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Czechoslovak Mathematical Journal, 21 (96) 1971, Praha 

ON APPLICATION OF DIRECT VARIATIONAL METHODS 
TO THE SOLUTION OF PARABOLIC BOUNDARY VALUE PROBLEMS 

OF ARBITRARY ORDER IN THE SPACE VARIABLES 

KAREL REKTORYS, Praha 

(Received January 15, 1970) 

The Dirichlet problem for parabolic equations is treated in a way permitting the 
application of direct variational methods similar to those applied to elliptic problems. 

1. INTRODUCTION 

Direct variational methods commonly used to the solution of elliptic boundary 
value problems and based on the minimalisation of corresponding functionals, are 
not used in parabolic problems, because functionals with similar properties do not 
exist. In fact, functionals have been constructed in the parabolic case, containing 
convolution integrals and permitting the formulation of analogous variational 
principles (see e.g. HLAVACEK [2]). However, although these principles are very 
important from the theoretical point of view, the convolution integrals, involved in 
the functionals, do not make it possible to apply such simple procedures for numerical 
solution of corresponding problems as is, for example, the Ritz method in the elliptic 
analogy. Thus, in this paper a method is developped, permitting the application of 
direct variational methods, and corresponding questions on convergence are clarified. 

2. PRELIMINARY CONSIDERATIONS. AN EXAMPLE 

To make clear the idea of the method, let us consider first a simple example of an 
equation of the second order. Let ß be a bounded region in the iV-dimensional 
Euclidean space £^, with boundary U, let x^, ..., Xjy be Cartesian coordinates of the 
point X e Ejv- Denote g = jQ x (0, T). Let the Dirichlet problem for a parabolic 
equation be given: 

(1) Ли + - - ^ -
ct 

(2) 

(3) 

i,j=l S^i\ '^ S^jJ àt 

u[x, 0) = UQ{X) , 

M = 0 on a X (0, T ) . 

318 



Assumptions concerning the given data of the problem (the ellipticity of the opera­
tor A, etc.) will be specified in the next section for a more general case (see, in parti­
cular, Theorem 1, p. 329). 

Denote 

a{u, u) = \ i ; üij - ^ - ^ dx 

and {v, u) the usual scalar product of (real) functions v and и in the region Q, i.e. 

(v, u) = v(x) u(x) dx . 

Let us divide the interval [0, T] into p subintervals of the same length h(i.Q. ph = T) 
and let us consider the following functional: 

1 2 
Gi{u) = a{u, M) + - {u, u) — 2(/, u) (UQ, U) , 

h h 
1 2 

(4) Gii^) = ^(w, u) -\— (w, u) — 2(/, u) (MI , U) , 
h h 

1 2 
Gp{u) = Ö(M, W) + - {и, и) - 2 ( / , w) - - (w^ ,_ i , w) . 

/г h 

Under well-known assumptions on a{u, u), the functional Gi(u) attains its minimum 
in a certain class of functions, satisfying condition (3) (let us denote this class of 
functions by F, see the following section) and the minimizing function u^ is the 
(generalizied) solution of the elliptic problem 

Au -\— (u — UQ) = f in Q , и = 0 on ß . 
h 

Similarly, the function и2, minimizing the functional G2{u) in F, satisfies 

Au2 H— (w2 ~ ^i) = / in Q , U2 = 0 on Ù . 
h 

In general, the functional Gi(u) (l S i й p) attains its minimum in F and the mini­
mizing function satisfies (in the generalized sense) 

(5) Aui + — {Ui — Ui-i) == f in Q, Ui = 0 on Q . 
h 
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For every ti ~ ih (i = 1 , . . . , p) being 

h dt 

each of the functions Ui(x) can be taken as an approximation, in the hyperplane t = ti 
{x e Q), of the solution w(x, t) of the problem (l) —(3). If wanted, an approximation 
Wi(x, i) can be defined in the whole g, for example as a function continuous and 
sectionally linear in t for every fixed x eQ, assuming the values w (̂x) at the points 
t = / j . Thus 

(6) Wi(x, t) = Uj{x) + —-—^ (wj+iW - WJW) foi* 0 ^ ^ ^ 0+1 ' 
n 

where t̂ . = jh {j = 0, 1, ..., p - l). 
Let us construct, in a similar way, a function М2(х, f), with the only difference that 

instead of dividing the interval \Q, T][ into p subintervals of the length h as before, 
we divide it into 2p subintervals of the length ^2 = hjl. Going on in this way and 
dividing subsequently the interval [0, T ] into 4p, 8p , . . . , 2"~^p, ... subintervals, we 
construct a sequence of functions w„(x, r), defined in Q by the relations 

(7) uXx.t)=u%x)-b^-^(u%,ix)-u%x)) for ;̂. ^ ^ ^ ^ ; , . , , 

where h„ = h\T'~^, t) = jh„ {j = 0, 1, ..., p . 2""^ - 1). (For n = 1, the notation 
hi = h, fj = tj, u]{x) = Uj{x) has been used.) 

In this way we get a sequence {м„(х, t)] of approximate solutions of the problem 
( i ) - ( 3 ) . 

