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INTRODUCTION

In this second part of our paper we present the theory of L, spaces for our in-
tegration theory of vector valued functions with respect to an operator valued measure
countably additive in the strong operator topology, see [4].

In § 1 we define the L, norm of the measurable function which generalizes the clas-
sical L, norm, see the Corollary of Theorem 4, and also the notion of the semivaria-
tion m. While the classical L, norm is a finite non negative countably additive
measure, absolutely continuous with respect to the initial measure, our L; norm is in
general only a countably subadditive set function not continuous on S(2) and not
absolutely m continuous. However, in the important special case when Y is a weakly
complete Banach space, the finite L, norm of the measurable function is continuous
on S(#) and therefore also absolutely # continuous, see Theorem 5.

In §2 we show that the equivalent classes of measurable functions L,M(m) as
well as integrable functions L,;J(m), with finite L; norms form Banach spaces, in
general different, see Theorems 7 and 9. These Banach spaces behave in general very
badly, namely, no analogs of classical convergence and separability theorems are
valid for them. Somewhat better is the behaviour of the Banach space L,J(m)
which is the closure of the set of all simple integrable functions J, in L,‘JJt(m), see
Theorems 13, 14 and 15. However, the most important is the Banach space L,(m)
consisting of equivalent classes of those measurable functions whose L, norms are
continuous on S(2), see Theorems 8 and 9. By Theorem 9 L,(m) = L,J(m), and
L,(m) = L,3(m) if and only if the semivariation  is continuous on 2, see Theorem
11. If Y is a weakly complete Banach space, then by the important Theorem 10,
LM(m) = L,(m).

The importance of L,(m) lies in its good classical properties. Namely, complete
analogs of classical Vitali and Lebesgue convergence theorems are valid for it, see
Theorems 16 and 17. Owing to Theorem 19 only the space L,(m) can be separable.
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Concerning the separability of L,(m), analogs of classical theorems are valid, see
Theorems 20 and 21. Further, if m is a Baire or a regular Borel operator valued
measure whose semivariation rit is continuous on %, or 4 respectively, then Co(T, X)
is dense in L,(m), see Theorems 22 and 23. This fact is of great importance in con-
nection with the representation theorems of § 2 in [5]. It is worth noting that at the
same time the space Ll(m) is in general substantially wider then the Banach space of
Bochner integrable functions L,(v(rm, .), X) where v(m, .) denotes the variation of
the measure m. This latter space is treated in [3].

In the short § 3 we indicate a similar theory of L, spaces for p = 1 and of Orlicz
spaces.

There are some similarities between the presented theory and the theory developed
in [11] and [12] for integration of scalar functions with respect to a finitely additive
vector measure. In terminology and notation we follow [4] and [5]. In part IIT of
our paper, which is being prepared, we shall treat Fubini type theorems.

1. THE L, NORM
Definition 1. Let g be a measurable function and let E € S(#). Then the L, norm

of the function g on the set E, which will be denoted by (g, E) is a non negative not
necessarily finite number defined by the equality:

(g, E) = sup{

ffdm‘ , fe3, |f(0)] < |9(1)] for each teE}.

The L, norm of the function g is defined by m(g, T) = sup m(g, E).
EcG(P)

Let us remind that J; denotes the set of all simple integrable functions, see Defini-
tion 1 in [4], and that || denotes the norm in the Banach space.

From this definition we immediately obtain the following

Theorem 1. Let g be a measurable function and let E € S(2). Then:

a) (g, .) is a monotone and countably subadditive set function on S(2) with
(g, 0) = 0.

b) (ag, E) = |a| . (g, E) for each scalar a.

o) in o). (E) = (. E) = lo] . (E)

te

d) If h is a measurable function with |h(t)| < |g(t)| almost everywhere m on E,

then m(h, E) < (g, E). :

¢) 1o, E) = (g, {1 < E, lo0)] > 0)).
f) (g, E) = 0 if and only if i({t € E, |¢(t)] > 0}) = 0.
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From assertion c) of this theorem it is. obvious that if |x| = 1, then m(E) =
= (x . xp, E) for each set E e &(#). Hence the L, norm (., .) generalizes the

notion of the semivariation m. From this assertion we also have the following form
of Tschebyscheff inequality:

Corollary. Let g be a measurable function, let E e &(2) and let a > 0. Then
({1 < E, |g(0)] = ) < (g, E)a.

From this inequality immediately follows that convergence in the L, norm implies
convergence in the semivariation rit, see Lemma 4 below and section 1.3 in [4].

