a uniform non-precompact space. Denoting by У the set X 
with the coarsest uniformity defined by the system P{X), we see that P(X) = Р(У), 
but X is not isomorphic to Y[X is not homeomorphic to У). 

The situation is clear; the space C[X) determines the topology on X, similarly P(X) 
determines the topology on the collection of all maximal ideals of the Banach algebra 
P(X) but not the uniformity on X. 

In the following theorem we shall show that the question is solved if we replace the 
space P{X) by (£(Z), 0-

Let X and У be two uniform spaces, и an isomorphism of the locally convex space 
(EÇX), t) onto (£(y), t). From Theorem 1 it follows that the adjoint mapping ^u is 
an isomorphism of the locally convex space P{Y) onto P{X). Similarly "w is an 
isomorphism of the locally convex structure of P*(A) onto P^(Y). If Fis the unit ball 
in P{Y), then ^w(F) need not be, in general, the unit ball in P{X). 
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Theorem 10. Let X and Y be two uniform spaces, и an isomorphism of {E(X), t) 
onto {E(Y), t). Then the following statements are equivalent: 

(a) 'w is a linear isometry, 
(b) There exists a function a(x), |oc(x)| = 1 for all x e X such that v{x) = сс(х) u{x) 

is a uniform isomorphism of X onto Y, 

Proof, (a) => (b). If Ы is a linear isometry then ^^u is a linear isometry of P*(Z) 
onto P'^ij). Hence, if z is an extremal point of the unit ball U^ in P*(Z), then "w(z) 
is an extremal point of the unit ball V^ in P'^ij). But the collection of all extremal 
points of V^ is identical to F*" u ( ^T)^ (cf. [8]) where F'' is the closure of Fin P''{Y) 
under the weak topology. Now we put 

A = [xe Ĵ ;̂ "w(x) e У }̂ , В = [x e X""; ''u{x) e ( - Yf} . 

Evidently A and В are disjoint and weakly compact in P*(X). For some neighbour
hood F of the origin in P*(X) it holds 

(6) (Л + F) n ß = 0 . 

Let a be a function defined as follows: a(x) = 1 for all xeA, a(x) = — 1 for all 
xeB. 

The continuous extension û of и to (Ê(X), t) coincides on (JÊ(Z), t) with "w. The 
function V is now defined by 

According to (4) we obtain 

(7) 

i; = a О " w 

v{î) = ? 

From (6) it follows that y is a uniformly continuous mapping of ^ onto f. A sym
metric consideration leads to the conclusion that м is a uniform isomorphism. 

In [26] it was proved that Z is a closed subset in {E{X), t). Hence, X = Ê n 
n {E{X), t); from (7) we now obtain the desired equaUty v{X) = 7. 

(b) =^ (a). Conversely, if t; = a . м is a uniform isomorphism of X onto У, then for 
any / e P(Y) we have 

||<'u,/>ll = sup |</, и(х)>1 = sup 1</, v{x)y\ = \\f\\ . 
xeX xeX 

Remark . Let и be an isomorphism (a weak isomorphism) from (Ê(X), t) onto 
(Ê(y), t). If the condition (a) of Theorem 10 is satisfied then the spaces X and Fare 
uniformly isomorphic (homeomorphic). To prove this statement it suffices to repeat 
the same procedure as in the proof of Theorem 10. Particularly, if X and Fare two 
compact spaces, и a linear isometry of C{Y) onto C(X), then ^u is a weak isomorphism 
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of C*(X) onto C*{Y). In view of tiie fact tliat for a compact space X it liolds C*(X) = 

= (Ê(X), t^) (cf. [19]; see section 8) we obtain the above mentioned Banach-Stone 

theorem. 

The proof of Theorem 10 is based on topological terms. If we take into considera

tion the order structure of P{X), we obtain 

Theorem 11. Let и be an isomorphism of {E(X), t) onto {E{Y), t). The restriction 
of^hi on X (on X) is a uniformly isomorphic mapping onto f(onto Y), if and only 
if^u possesses the following properties: 

(a) ^u is an order preserving mapping of the spaces P{Y) and P{X) (i.e. fe P ( F ) , 
g E P{Y),f ^ g implies hi(f) g ^u(g) and conversely). 

(b) The image ^u(e) of the unit element of the Banach algebra P[Y) is the unit 
element in P(X). 

The p r o o f follows from the equalities 

"u{Ê{X), t) = {Ê{Y), t) , "u{X') = Y' 

and from the above mentioned theorem of FIODOROVA (cf. [9]). 
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