In practice, the minima of functional (4) are determined approximately, using 
some of the well-known direct methods, for example, the Ritz method: Let 

(pi{x),(p2{x),,..,(pXx),... 

be a base in V. Let us take the first к members of this sequence and construct a func­
tion 

(8) Wi(x) = ai(Pi(x) + .. . + flfc^k(x), 

determining the unknown coefficient â  in a well-known way from the condition that 
Gi(wi) be minimal. Then substitute ûi{x) instead of Wi(x) into G2{u), denote this new 
functional by 62(^) ^^^ ^^^ U2(x) as a linear combination of (Pi{x),..., (Pk{x) so that 
62(^2) be minimal. Of course, Û2(x) is different from U2{x), in general, because, 
first the functional G2{u) has been substituted by the functional G2{u) and, second, 
the minimizing element of this functional is again found approximatively. -

Going on in this way, we come to the functions û^{x),..., w^(x). (The numerical 
process is very simple, see Section 6, p. 337, especially if a computer can be used.) 
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Having these functions, we construct a function üi{x, t) substituting ûj{x) instead of 
Uj(x) (7 = 1,2,..., p) into (6). Then, dividing the interval [0, Г] into 2p, 4p,... subinter-
vals, we come in the same way to the functions Û2(x, t), Мз(х, t),... and, generally, to the 
function 

(9) uix,t)=u%n)^^-^{u"j^,{x)~û%x)) for t^utul^^i 
К 

which is of a similar form as the function (7). 
Note that equations (5) and functions (7) are closely related with the so-called 

Rothe method (see ROTHE [4]). The expression (м^ — Wi-i)//i in (5) represents the 
"differential quotient" of и with respect to t\ it seems plausible that for и -> 00 
(i.e. for /ï„ -> 0) the limiting function of the sequence {w„(x, i)] will have a derivative 
with respect to t and that it will be possible to establish this function as the required 
solution. 

Of course, there are many questions concerning theoretical treating of our problem. 
The first is the concept of the solution itself, i.e. the question what a function or what 
an element of a properly chosen functional space is to be understood under a solution, 
especially in the case when an equation of higher than the second order is considered. 
ParaboHc problems for higher-order equations have been treated by different authors 
(LIONS, BROWDER, LADYZENSKAJA a.o.), even in nonlinear case. The concepts of the 
solution are slightly different in these works, according to the problems in question 
and to methods used by individual authors. Our concept of the solution is clarified 
in Theorem 1 (p. 329). 

Further, there are two questions on convergence to be discussed. The first concerns 
the above mentioned convergence (for n -> 00) of the "Rothe functions" м„(х, t) to 
the required solution. The second concerns the behavior of their approximations 
M„(x, i), constructed by the above explained direct method. In more detail, a question 
arises, whether it is possible to make м„(х, t) arbitrarily "close" to the solution of 
our problem (and in what a sense) if n and also к (in the linear combinations of the 
type (8)) are sufficiently large. 

As to the first question: The Rothe method has been used several times to proofs 
of existence theorems, especially for parabolic problems of the second order. (See, 
e.g., ROTHE [4], LADYZENSKAJA [5], or a surveyable paper by ILJIN, KALASNIKOV and 

OLEINIK [6], etc.). In these papers, mostly classical methods or methods based on 
fixed point theorems of the Schauder type are used. A basic work applying the Rothe 
method to equations of higher than the second order is the paper by LADYZENSKAJA 
[7] (see also the paper by IBRAGIMOV [8]). Although the concept of her work is suf­
ficiently general to cover a wide field of problems (and suggests also some ideas used 
in the present paper), we have chosen a rather different way, more appropriate for 
treating our problem, especially more suitable for answering the second question on 
convergence, stated above. 

After these introductory considerations let us turn to more general investigations. 
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3. THE W^EAK SOLUTION. GENERAL GIVEN DATA 

Let 0 be a bounded region in Ej^ with a Lipschitz boundary (see e.g. NECAS [1]; 
thus, the outward normal v exists almost everywhere; examples of such regions are 
a circle, an annulus, a triangle, a cube, etc.). Let aij(x) are bounded integrable func­
tions in Q,f{x) e £2(0). We shall assume that aipfdixt real. However, this assumption 
is not at all essential for basic results of this work. 

Let 

(10) Л = S (-1)1^1 Z)^(a,,(x) DO 

be a differential operator of order 2/c; i,j are multiindices, i = (i\, ..., i^), |i| = 
= ï'i + ... + ijv» where Ï\, ..., fjy are nonnegative integers, 

similarly for j . 

As usual, let W^\Q) be the Hubert space of (real) functions which are square 
integrable in Q with their generalized derivatives (taken in the sense of distributions) 
up to the order / including, with the scalar product 

{v,u)w^ii) = X ( ^ 4 ^ ' w ) , 

where (...) is the scalar product in L2(0). Let 

(11) V=E (vsW^^\Q\ . = i^ = ... = £ ^ = 0 on O y 

Let 

(12) a{v, w) = S I ^ijI^'vD^ dx 

be the bilinear form assotiated with the operator Ä and let us assume that this form 
satisfies the condition of F-ellipticity, i.e. 

(13) a{v,v) ^ а]|г̂ 1|ж2('*) ^^r every veV (a = const. > 0). 

As is well known from the theory of elliptic boundary value problems, (13) ensures 
the existence of just one solution w e F of the elliptic boundary value problem 

(14) ÄU = / , ueV 

in the weak sense, i.e. 

a(v, u) == (v, f) is satisfied for every veV. 
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Now, let the parabolic boundary value problem be given, 

йгй 
(15) Au + — =f in Q~ Q X {0,T), 

dt 

(16) M(X, 0) = UQ{X) , 

du __ _ д^~^и 
dv '" dV 

(17) t, = ^ = . . . = ^ - _ ^ = 0 on U x ( 0 , T) 

with A and / satisfying conditions introduced above. Moreover, let us first consider 
the case MQ = 0 (cf., however. Section 5). We shall show in the present section that the 
given assumptions ensure the existence of a weak solution of the problem (15) —(17) 
in the sense given in Theorem 1 (p. 329) and that this weak solution is the limit (in the 
sense given later) of the sequence {w„(x, t)} of functions constructed above by the 
"Rothe method". In the next section, we shall be interested in the assumptions under 
which more smooth solutions of this problem can be obtained. 