To prove the triangle inequality m(g + h, E) < (g, E) + r(h, E) we need the
following theorem, which generalizes Theorem 14 from [4]. It may be proved in the
same way.

Theorem 2. Let g be a measurable function and let E € S(2). Then

m@m=w%

j fdm‘ , fe3, |f(t) < |g(t)| for each teE}.

As an immediate consequence we have:

Corollary. Let f be an integrable function and let E € S(#). Then

Lﬂﬂgmmm.

We note that this inequality is much better then that of Theorem 14 in [4].
Theorem 3. Let f and g be measurable functions and let E € &(2). Then

w(f+ g, E) < m(f, E) + (g, E),

and therefore also
w(f+9,T)< m(f, T) + (g, T).
Proof. By assertion e) of Theorem | m(f + g, E) = m(f + g, E') where E’

= {te E, |f(1)] + |g(1)] > 0}. Let h be a simple integrable function fulfilling |A(1)| <
< |f(r) + g(t)| for each t € E’. Then for each t € E’

(1) = h() . | £(0)] k(1) . |g(1)| '
"= o+ w0l T 01+ )

By Theorem 4 in [4] both summands are integrable functions and therefore by
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h(1) . Ig(t)l m| < m(f, E) + g, E)

Theorem 2
) fO)]
o + NOET O

o am =], o+ o

This proves the theorem.

In the same way as in Lemma 1 in [5] we obtain its following generalization:

Theorem 4. For each measurable function g and for each set E € S(2)
(g, E) = sup f lg| do(y*m, .), y*e¥Y*.
st JE

If for each functional y* € Y* [ |g| do(y*m, .) < + oo, then also (g, E) < + co.

As an immediate consequence we have:

Corollary. Let Y be the space of scalars of X, see examples 1 and 5 in section 1.1
in [4], or let m be a scalar measure and m(E) x = m(E) . x, see examples 1 and 2
in section 1.1 in [4]. Then 1a(g, E) = [ |g| dv(m, .) for each measurable function g
and for each set E € S(2).

Thus we see that (., .) generalizes the classical L, norm. However, in general
(g, E) < [g|g| dv(m, .), and it very frequently happens that [, |g| du(m, .) = + o
and (g, E) < + 0. Let for example T be the set of all non negative integers, 2 the
o-algebra of all subsets of T, X the space of scalars of ¥, ¥ being an infinite di-
mensional Banach space. Then m: # — Y is a countably additive vector measure.
Now rir(g, E) < +oo if and only if the series ). g(k).m({k}) is unconditionally

keE

convergent in ¥, see 1V.10.4 in [6], while on the other hand [, |g| dv(m,".) < + 0
if and only if this series is absolutely convergent. Let us remind that by the theorem
of Dvoretzky and Rogers, see section 3.4 in [15], every infinite dimensional Banach
space contains an unconditionally convergent series which is not absolutely con-
vergent.

As it was said in Introduction, the really interesting functions are those whose L,
norms are continuous on &(2). If | Igl dv(m, .) < + oo, then the L, norm ri(g, .)
is clearly continuous on 6(9) but thls is in general, as we stated above, a too strong
restriction. In Theorem 5 below we prove the continuity of the L, norm under a much
weaker restriction. To prove this theorem we need the next lemma which generalizes
Theorem 5 in [4]. It may be proved in just the same way. We note that the assertion
of this lemma will be substantially strengthened below in Theorem 8.

Lemma 1. Let g be a measurable function and let its L, norm (g, .) be conti-
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nuous on &(2), i.e., if E,\0, E, € &(2), n = 1,2, ... then lim ra(g, E,) = 0. Then g
is an integrable function. nmeo

The following theorem' generalizes the x-Theorem in section 1.1 in [4]. Using the
preceding lemma it may be proved in just the same way.

Theorem 5. Let Y contain no subspace isomorphic to the space c¢,, for example
let Y be a weakly complete Banach space, see Theorem 5 and section 6 in [2], let g
be a measurable function and let (g, T) < +oco. Then the L, norm (g, .) is
continuous on 6(@) In general for a measurable function g the continuity of its L,
norm (g, .) on S(2) is equivalent with the existence of a finite non negative
countably additive measure A, on S(2) with the properties: 2,(E) < | g dm| (E) <
< (g, E) and lim r(g, E) = 0, E € S(2).

1g(E)~0

From here we have the following interesting

Corollary. Let g be a measurable function and let its L, norm (g, .) be conti-
nuous on S(2). Then r(g, T) < + o.

Proof. By the second assertion of the preceding theorem there is a finite non

negative countably additive measure 1, on S(2) with lim (g, E) = 0, E € &(2).
A4(E)~0

Take an & > 0 such that 1, (E) < ¢ implies (g, E) < 1, E € (). Since the mea-
sure A, is finite, by the method of exhaustation, see Exercise 3, § 17 in [9], there is
a set G € &(2) with A,(E — G) = 0 for each set E € S(#). Now by Lemma 1V.9.7.
in [6] there is a finite number of disjoint sets E; € &(2), i = 1,2, ..., n with Y E; =
i=1
= @, each E; being either an atom or Ag(Ei) < ¢. Since for each atom A4 it is clearly
ri(g, A) < + oo, hence the subadditivity of the set function (g, .), see assertion a)
of Theorem 1, proves the corollary. ‘

It is worth noting that in general the L, norm (g, .) is not continuous on (%)
even if the semivariation # is and g is an integrable function with (g, T) < + oo
(clearly g is unbounded). For example, modify the measure m and the function f
in Example 7" in [4] in the following way: m'({k}) = 1/k . m({k})and f'(k) = k . f(k).
In these cases the L, norm ri(g, .) as a set function on &(2) is not absolutely rit
continuous. If we restrict in the same Example 7” the measure m to the -ring 2, of
all finite subsets of T, then its semivariation i is clearly continuous on 2 = 2, fis
a bounded integrable function and nevertheless, its L, norm m(f, .) as a set function
on &(2) is not continuous on S(Z).

Let now T be a locally compact Hausdorff topological space and denote by Q the
set of all functions of the form f = ), @x,, where ¢, is a scalar continuous function
i=1

with compact support in T and x;€ X, i =1,2, ..., r. Then the following theorem
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generalizes Theorem 1 from [5] and may be proved in just the same way (in the case
of Borel measure m we use its regularity in the strong operator topology).

Theorem 6. Let m be a Baire or a regular Borel operator valued measure, let g
be a Baire or Borel measurable function and let E € &(%,) or E € S(%) respectively.
Then

(g, E) = sup{ L fdml , feQ, |f(t) £ |g(1)] for each teE}.

If each function fe Co(T, X) is integrable on E, then obviously we may replace Q
in the preceding equality by Co(T, X).

2. L, SPACES

Definition 2. We say that a sequence of measurable functions {g,}7-, converges
in the Ly norm, or in mean, to,a measurable function g iff lim (g, — g, T) = 0.

n—o

From assertion ) of Theorem 1 we immediately have:

Lemma 2. For a measurable function g, (g, T) = 0 if and only if g = 0 almost
everywhere m.

According to this lemma we shall use:

Definition 3. We say that two measurable functions f and g are equivalent iff
f = g almost everywhere m.

From here and from Theorem 3 we immediately have:

Lemma 3. If a sequence of measurable functions converges in the Ly norm to two
measurable functions, then these functions are equivalent.

From the Corollary of Theorem 1 we immediately obtain:

Lemma 4. If a sequence of measurable functions converges in the L, norm to

a measurable function, then this sequence converges also in the semivariation
to this function.

Convergence in the semivariation i was treated in section 1.3 in [4]. We are now
prepared to prove an important:

Theorem 7. Let {g,},>, be a sequence of measurable functions fundamental in
the L, norm. Then there is a measurable function g to which this sequence converges
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in the L, norm. If every g,, n = 1,2, ... is an integrable function, then g is also an
integrable function. If for every n the set function r(g,, .) is continuous on S(2),
then also the set function (g, .) is continuous on S(2).

Proof. Owing to the triangle inequality for the L; norm, see Theorem 3, it is
sufficient to find a measurable function g and a subsequence {g, }, of the sequence
{g,,},',’; L converging in the L; norm to the function g.

Let us take a subsequence {g,,};>, in such a way that r(g,, — g,,..,.T) < 1/2%*
for every k = 1,2,... If we put 4, = {re T, |g,(t) — g...,(t)] > 1/2"}, then A4, e
€ &(2) and by the Corollary of Theorem 1, rin(4,) < 1/2* for every k. Thus the
sequence {g, }5~ is almost uniformly m fundamental and therefore, see section 1.3
in [4], there is a measurable function g to which this sequence converges almost
uniformly m and thus also almost everywhere m. We now prove that this sequence
converges also in the L, norm to the function g.