Thus, choose a fixed number p, denote h = Tjp and solve successively the following 
finite sequence of elliptic boundary value problems: 

(18) a{v,z,) +Uv,z,)={vJ), z,eV, 
h 

(19) a{v,Z2) + -{v,Z2) ={vj) + ~{v,z,), z^eV, 
h h 

(20) a{v, Zj) + - {v, zj) = {v, / ) + - {v, Zj_ i) , ZJEV, 
h h 

(21) a{v, z,) + - (t;, z^) = (t;, / ) + - (t;, z^_ 0 , z, e F . 
h h 

Each of equations (18) —(21) should be fulfilled for all veV. 
In consequence of (13) and of the fact that l//i > 0, a unique solution z^ e F of 

(18) exists satisfying 

(22) ||zi||^ ^ const. ||/||^^,(ß). 

Putting V = z^ into (18), 

a{z^, Zi) + - (zi, Zi) = ( z i , / ) , 
h 

and nötig that a{zi,Zi) ^ 0, we get 

(23) | | Z X 1 1 M ^ ) ^ H I / ! U . ( O ) . 
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Similarly, ẑ  being in £2(0), a unique solution Z2 e Fof (19) exists with 

F 2 F й c o n s t . 

If we subtract (18) from (19), 

/ + 7^1 
h I b2(ß) 

^ const. ||2/|1^,(«) 

a{v, 22 - Zj) + - (ü, Z2 - Zi) = - (Î;, Z^) 
/г /i 

and put V = Z2 — Zi, we get in a similar way as in (23) 

(24) Ьг - Zi||b,(„) ^ izi||i,(„) ^ Н1/|1мй) •, 

Proceeding similarly, we have 

(25) l|z,,, - z,l|̂ ,(„> ^ ||z, - z,_,||^,(„, ^ /,||/1|^,(„, 

for j = 2, 3, ..., p — 1 (and also for j = 1, according to (24), noting that ZQ = 0). 
From (23) and (25) it follows 

(26) \z\um й T\\fl,,^, 

for all j = 1,..., p. 
If we write (20) in the form 

a{v, zj) = (vj) - - (t;, zj - z.-.J 
h 

and use (25), we come, similarly as in (22) to the result 

(27) \zj\v й const. I ||/jli,̂ (ß) + 
h LiiQX 

^K ||L2(ß) > 

where К does not depend on h. 
Now, denote tj = jh [j = 0,..., p) and construct in ß = ß x [0, T] the function 

(28) u,{x,t) = Zj{x)+^-^{zj^^{x)-zj{x)} for tj ^ t S tj+t , 
h 

j = 0,..., p — 1. Thus, in g, this function is piecewise linear in t and for every 
t = tj we have Wi(x, ĵ) = Zj(x). We shall also use the notation Ui{x, t) = Wi(t), 
having on mind the mapping t -> Ui(t) from the interval [0, T] into V, 

From the construction of the function (28) it is evident that, for every t e [0, T], 
we have 

du. dz. t — ti (dz:+i dzf) 
_ 1 = __1 4. 1 J__i±l Ll ^ tjStu tj+, , 
dxi dxx h I dxi дх^) 
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and that the so constructed function is the generalized derivative (with respect to x^) 
of the function u^, taken as function of x^, . . . , Xjv, Пп Q. In fact, the equation 

(p — dx 
д(р , 
-—^ и I dx 

being fulfilled for every t e [0, T] and for every function (p{x) with compact support 
in Q, it follows that 

(29) { (p^dxdt = - { ^u.dxdt 

will be fulfilled for every ф(х, t) with compact support in Q. A similar assertion 
holds for the derivatives 

(30) D'u, = D'zj + ^ - ^ { ^ 4 + 1 - ^ 4 } Ф1 ^ k) • 

1 he same is true for the derivative 

(31) ^ = J ± i ^ , tj<t<tj^^, 
dt h 

defined by (31) almost everywhere in Q. 
Till now, we considered the division (denote it by d^) of the interval [0, Г] into p 

subintervals of the length h by the points of division tj = jh {j = 0 , . . . , p). Let us 
consider a sequence of divisions {d„} of the interval [0, T] into p .2"~^ subintervals 
of the length /z„ = Г/(р . 2""^) with points of division fj = jh„ (j = 0, ..., p . 2""^). 
Thus, h = hi. Denote the functions Zj constructed above for the division di by zj and 
functions, constructed similarly for the division d„, by z". In the same way as before, 
we come to the estimates (26), (27) (valid independently of h„) and (25) and to the 
functions 

(32) uXt) = u„{x, t) = z%x) + l ^ {z]^,(x) - z%x)} for f} ^ t й t%i , 

with properties similar to the properties of the function (28). 
Denote briefly [0, Г] = / . Let Я be a Hilbert space elements of which are functions 

defined in Q. Let L2(/, H) be a set of functions t -> W(t) from / into H (more precisely, 
W(t) e H for almost all ^ e / , in general) which are square integrable in the interval I 
(in the Bochner sense; for details see, e.g., Wilcox [3]). L2(/, H) is a Hilbert space 
with the scalar product 

L2(I,H) — 
Jo 

325 



The integral 

(33) j W{T) ax = w{t) 
Jo 

(in the Bochner sense) of a function W(t) e L2(/, Я) is defined by 

(34) ( 4 0 . ' - ) H = [\w(T),r)„dt 

for every r e H. If W{t) e L2{I, Я), then w(t) can be identified with a function 
representing a continuous mapping from / into Я; thus, we can write 

(35) w{t) E C\h Я ) . 