Let us have a fixed k, and a non zero simple integrable function # fulfilling [A(t)| <
= |g(1) — g, (1)] for every te T. Put H = {te T, [h(1)] > 0}, ¢ = min {|A(r)], t € H}
and C = max {|h(t)|, t € H}. Since the sequence {g,,}-, converges almost uniformly
i to the function g, there is a k, > k, such that '

A

" ({te . 1g,, (1) — 9(0)] > %}) < #

Obviously 4 e &(#). But then |h(t)] < 2. [g,,kh(t) - g,,ko(t)l for every te H — A,
and therefore |[[y_,hdm| < 2. rﬁ(g,,k’l ~ Gu,» T) < 1/2%72. Since |[,hdm| <

< C.m(A4) < 1/2%72, we have |[; hdm| < 1/2*73 But k, and h were arbitrary,
and thus we proved that the sequence {g, };, converges in the L, norm to the
function g.

If g,,, k = 1,2, ... are integrable functions, then the integrability of the function g
follows from Theorem 16 in [4], since the sequence {g,,};%, converges almost every-
where m to the function g and by the Corollary of Theorem 2 we have HE gy, dm —
~ [£ 95, dm| < (g, — g, , T) for each set E e &(2).

The final assertion of the theorem is obvious.

Denote by & the collection of all sets A € 2 for which lim rﬁ(A N E,) = 0 for any

decreasing sequence of sets E,\0, E, € 2. Obviously & is a d-subring of 2 and
AN EePforany Ae P and E € 2. We may say that 2 is the greatest d-subring of 2
on which the semivariation # is continuous. Obviously, in general 2 + 2. However,
if Y is a weakly complete Banach space, then P = P, see the *-Theorem in section
1.1 in [4]. '

The following important theorem strengthens Lemma 1, see also the Corollary of
Theorem 5.
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Theorem 8. Let g be a measurable function and let its L, norm 1(g, .) be con-
tinuous on (). Then there is a sequence of P-simple functions converging in
the L norm to g.

Proof. Since g is a measurable function, there is a sequence of simple integrable
functions {g,}., converging at each point 7€ T to g(r) and such that the sequence
{lg.(1)]} =1 is non decreasing for each t € T, see section 1.2 in [4]. We prove that the
sequence {g,}-, converges in the L, norm to g.

Let ¢ > 0. Since G, = {te T, |g(1)] > 1/k} € S(2), k = 1,2, ... is an increasing
sequence of sets with U G, = {re T, |g(1)| > 0} e §(#), the continuity of the L,
k=1

norm (g, .) on S(2) implies the existence of an integer k, such that (g —
—9-XG,,» T) < ¢/6. By the Corollaries of Theorems 1 and 5 m(G,,) < k, . fis(g, T) <
< +oo. Further, by the second part of Theorem 5 there is a finite non negative
countably additive measure 4, on &(#) such that lim (g, E) = 0, E e S(2).

24(E)—0
Take 6 > 0 in such a way that A,(E) < & implies rit(g, }:g) < ¢/6, E € &(2). According
to Egoroff’s theorem there is a set A € S(2) such that 1,(4) < 6 and on G,, — A4 the
sequence {g,},~, converges uniformly to g. Hence there is an integer n, such that
lg. — g“Gko"A < ¢/(6kom(g, T) + 6) for every n = n,,.

Since |g,(1)| < |g(1)] for every te T and every n = 1,2,..., by assertion d) of
Theorem 1 1ii(g,, E) < (g, E) for each set E € S(#) and each n. From here and from
the preceding inequalities, by subadditivity of the L, norm (., .), we immediately
have the inequality rii(g — g,, T) < & for every n = n,. This proves that the sequence
{g.}- converges in the L, norm to g.

Since |g,(1)| < |g(1)| for every 1€ T and every n = 1,2, ..., and since the L, norm
(g, .) is continuous on (), by assertion d) of Theorem 1 each g, is in fact a -
simple function. Thus the theorem is proved.

Definition 4. By % M(m) or £ 3(m) we denote the set of all measurable or
integrable functions g respectively, with (g, T) < +co0. By £,3(m) we denote
the closure in the L, norm of the set of all simple integrable functions 3, in &, IM(m).
By & ,(m) we denote the set of all functions g € & W(m) whose L, norms (g, .)
are continuous on &(2) (By Theorem 8 £(m) is the closure of all P-simple func-
tions in & M(m)). If we consider equivalent classes of functions, then we shall
write L, instead of ¥ ,.

Obviously, each of the set of functions mentioned above is a linear space. Moreover,
from Theorems 7 and 8 we immediately have the following important

Theorem 9. The spaces L;Y(m), L,3(m), L,3(m) and L,(m) are Banach spaces
and LyM(m) > L,3(m) > L;I(m) > L,(m).
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It is easy to verify that in Example 7” of § 2 in [4] all the above stated inclusions are
proper. On the other hand from Theorem 5 we immediately have the following im-
portant result:

Theorem 10. Let Y contain no subspace isomorphic to the space ¢, for example
let Y be a weakly complete Banach space. Then & M(m) = £ (m).

The following theorem is obvious from Theorem 8.

Theorem 11. ,‘Z’lss(m) = %,(m) if and only if the semivariation # is continuous
on 2, i.e., if and only ifgj = 2.

If we restrict the measure m in Example 7" in [4] to the d-ring of all finite subsets
of T, then its variation v(m, .) is finite on 2, while L,3(m) & L,;3(m) = L,(m)
(to the integrable function f constructed there, there is no sequence of simple inte-

grable functions converging in the semivariation i, and therefore, see Lemma 4
above, no sequence of simple integrable functions converging in the L, norm).

The situations of Examples 2 and 3 from § 3 in [3] is worth to mentioning. For the
so called second Dunford integral (Example 2, integration of vector functions with
respect to a scalar measure), L M(m) = L,(m) is just the space of Bochner integrable
functions. In this Example 2 we found an example of an integrable function with
infinite L, norm.

When considering the integration of scalar functions with respect to a vector
measure, see Example 3 in [4], each integrable function has a finite L, norm and
£,3(m) = &,(m). These facts may be proved in just the same way as IV.10.4 and
IV.10.5 in [6], see also [10].

Theorem 12. Let ¢ be an m essentially bounded scalar measurable function and
let fe &, M(m), £,3(m), £,3(m) or L(m). Then ¢.fe L M(m), L I(m),
Z,3(m) or &£ (m) respectively.

Proof. The cases f € &,MM(m) and fe & ,(m) follow from assertion c) of Theorem
1. In the case fe £,3(m) we must use also Theorem 4 from [4]. In the case fe
€ #,3(m) we make use of the well known fact that to each bounded scalar measur-
able function there is a sequence of simple (Q’-Simple) functions converging to it
uniformly on the whole space T.

In general for the spaces ZM(m) and £ 3I(m) no analogs of classical conver-
gence and separability theorems are valid, consider Example 7" in [4]. Somewhat
better the space & 135(m) behaves. For this space we now state some analogs of
important classical convergence theorems. Since they may be proved in the usual
way, we omit their proofs. We note that the complete analogs of these classical con-
vergence theorems are valid only for the space £ (m), see Theorems 16 and 17 below.
In Theorem 19 we prove that only the space #,(m) may be separable.
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We start with an analog of the Vitali convergence theorem, see Theorem 5 in [1],
Theorems II1.3.6 and 111.6.15 in [6] and Theorem C of § 26 in [9].

Theorem 13. Let f, e £,3(m), n = 1,2, ..., and let f be a measurable function.
Then the following conditions are necessary and sufficient for the convergence of
the sequence {f,}*_ in the L, norm to the function f:

() The sequence {f,}7-, converges in the semivariation f on each set E € 2 to the
function f,
(i) the set functions m(f,, .), n = 1,2, ... are uniformly absolutely i continuous
on 2,
(iii) for every & > O there is a set Ae P such that m(f,, T — A) < ¢ for every
n=12,....

From here we immediately have the following

Corollary. If fe %,3(m), then its L, norm m(f, .) is absolutely 1 continuous
on &(#) and to every ¢ > 0 there is a set A€ P such that w(f, T — A) < .

Let us note that if £ 3(m) + #,J(m), then it may happen that none of these
properties is valid for a function fe % 3(m), see the paragraph after the Corollary
of Theorem 5 above.

From Theorem 13 we easily obtain the following version of Lebesgue dominated
convergence theorem in %3 (m), see Theorem 6 in [1], Theorems III.3.7 and
I11.6.18 in [6] and Theorem D of § 26 in [9].

Theorem 14. Let f, € £, I(m), n = 1,2, ... and let this sequence converge in the
semivariation v on each set E€ P to a measurable function f. Further let there
exist a function g € £,3(m) such that |f,(1)| < |g(t)] almost everywhere m for
every n. Then fe &,3(m) and the sequence {f,}_, converges in the L, norm to the

function f.

It is worth noting that if g€ .%,3(m), fe £,3(m) and |f(1)| < |g(t)] almost
everywhere m, then it may happen that f¢ %,J(m), see the function fin Example 7"
in [4].

The following version of bounded convergence theorem in £, J(m) is a simple
consequence of the preceding theorem, see also Theorem.7 in [1].