Moreover, w{t) has a derivative w'{i) almost everywhere in I (in the sense 

lim 
v{t + At) ~ w{t) 

At 
-W{t) = 0) , 

equal to W{t). 
It follows from (32) and (27) that the sequence {w„(x, )̂} is uniformly bounded 

in L2(/, V). This space being complete and reflexif, a subsequence 

(36) {MJO} 

can be found, weakly convergent in L2(/, V) to a function 

(37) 

Denote 

and 

(38) 

u{t) e L2{I, V), 

Z J , , ( x ) = ^ l ± i « Z _ « 

L/„(0 = C/„(x,0=Z]^i(x) for t^jutut^,. 

j = 0, 1, .,., p . 2" — I. According to (25), the sequence {U„(t)} is uniformly 
bounded in L2(/, L2(ß)), so that the sequence (36) can be choosen in such a way that, 
at the same time, the subsequence 

of the sequence {U„{t)] converges weakly in L2{h L2{Q)) to a function 

l/(0eL2(/,L2(O)). 
Thus, the integral ? 

U{T) di - w{t) J: 
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exists (in the Bochner sense (34), where H = L2{Q)). Because we have 

' [ /„(T) dT = u„(0 
3 

(in L2(/, L2{Q))), as can be immediately seen from (32) and (38), it easily follows that 

w{t) = u{t) 

in L2(/, L2{Q)). Similarly as in (35), we can write 

u{t) e C\I, L2[Q)) 
and 

u'[i) = V{i) 
in £2(7, L2(ß)). 

Because, in consequence of (23), (25) and (32), 

for every t e I and for every n, we have 

(39) M(0) = 0 

in C\h L2{Q)). 

To show in what a sense the function u{t) satisfies the given differential equation, 
let us consider the system (18) —(21) (adding again the suffix n), A suitable linear 
combination of two of consecutive equations of this system gives 

a {v, z] + ^ {z"j,, - z;-}) + ( . , ZU, + i ^ ^ {Z} , , - Z}}) = ( . , / ) 

in the interval «} ^ г ^ f"+i, or 

(40) a{v, M„(0) + и U„{t) + i ^ {Z%, - ZJ}) = {v, f). 

Let, first, V be independent of t in the interval [0, T] . Integrating (40) between the 
limits [0, T] , we have 

(41) 

[\{v, u„{t)) àt + {\v, v„{t)) dî + E Г ' " Ц ^ {v, z^i - z;0 dt = [\vj) àt. 
Jo Jo ^'•'Jt^'j '^n J o 

The functions w„(r), U^t) converging weakly in L2([0, T] , F), or L2([0, T] , L2(ß)) 
to u{t), or w'(^), respectively, the two first integrals converge to the integrals 

a{v, u(t)) dt, {v, u'{t)) dt, 
Jo Jo 
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In the third term in (41) v̂ e have (because /i„ = r"+ ̂  — t") 

^ f ^ j + i 

J t^j 
-j^ (., z%, - z}) d̂  = ^ {v, z%, - z;.), 
К 2 

and, consequently 

'"J J,"J n„ 
At = ^{v,{Z\-Z\} + {Z"3-Z",} + . . . 

. . . + {Zl„-., - Z",„-.,_i}) = -"(i;, Z l„- , , - Z"0 . 

With П -> 00, we have /Î„ -> 0 and JlẐ Ĥ ĉr?) ^ | | / | |L2(«) according to (25). Thus, for 
every fixed v eV, the third term in (41) converges to zero if ẑ -^ oo and we have 

(42) j a{v, u{t)) df + I {v, u'(t)) dt = 
Jo Jo 

{vj)àt. 

This result remains true for every function v{t) which represents a continuous mapping 
from [0, T] into V. These functions being dense in L2([0, T] , F), (42) remains true for 
every v{i) of this space: 

(43) j a{v{t\ u{t)) df + Г {v{t), u'{t)) dt = \ {v{i)J) df, v{t) e L2([0, T ] 
Jo Jo Jo 

У)-

Thus, we have established the existence of a function u{t) e L2([0, T] , F) (let us 
call this function a weak solution of the problem (15) —(17)), lying simultaneously 
in C°([0, T] , L2(ß)), having, as function of this last space, a derivative u'{t) e 
e L2([0, T] , L2{Q)) and satisfying the differential equation (15) in the sense (43) and 
the given initial condition in the sense (39). 

Uniqueness: We shall show that there cannot exist two different functions u^{t\ 
Uiii) having the same properties. Thus, let u[t) = U2{t) — Ui{t). We have 

I I ( 0 G L 2 ( [ O , r ] , F ) , 

u{t) G C^([0, T] , L2(Q)), 

L,{[0, Г] , L,(ß)) , 

M(0) = 0 in C°([0, T] , L^iQ)), (44) 

(45) 

J: a(z;(r), w(r)) df + {v{tl U'(0)L,(O) dt = 0 for every v{t) e L2([0, Г] , F ) . 
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Let t^ e [0, Г] be arbitrary. Let 

. . / \ /Ф) for 0 < t < t^ , 

Thus, v{t) 6 L2([0, Г ] , V). Further, (;(t) e €"([0, f*], £2(0)) and 

(M(f), u'(())L.(ff) àt = 

кгСП) • 

(47) Г' WO, «'Wk(«) d( = 
J 0 

= i((u(<^), u{t')),,,a, - ("(0), «(0)),,(„)} = i\\u{t') 

The function (46), substituted into (45), fulfills 

a{u{t), u{t)) dt + (w(r), W'(0)L2(^) d̂  = 0 . 
Jo Jo 

If we note that a(u(t), u{t)) ^ 0 for all t e [0, r^]^ we get according to (47), 

or u{t^) = 0 (in L2(ß)). For t^ was chosen arbitrarily in the interval [0, T], we have 
u(t) = 0 in [0, T] (and u(x, f) = 0 in Q almost everywhere). 