Theorem 15. Let E € 2, let a sequence f,€ £,3(m), n = 1,2, ... converge in the
semivariation m on E to a measurable function f and let there be an M > 0 such
that |f,(t)] £ M almost everywhere m on E for every n. Then f. ype £,3(m) and

the sequence {f, . yg}-, converges in the L, norm to f. xg.
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We now turn to the space &, (m). By the Corollary of Theorem 4, #,(m) general-
izes the classical L, spaces. What is more important, we now show that the complete
analogs of Vitali and Lebesgue convergence theorems are valid for fl(m), see
Theorems 16 and 17. Further we show that also complete analogs of separability and
density theorems are valid for £ (m), see Theorems 20, 21 and 22. At the same time
the space % ,(m) is in general substantially larger then the space of Bochner integrable
functions & (v(m, .), X), the latter being treated in [3]. We note that if some of the
spaces ZM(m), £,3I(m) and £ I(m) is different from £ (m), then it does not
share these properties.

We begin with the Vitali convergence theorem in % (m), see Theorem II1.6.15
in [6] and Theorem C of § 26 in [9].

Theorem 16. Vitali convergence theorem in % (m). Let a sequence f,e & l(m),
n=1,2,... converge almost everywhere m or in the measure m to a measurable
function f. Then this sequence converges in the L, norm to the function f if and
only if the L, norms m(f,.), n = 1,2,... are uniformly continuous on &(%).
In this case clearly fe & (m).

Proof. Since every sequence of measurable functions converging in the measure m
to a measurable function contains a subsequence converging almost everywhere m
to this function, see section 1.3 in [4], it is sufficient to prove the theorem for this
case.

The necessity of the condition may be proved in the usual way, see for example the
proof of Theorem C in § 26 in [9].

We now turn to the proof of sufficiency. Let the L, norms m(f,, .), n = 1,2, ...

be uniformly continuous on &(#) and let ¢ > 0. Since F = | {te T, |£(t)] > 0} €
0

n=

€ S(2), fo = f, see section 1.2 in [4], there is an increasing sequence of sets F, € 2,
o0

k=1,2,... with J F, = F. Owing to the uniform continuity of the L, norms
k=1
m(f,, .),n =1,2,...on &(2) there is a k,-such that m(f,, F — F,,) < ¢/6 for every
n=12,....
Theorem 5 implies that for every n = 1, 2, ... there is a finite non negative countably
additive measure 1, on &(2) such that A,(E) < m(f,, E) and lim #m(f,, E) = 0,
0

n(E)~

E € &(2). Since the L, norms m(f,, .), n = 1,2, ... are uniformly continuous on

S&(2), it follows that the measures 4,, n = 1,2, ... are uniformly countably additive

on &(#). But then by Theorem 3.10 in [7], which by a slight modification of the

proof given there (instead of A; consider the measures A;/(1 + sup v(1;, A)) is valid
AeX

without the assumption of boundedness, there is a finite non negative countably
additive measure A on &(2) such that A(E) < sup A,(E), E € S(2), and the mea-
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sures A,, B = 1, 2, ... are uniformly absolutely 1 continuous on S(#). Thus if A(N) =
=0, Ne &(2), then 4,(N) = 0 for every n, and therefore also r(f,, N) = 0 for
every n. From here and from the uniform continuity of the L, norms m(f,, .),
n=12..0n &) it easily follows that the L, norms m(f,, .), n = 1,2, ... are
uniformly absolutely 4 continuous on &(2) (this may be proved in just the same way
as Lemma 2 in [5]). Hence there is a 6 > 0 such that A(E) < 0, E € S(2) implies
m(f,, E) < ¢/6 foreveryn = 1,2, ....

If now ||m| (N) = 0, N € ), then obviously m(f,, N) = 0 for every n, hence
4(N) = 0 for every n, and therefore A(N) = 0. From here, since the sequence
{f,}_, converges almost everywhere m to the function f; it converges also almost
everywhere 4 to f. According to Egoroft’s theorem there is a set A € &(2) with
MA) < & such that on F,, — A the sequence {f,}7., converges uniformly to the
function f. Hence there is an n, such that for n = n,,

1

) &
Ifo = Flley, < 6 1+ m(Fy)

Using these inequalities, by Theorems 1 and 3 we obtain that for n,, n, = n, it
holds m(f,, — f,,, T) = m(f,, — fo,, F) < w(f,, F — F,)) + m(f,,, F — F,,) +
+ i(f,, — fo,, Fio — A) + 1(f,,, A) + m(f,,, A) < Ze + 2¢ + 2e = &. Sinces >0
was arbitrary, we obtain that the sequence {f,}~, is fundamental in the L, norm.
But then by Theorem 7 there is a functions g € Z,(m) to which this sequence con-
verges in the L, norm. By Lemma 4 the sequence {f,}7., converges in the semi-
variation # to the function g, and therefore there is a subsequence { f,, },% converging
almost everywhere m to the function g, see section 1.3 in [4]. Since the sequence
{ﬁ,k}le converges also almost everywhere m to the function f, f = g almost every-
where m. Thus the theorem is proved.

From this theorem we easily obtain the complete analog of the Lebesgue dominated
convergence theorem for #,(m), see Theorem D of § 26 in [9] and Theorem 111.6.18

in [6].

Theorem 17. Lebesgue dominated convergence theorem in #(m). Let a sequence
{ﬁ,},‘:‘;, of measurable functions converge almost everywhere m or in the measure m
to a measurable function f, let g € £,(m) and let |£,(1)| < |g(1)| almost everywhere m
for every n = 1,2,... Then for every n =0,1,2,... fye Z,(m), fo = f, and the
sequence { f,}_ converges in the L norm to the function f.

Proof. By assertion d) of Theorem 1 m(f,, E) < ria(g, E) for every set E e S(2)
and for every n = 1,2, ... Since by the definition of #,(m) the L, norm rix(g, .) is
continuous on &(2), the L, norms m(f,, .), n = 1,2, ... are uniformly continuous
on &(2). Thus f, € £,(m) for every n = 1,2, ..., and according to Theorem 16 the
sequence {f;}, converges in the L; norm to the function f. But then fe % (m),
and the theorem is proved.
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We now turn to separability properties of our spaces. For E, Fe 2 let us put
o(E, F) = m(E A\ F),where E A F = (E ~ F) U (F — E) is the symmetric difference
of the sets E and F. Then obviously (2, ¢) is a semimetric space. Let us note here
that only the semimetric space (2, ¢) is complete. Here, as we now, 2, denotes
the &-ring of all sets from &(£) with finite semivariation s, see section 1.1 in [4].

We begin with two interesting theorems.

Theorem 18. Let the semimetric space (2, ¢) be separable. Then the semivaria-
tion m is continuous on 2.

Proof. Suppose that the semivariation it is not continuous on £. Then in the
proof of »-Theorem in section 1.1 in [4] we find and & > 0 and a sequence of disjoint

sets B,e Z, n = 1,2, ..., U B, € 2, such that m(B,) > ¢ for every n (B, = 4, _, —
n=1

— A,, in the notation of the proof of *-Theorem). For any subset J of the set of all
positive integers N let us put B, = {J B,. Obviously B;e £ for any J =« N and

neJ
o(By,, B;,) = m(B;, A B;,) > ¢ for J, #+ J,. From here, since {B,, J = N} is an
uncountable family of elements of 2, the semimetric space (2, o) cannot be separable,
a contradiction. In this way the theorem is proved.

In the same way we may prove the following

Theorem 19. If any of the spaces & M(m), £,I(m) or £ 3(m) is separable,
then this space is equal to &£ (m).
Consequently, only the space & 1(m) may be separable. In Theorem 8 we proved

that to each function fe & l(m) there is a sequence of %-simple functions converging
to it in the L, norm (& was defined before Theorem 8). Using this fact we immediately

have:

Theorem 20. A non trivial space =.S,”,(m). is separable if and only if the spaces
(5", 0) and X are separable.

From Theorem D of § 13 in [9] and from thé second part of *-Theorem in section
1.1 in [4] we easily obtain the following result concerning the separability of the space

(2, 0):

Theorem 21. Let the 5-ring P be generated by a countable family of sets. Then the
semimetric space (2, o) is separable.

Let now T be a locally compact Hausdorff topological space. By Q we denote the

set of all functions of the form f = ) ¢,x;, where x; € X and ¢, is a continuous scalar
i=1

i=
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function with compact support in T, for every i = 1,2, .. r. Co(T, X) denotes the
closure of Q in the uniform norm |. || in the space of all bounded X valued functions
on T, see Theorem 1 in [5]. In connection with the representation theorems of § 2
in [5] the following density theorem is of importance:

Theorem 22. Let m be a Baire operator valued measure and let its semivariation m
be continuous on #,. Then Q and therefore also Co(T, X) is dense in £ (m).