R e m a r k L It follows, in the usual way, by the uniqueness, that not only {u^J^t)} 
but the whole sequence {u„(t)} converges weakly in L2([0, T] , V) to the just described 
solution. 

Thus, we have proved the following theorem: 

Theorem 1. Let Q = Q x (O, T), where Q is a bounded region in E^ with a Lipschitz 
boundary Ù (see Necas [1]). Let the boundary value problem 

du . . ^ 
Au Л = / in Q , 

dt 

u{x, 0) = 0 , 

и =~ = ... = ^ ^ = 0 on Q X (0, T) 
ÔV dv^-^ 

be given, where 

f(x)GL2{Q), 

Ä= Y^ (-1)1^-1 Z)'(a.,(x)D^) 

with aij{x) bounded and measurable in Q. Let the eUipticity condition be satisfied, 

a(v, v) ^ oc\\v\\y for every v eV, a = const. > 0 , 
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where 

a{v, и) = Y, I ciijD'vD^'u dx , 

V = E \ve Wi^^ (ß), V = —-=... = = 0 (in the sense of traces)I. 

Then there exists exactly one solution u(t) = u(x, t) of this problem, in the fol­
lowing sense: 

u{t)eL2{lO,TlV), 

u{t)eC%[0,TlL2{Q)), 

u(0) = 0 in C°([0, J ] , L2{Q)) , 

/•Г /»T ЛГ 
a{v{t), u{t)) dt + \ {v{t),u'(t))dt = \ {v{t),f)dt 

Jo Jo Jo 
for every v{t)eL2{[0,TlV). 

This solution is a weak limit in L2([0, T] , V) of the sequence {u„{t)} of functions 
(32) constructed above. 

R e m a r k 2. It follows easily from the text following equation (28), coming to 
П -> 00, that not only the functions u„{x, t), but the function u{t) too, taken as func­
tion ofXi, . . . , Xjv, fin Q,has in Q square integrable generalized derivatives up to the 
order к with respect to the space variables and of the first order with respect to the 
variable t. 

R e m a r k 3. Moreover, м„, dujdt, dujox^, ..., dujdxj^ being uniformly bounded 
in L2(6), it follows that the sequence {м„(х, t)} is bounded in W^^^Q). Conse­
quently, the sequence {i/„(x, t)] being thus compact in L2(ß), the convergence in 
^2(6) to u(x, t) is the ordinary (not only weak) convergence. 

4. MORE SMOOTH SOLUTIONS 

Theorem 1 was proved under rather general conditions imposed on the given data 
of the problem. Imposing further assumptions, stronger results can be obtained. 

Let the preceding assumptions be kept and assume, moreover, that 

(48) feW^^^^nV. 

and that the operator Ä (i.j. the functions aij{x)) has such a property that 

(48') a{v, f) = {v, Af) for all v eV. 
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Divide equation (18) by h, denote, as before, Z^ = z^jh and put (18) to the form 

(49) a{v,Z,)+Uv,Z,-f)=0. 
h 

Taking (48') into account, we can write 

a{v, Z,-f) + \- (v, Zi - / ) = - {v, Af) . 
h 

Because feV, we can put here v = Z^ — f, and noting the fact that a(Zi —/, 
Zi - / ) ^ 0, we get 

If we subtract (l8) from (19) and divide by h, we get, denoting Z2 = (z2 — Zi)jh 
as before, 

(51) a{v,Z2)+y{v,Z2) = Uv,Z,). 
h h 

Subtracting (49) from (51), we have 

(52) a{v, Z2 - ZO + 7 (î , Z2 ~Z,) = ~ {v, Z,-f). 
h h 

Putting t; = Z2 — Zi in (52), we get, because a(Z2 — Zi, Z2 — Zj) ̂  0, 

(53) 1|Z, - Zil|^,(ß) й \\Z, - /11,,(0) g HM/l|L.(ß), 

and generally, 

\\Zj - z,._ii|b,(ß) й ^1H/11L2(O)-

This being verified for the division d^ of the interval [0, Г] (see the text following 
equation (31)), i.e. for h = h^, similar inequalities can be estabhshed, in the same 
way, for the divisions d„ [n = 2, 3, ...), giving 

(54) \\Z"j-Z"j_,\\,^^^,Sh„\\Af\\,,,^,. 

From equation (49) it follows, in virtue of (50), 

\\Zi\\y й const. 11 Л/1|̂ .̂ („). 

In the same way, using (51) and (53), we get 

PiWv й const. l|4/lL,(fl) 
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and quite similarly, 

(55) |!Z}I|^ g const. \\Afl,,^, 

in general. 
Let us construct, as well as before, the functions 

(56) u„{t) = ы„(х, 0 = z"j{x) + i^-^ {z%,{x) - z%x)} = 
h„ 

=^z'}(x) + {t-f])Z%,{x), t"jètSt"j^,. 

Because of (55) we have Un{t) e C^([0, Г] , V). Moreover, the set {u„{t)] is a set of 
functions equicontinuous as mappings from [O, Г] into V. 