Proof. By Theorem 8 it is enough to prove that to every Z%,-simple function

r
f=Yx .y, Ei€ By, x;€X,i=1,2,...,rand to every ¢ > 0 there is a function

i=1
£ € Q such that m(f; — f, T) < &. We proceed as in the proof of Theorem 1 in [5].
According to Theorem D of § 50 in [9] there is a relatively compact open Baire set U

such that J E; = U, where E; denotes the closure of E; in T. Denote by &, the o-ring
i=1
of all sets of the form E = U n F, where F € 4,. Since by assumption of the theorem
the semivariation # is continuous on %, by Lemma 2 in [5] there is a finite non
negative countably additive measure 2 on &, with the properties: A(E) < m(E) and
lim m(E) = 0, E€ &,. Take 6 > 0 such that A(E) < é, E € &, implies

I(E)=0
R
E < i+

Since the measure 2 is regular on the measurable space (U, &, ), see Theorem G of § 52
in [9], there are compact in the relative topology of U sets C; and open (in T, since U
is open) set U;, C; < E; = U; = U, with A(U; — C;) < é for every i = 1,2,...,r.
According to Theorem B of § 50 in [9] for every i = 1, 2, ..., r there is a continuous
real function @; on T, 0 < ¢(t) < 1 for every te T, such that ¢(t) = 1 for te C;
and ¢(f) = 0for te T — U, If we now put f; = Y ¢, . x;, then f; € Q and it is easy
r i=1
to see that m(f, — £, T) < Y. m(U; — C;) < &. Thus the theorem is proved.
i=1
At the end of section 1.3 in [4] we deduced that if m is a regular Borel operator
valued measure countably additive in the uniform operator topology, then to every

Borel measurable function f there is a Baire measurable function f; such that f = f;
almost everywhere m. From here we immediately have:

Theorem 23. Let m be a regular Borel operator valued measure countably aditive
in the uniform operator topology. Denote by my its Baire restriction. Then L,(m) =
= L,(my) and the same is true for the spaces L,M(m), L, 3(m) and L,3(m).

It remains an-open problem if the conclusions of this theorem are valid also when m
is a regular Borel operator valued measure countably additive only in the strong
operator topology.
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3. L, SPACES AND ORLICZ SPACES

In this short section we indicate how to generalize the preceding theory to the
theory of L, spaces for 1 £ p < 400 and to the theory of Orlicz spaces. Without
mentioning we shall suppose that 1 < p, ¢ < +o0 and 1/p + 1/qg = 1. We begin
with the definition of the L, norm, see Deﬁmtlon 1.

Definition 1'. Let g be a measurable function and let E € 6(9) Then the L, norm
of the function g on the set E, which will be denoted by ril,,(y, E), is defined by the
equality:

(g, E) = sup{ fdml”", £e3, 0] < o) for each teE}.
E

The L, norm of g is defined by i (g, E) = sup (g, E).
EeS(2)

Obviously n (., .) = m(.,.). From this definition we immediately see that
(g, E) = (m(|g|"~" . g, E))'/". Hence the properties of the L, norm ., .) may
be deduced from the properties of the L, norm (. ,.). Thus for example we have the
following sort of Tschebyscheff inequality, see the Corollary of Theorem 1:.

({1 eE, ()] 2 a > 0}) < (ﬂ%ﬁ)l

Further, from this equality we immediately have the following useful generalization
of Theorem 4:

Theorem 4'. For every measurable function g and every set E € 6(9’)

(g, E) = Jup U lg|” duv(y*m, .)>w, yre Y*.

Using this equality and the classical triangle inequality for scalar L, spaces we
immediately have the triangle inequality .7t ,(f + g, E) < m(f, E) + (g, E) for
our L, norms.

Using these facts it is easy to verify that the whole above given theory of L, spaces
may be generalized to the theory of L, spaces. Namely, if everywhere in § 2 we write
(., .)instead of mi(., .) and &£ (L,) instead of #(L,), then all lemmas and theorems
are valid except two facts. First, if % ,3(m) denotes the closure of the set of all in-
tegrable functions with finite L, norms in & ,M(m), then for the general case the
author has not succeeded in proving that every element of % ,J(m) is an integrable
function when p > 1 (i.e., that the assertion of the generalized Theorem 7 concerning
integrable functions is in general valid when p > 1). Second, the generalized Theorem
12 will have the following form:

694



Theorem 12'. Let ¢ be a measurable scalar function and let there be an x € X,
x + 0 such that ¢ .xe L, M(m). Let further fe & M(m) or fe & (m). Then
¢ .fe L M(m) or ¢ . fe L (m) respectively. Further, if there is an xe X, x + 0
such that ¢ . x € £,3(m) and fe £,3(m), then ¢ . fe £ ,I(m).

This theorem easily follows from its classical scalar version by the Theorem 4’
stated above. The author again does not know what is the situation when f e & ,3(m).

Using these methods it is easy to verify that the whole above given theory of L,
spaces may be further generalized to the theory of Orlicz spaces. We omit the details,
see the scalar case for example in [16].
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