All assumptions of the preceding section being fulfilled. Theorem 1 is valid for the 
present case. However, in virtue of the supplementary assumptions (48) and (48') 
and its consequence (55), the solution u(t) has some other properties in this case: 

In virtue of (55), the sequence {U„(t)} (see Section 3, eq. (38)) converges weakly to 
a function U(t) e b2([0, T], V) which can be estabhshed, in the same way as in 
Section 3, to be the derivative u'{t) in L2([0, T] , V) of the function ii(t). It follows that 

(57) u{t) e C%[0, T] , V). 

(This result can also be derived in an other way, using the fact that the functions uj^t) 
are equicontinuous from [0, T] into F.) If we note that Zo(x) = 0 and use (55) in the 
form 

\\Ф) - ^ i - l W I k ^ c o n s t . / /„ |И/| |ь.(Г2) , 

we easily get 
u(0) = 0 

in C^([0, T], V) (not only in C^([0, T] , L2{Q)) as in Section 3). 
Moreover, for every t e [0, T] , the sequence {u„(t)} is uniformly bounded in Fand, 

consequently, compact in W^^~^\Q). The set of functions uj(^t) being equicontinuous 
from [0, T] into F, it easily follows that the sequence {uj[t)] converges in W2'~^\Q) 
(not only weakly) to u(t) uniformly in the interval [0, T] . 

Thus, in consequence of the supplementary assumption (48), the solution u{t) has 
much stronger properties than before. 

Imposing further assumptions on the given data of the problem, it is possible to 
get more and more strong results. If we require, for example, that the given problem 
satisfies the assumptions of 2/c-regularity (these assumptions concern, roughly speak­
ing, some smoothness of â y and Q; for details see Necas [1]), then the solution 
obtained by the method explained above, satisfies the given differential equation 
almost everywhere in Q. 

By imposing further assumptions, it is possible to come, in this way, to the classical 
solution of the problem. 
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5. NONZERO INITIAL CONDITIONS 

Let an initial condition Мо(̂ ) be given. Let us first assume that 

(58) Uo{x) e W^^^XQ) n V 

and that the coefficients of the operator Л are such that 

(59) Az e L2{Q) and a{v, z) = (v, Az) 

holds for every v eV and every z G W2^''\Q) n V. Especially, for UQ satisfying (58), 
we have 

(59') Auo E L2{Q) and a{v, UQ) = {v, AUQ) . 

Substitute w(x, t) = UQ(X) + û(x, t). This substitution can be performed either in 
the given equation (15), giving 

AÛ + -- =f - Auo , 
at 

or directly in (18) (substituting z^ = UQ + z^), giving 

a{v, Zi) + - {v, Zi) = (vj) ~ a{v, UQ) , 
h 

or, in virtue of (59'), 

a{v, zj) + - (y, Zi) - (vj) - (t% Auo) . 
h 

Similarly, the substitution Z2 = UQ + Z2 in (19) gives 

a(v, Z2) + - (î , Z2) = (v,f) - {v, AUQ) + - (v, Zi) , etc. 
h h 

Thus, if (58), (59) are fulfilled, the problem is reduced to the problem treated 
above, with g = f — AUQ e L2{0) instead of f e L2{Q). 

Let us examine a more general case. For UQ[X) Ф 0, equations (18) —(21) become 

1 1 
(60) a{v, Zi) + -- (Î;, zi) = {v, / ) + - (г;, WQ) , 

n h 

a(v, Z2) + - (v, Z2) = {vJ) + - {v, zi) , 
h h 
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etc. We have, putting subsequently v = Zi,v == z-^, etc. 

||zi||b,(fi) ^ 1|«о1и.(й) + /^Ц/Цмп). 

izzllMfi) ^ ЬАьгт + ^l | / | l tHß) ^ ||"ol|x,2(fi) + Щ!\ьг(П), 

etc. Thus we have (clearly independently of the division J„) 

||z,"lU,(«) ^ ll«olU.(ß) + тУ\ь..т 

and, according to (32) taking the form of the functions м„(х, i) into account, 

Ых, OIIL.(D) ^ 1|Î^O||L.^) + T||/i|^,(ß) 
for all ^ e [0, Г ] . Especially, for ^i/„(x, ?), ^w„(x, ^), corresponding to the same / and 
to different initial conditions ^WO(^)J ^^о(х), we have 

(61) f W„(X, t) - Ы1Х, OlU.Cß) ^ fUç,{x) - 'WoWl|L.(f.) 

for every t e [0, T] . Making the square and integrating between 0 and T, we get 

(6Г) fu^x, t) - 'u,{x, 01к.([о,г],ь.(г.)) ^ VC^) f "o(^) - 'wo(x)||b,(ß) . 

These rather simple inequalities yield a number of important consequences: 
First, let ^Mo(x), ^Мо(л̂ ) satisfy (58) and let Ä satisfy (59), so that the problems, 

corresponding to initial conditions ^UQ{X), ^'UQ{X) can be converted into problems with 
zero initial conditions in the way explained at the beginning of this section. Let 
^u{t), ^u{t) be solutions (in the sense of Theoreni 1), corresponding to ^UQ{X), ^^UQ{X), 
respectively. Having in mind that these solutions are weak limits of the sequences 
{^M„(r)}, {^uXt)}, respectively, in L2([0, Г ] , F), and consequently in L2([0, T] , L2(Q)), 
we get, by (61') 

(62) f М(Г) - 'w(0||L.([O,r],L.(f^)) й yJ{T) \\'Uo{x) - 'Wo(^)||L.(ß) • 

Now, let (59) be fulfilled and let {'u(x)] be a sequence of functions satisfying (58) 
and converging in L2(ü) to the given initial condition Uo(^x) e L2{Q). Let {'u(t)} be 
the sequence of corresponding solutions (in the sense of Theorem 1). By (62), {^u(t)} 
is a Cauchy sequence in L2([0, T] , L2{Q)). Let u{t) be its limit in this space, i.e. 

(63) lim Щ = u(t) in L2([0, Г] , £2(0)) . 

(62) implies that, UQ{X) e L2{Q) being given, the limit u{t) is independent of the 
choice of the sequence {^u(x)} converging to Wo(̂ ) in L2{Q), if only this sequence 
satisfies the above required assumption, concerning condition (58). We shall call the 
function (63) a generalized solution of the problem (15) —(17). 

If UQ{X) satisfies (58), this generalized solution becomes the weak solution in the 
sense of Theorem 1. 
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R e m a r k 4. The just defined generalized solution has a number of properties 
analogous to the properties of the weak solution of Theorem 1 or of that treated 
in [7]. These properties can be derived either by a more detailed treatment of the 
limit process (63) or by methods similar to those used in the work [7]. We shall state 
here only these which are of importance in the following text: 

Let (59) be satisfied, let ^м(х), ^u{x) satisfy (58) and let ^м(г), ^u{t) be the cor­
responding solutions (thus having properties stated in Theorem l). It follows imme­
diately from (61): 

(64) P w ( 0 - 'w(0! |coao , r ] ,L . («) ) ^ ГФ) - ' " ( ^ ) | к , ( й ) . 

Consequently, if {'u{x)} is a Cauchy sequence in L2{Q) (each of the functions 'u{x) 
satisfying (58)), then the sequence {'u(t)} of the corresponding solutions is a Cauchy 
sequence in C^([0, Г ] , L2{Q)). Thus: 

Theorem 2. The generalized solution is a function of C^([0, T], £2(0)). 

R e m a r k 5. Inequalities (62) or (64) express continuous dependence of the solution 
on initial conditions in L2([0, Г] , L2(Q)\ and in C^([0, T] , L2{Q)), respectively. 

R e m a r k 6. The generalized solution u{t) = u(x, t) is a weak limit, in L2([0, T] , 
L2{Q)) of the Rothe sequence {u„{t)} = {м„(х, t)}, corresponding to the given initial 
condition Uo{x) e L2(ß). 

To establish this assertion, it is sufficient to construct a sequence of functions ^u(x), 
satisfying (58) and converging in L2(Q) to UQ(X), then to write the difference u(t) — 
— uj{t) in the form 

(65) и - u„={u - Ы) + {Ы - %) + {'u„ - u„) 

and to take into account that, in L2([0, T] , L2{Q)), ^U converges to м, 'м„ converges 
weakly to 'u and the difference 'u„ — м„ can be made arbitrarily small by (6Г) if i 
is sufficiently large. 

Moreover, we can state a stronger result, giving the ordinary (not only weak) 
convergence: 

Theorem 3. Let, for the problem (15) —(17), the assumptions of Theorem 1 and 
the condition (59) be fulfilled, let Uo(x) e L2{Q). Let ujx, t) be the Rothe functions 
(32) with zl(x) = Uo(x), u(x, t) the generalized solution of the problem (defined by 
(63)). Then 

lim u„{x, t) = u(x, t) in L2(Q) . 
и-»оо 

Proof. We make use of Remark 3 (p. 330). All functions 'u in (63) lying in L2{Q), 
we have by (63) 

u{x, t) e L2(e) . 
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Then our assertion follows by (65), because, in L2(Q), ^U converges to м, Ы„ converges 
to ^u (according to Remark 3) and 'u„ — u„ is arbitrarily small if i is sufficiently large. 

The investigations of the next section are immediate consequences of the results 
of this section, especially of Theorem 3. 

6. THE CONVERGENCE OF THE METHOD 

In this section, we assume that a^j = ÜJI in (10) (the symmetry of the problem) and 
that the operator A satisfies the condition (59). The problem (15) —(17) being sym­
metric, the solution of the problems (60) is equivalent to the problem of finding, in V, 
minima of the functionals 

(66) G,{z) = a{z, z) + f (z, z) - 2(z, / ) - - (z, t̂ o) , 
h . h 

1 2 
G2(z) = a(z, z) + - (z, z) - 2(z , / ) (z, z^) , 

h h 

1 2 
Gk{z) = a(z, z) + -- (z, z) - 2(z , / ) - - (z, z^^^) , 

h h 

1 2 
G,{z) = a{z, z) + -- (z, z) - 2(z , / ) - - (z, z,_i) , 

where r is the number of subintervals of the interval [0, T] (so that rh = T) and 
Zi, Z2 are minimizing elements (in V) of functionals Gi{z), G2{z), etc. To these ele­
ments Zi(x), Z2(x),..., z^(x) there corresponds a ''Rothe function" of the type (28) 
(with ZQ{X) = Wo(̂ )) which we denote here by 

(67) ,M(X, t). 

Let Zi, Z2, etc., are determined approximately, using one of the usual direct 
methods. To make clear our idea, let us consider the Ritz method; of course, 
whichever other method can be chosen, having similar properties, concerning ap­
proximations investigated below. 

Thus, let 

(pi{x),(p2{x),...,(Pj{x),... 

be a base in Fand denote л 

(68) zT=t^)^)-
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(The suffix к corresponds to the functional G .̂) Choose s^, substitute zl' for z into 
Gi{z) and determine a] {j = 1, . . . , Sj) from the condition that Gi[z\^) be minimal. 
It is well known that this problem leads to the solution of a system of linear alge­
braic equations which is (a(i;, v) being F-elliptic and h being positiv) uniquely solvable. 
Thus, Si being fixed, z\^ is uniquely determined. 

Substitute z\^ for z^ into G2(z). Let us denote this new functional by G2(z). 
Choosing S2 and putting z^2 instead of z into G2(z), we get, in the same way as before, 
aj (j = 1, ..., S2) such that z^ makes G2(z) minimal. In general, having z^l'~l, we 
denote Gjj[z), with ẑ 'L"/ instead of z^. i , by Gj,(z), choose Sj, and determine uniquely 
z^f!' to make the functional Gj^z) minimal. In this way, we get the functions 

(69) z\\zl\...,zl^. 

R e m a r k 7. As said above, the individual steps to determine the functions (69) lie 
in solving systems of linear equations for a^- (j == 1, ..., Sj^). Thus, in virtue of our 
method, just described, the (approximate) numerical solution of our problem is con­
verted into the solution of a finite number of linear algebraic systems. Thus the termi­
nology ''direct method" is justified. Note that in converting the functional G,,(z) 
into Gk(z), the terms a(z, z), (l//z) (z, z) remain unchanged. Consequently, if s^ = 
= S2 = ... = s^ is chosen, the left hand sides of all the systems are the same, so that 
in this case the numerical process is particularly simple, especially if a computer is 
at hand. 

Now, let the functions (69) be found. Let us construct for them the corresponding 
"Rothe function" in the same way as we have constructed the function ^w(x, t) for the 
functions Zi(x), ..., z /x) , with zl^[x) substituted for Z/̂ (x). Denote this function by 

(70) ^ ' - 'Xx , r). 

A question arises, of course, how "close" is the function (70) to the function (67) 
and, in particular, to the solution of our problem. We shall show that 

(71) \\u{x,t) "'^^'-'M^, OIIMQ) 

can be made arbitrarily small if r and s^,..., s^ are sufficiently large. 

Thus, let 8 > 0 be given. Denote, as before, rfi, 6̂ 2, . . . the sequence of divisions of 
the interval [0, Г] into subintervals of the lengths h^, /12? ••• (̂ f. the text following 
equation (31)). According to Theorem 3 (p. 335), sjl being given, it is possible to 
find Пд such that for every n > HQ the inequality 

(72) \\u{x, t) - u„{x, t)\\L^^Q^ < ̂  

is satisfied. 
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Thus, let such an n be fixed. Denote briefly the corresponding h„ by h and let r = 
= Tjh, So we are in the notation used in (66) with h and r fixed and with (67) satisfying 

(73) ||w(x, t) - ,u{x, OIIL.(Q) < ^ . 

Let us construct the functions (69) and (70) in the way explained in the text following 
(68). We have to show that it is possible to choose the numbers s ,̂ ..., ŝ  in such a way 
that 

(74) Их,0-"'"">(^.0||ь.(о)<^ 

Taking the form of the functions ^u(x, t), ^̂ '••'̂ ;:w(x, t) into account, it is sufficient 
to show that 

(75) I|z,(x) - zr(x)||,,(„) < ^ 

for every к = 1, ..., г. 
Let Si be sufficiently large so that the difference between Zi(x) and z\'{x) be smaller 

than Si in L2{Q). (This can be always realized, even in F.) If ^2(̂ )» or z|(x) are mini­
mizing elements of functionals 02(2), or 62(2), respectively, then, according to (61), 

Similarly, if 52 is sufficiently large so that the difference between z'^(x) and Z2^(x) is 
smaller than Ô2 in L2(ß), then 

\\zt{x) - Z^{x)\\L,ç^y < ôi + 02, 

where z^{x), or z*(x) are minimizing elements of the functionals 03(2), or 63(2), 
respectively. Going on in this way, we come to the following conclusion: Let s^,..., ŝ  
be chosen in such a way that for every к = 1,..., г we have 

(77) \\zt(x) - z-(x)||,,(^) < 
2r^T 

(while z*(x) = Zi(x), of course). Then (74) is fulfilled. Coming back to (73) and 
summarizing, we have: If, in the Rothe method, n is sufficiently large and if, in mini­
mizing functionals Gk{z), a sufficiently number of terms in linear combination (68) 
is taken, then the difference between the generalized solution of our problem and the 
Rothe function ^'""^;w(x, t), constructed by the above described direct method, can 
be made arbitrarily small in L2(6)-
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This result is briefly expressed in the following 

Theorem 4. The direct method, described above, is convergent. 

R e m a r k 8. It follows from the procedure described in this section that the con­
vergence of our direct method can be examined also in other metrics than in L2(ß). 
Especially, if (59) is fulfilled and if / and UQ are so smooth that f(x) — ÄUo{x) e 
E W^'^^^ n F, then, according to Section 4 and the preceding section, the convergence 
can be examined, for example, in C^([0, Г ] , W2'~^ n V). If the given data of the prob­
lem are so smooth that the (not only weak) convergence of the Rothe sequence 
{M„(X, t)] to M(X, t) in a very „smooth" metric is justified, it is preferable, in order to 
improve the convergence of the method, to use functional of a more fine structure than 
are functional of the type (66) (for example, to use functional of types applied in 
the so-called Courant method, or others). 

R e m a r k 9. Obviously, the just described method can be generalized, without 
essential difficulties, for time-dependent operators and for problems other than the 
Dirichlet problem. 
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