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INTRODUCTION

The present paper is a continuation of my previous paper [2], the knowledge of
which is supposed. We use also freely the notation from [2]. The paper is devided into
two paragraphs. In the first paragraph sheaves of tensor invariants are introduced
and their structure is studied. In the second paragraph we define a process of prologa-
tion for tensor invariants and we show that knowing all tensor invariants of order /
of differentiability we get by prolongation all tensor invariants of order I + 1 of
differentiability.

1. SHEAVES OF TENSOR INVARIANTS

If X is a differentiable vector field on a differentiable manifold, let us denote by Ly
the Lie derivative with respect to X. Let us denote by J (','s) the sheaf of germs of all
differenticble (r, s)-tensor fields on J'. Here for ffo,o) we have one more notation
from [2], namely %' Weset ' = @ (. 7" has the natural structure of a sheaf

r,s=0
of bigraded algebras over the sheaf of rings Z". For any differentiable vector field X
on J' we have clearly LyJ {,) S 7 t.,)- Let us define a subsheaf &, , = 7, in
the following way: let g,(T) € ¢, ,), where x € J' and Tis a differentiable (r, s)-tensor
field defined on an open neighborhood U, of x; g(T)e€ @f,,s) if and only if for any
differentiable vector field X defined on an open neighborhood U, of x and lying
in D' there exists a neighborhood U < U, n U, of x on which LyT = 0. Obviously
9T e @:,’s) if and only if LyT = 0 on a neighborhood of x for all elements X
of a set of local generators of the pseudodistribution D’. Again for .OZ’(’O,O) we have one

more notation from [2], namely 7" Setting %' = @ %, ,, we can easily see from
r,s=20

the “derivative” properties of the Lie derivative, that %' has the induced structure of
_ a sheaf of bigraded algebras over the sheaf of rings 7",

*) This paper was written during my scholarship stay at the Scuola Normale Superiore of Pisa.
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Definition 1. The sheaves %/, and %' will be called the sheaf of (r, s)-tensor
invariants and the sheaf of tensor invariants respectively.

Let us denote by %, ,, resp. the %' restriction of 2, , resp. %' to J' and by %, ,,
resp. &' the restriction of .'47’(',.’3) resp. %' to J'. Now we are going to study the structure
of these sheaves. We shall see in the sequel that it is almost sufficient to study the
sheaf 97('0,1), i.e. the sheaf of 1-form invariants on J'. We have easily

Proposition 1. Let f be a differentiable function defined on an open set U < J*
such that g.(f) € o7" for every x € U. Then g (df) € Ry 1, for every x e U.

The proof follows from the commutativity of the exterior and Lie derivatives.

Let x € J', n, = dim J'. We know (see [2], proof of Prop. 10, p. 463) that we can
find a coordinate neighborhood U of x in J* with coordinates (u, ..., u™) such that
(9,(u**Y), ..., g,(u™)) is a @-basis of o7} for every y € U.If U is taken sufficiently small,
then for some local basis X, ..., X, of # around pr(x) (p : M x B — M projection)
the vector fields X}, ..., X4, 0/ou**", ..., 8/ou™ form a basis of T(U). Moreover
every vector field X;, 1 < i < k, is a linear combination of the fields d/du’, ..., d/ou*
only. At this place it is useful to introduce the following convention: the latin indices
i,J, ... will run over the range 1, ..., k; the greek indices o, 8 ... will run over the
range k + 1, ..., n;. Let us denote by @', ..., @™ the dual basis to the basis X}, 8/ou”.
Obviously there is »* = du® and g,(du®) € %, ,, for every y e U.

Now let w be a differentiable 1-form on U. Under the usual summation convention
we write

o = a0 + a, du”

where a;, a, are differentiable functions. Moreover let us write

where g, ¢ are differentiable matrix functions, o is the inverse to g. Finally let c}; be
the structure coefficients of the Lie algebra &' | U with respect to the basis X, i.e.
[X: X;] = ¢};X,. An easy calculation shows that

Lyo’)(X,) = —cl, (Lyo’ 9\ _ % g,; .
i i J
ou® ou®

Thus we have
aQir

Lyw' = —clo" + ﬁa"' duf
and using this we get immediately
L _ (X __b r j X aQir d a
xo = (Xa; — ca) 0’ + (Xa, + o 0% ) 4
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Now, studying the sheaf @;0,,) we want to get some information about solutions of

the differential system Ly,w = 0, i = 1, ..., k. For this we use up the results of [1].
The differential system

00
Xa; - ca, =0, Xa,+ i;’ 6,4, =0
on U is equivalent to the system
da; da Jo;
d;—ajrciias=0’ - —"a,=0.
Ju ouw  ou”

Now let IU x R™, U, p,) (briefly I) denote the fiber manifold of i-jets of all
cross sections of the trivial fiber manifold (U x R™, U, p,), where p, is the natural
projection. If we denote by a;, a, the natural coordinates in R™ we have on I' the
associated coordinate system (ui, u’, aj, ag, aj,;, Aj, Ag,i a,,;‘,). Now let us consider
on I* the differential system & (see [1] Def. 3.1, p. 12) generated by the functions

X

s . .
i i;j = 0jrCrils 1§l’ jgk
. R

Pl =qa,. — —La, k+1=Za<n.
a a;j au r =

u

We denote as in [1] by p® the first prolongation of @ (see [1], Def. 4.1, p. 16) and
by # & the set of integral jets of @ (ibid., Def. 3.3., p. 13). We are going to prove that
(u*, u', a;, ag) is a regular chart with respect to @ at any x, € #& (ibid., Def. 7.2,
p. 41). Setting yo = n;, y, = n;, y; = 0 we can easily see that the first condition of
Def. 7.2. from [1] is satisfied. As to the second condition we must prove that the
functions cbj., 3R 6€<DJ"-, oL, 0} j < i, 0j®%, j< i form a system of generators of
p® on I*. Here 0} denotes the formal derivative by u’ (ibid., p. 15). Clearly it suffices
to prove the following two equalities

(1) ‘7;4’1{ - 6%@? = Cih(a' ir¢£ -0 jr¢;)
oidd — oiei = % gi _ e i
ou* ou*

The simple calculation gives
ajr s s

o 0
13 p—
0;P; = Apyji — _6 T Conly — OjCrpls;; =
u

oo ; .
Jjr .t S i t —
= ah;ji - —;' Copdy — Ujrcrh((ps + Giucusat) -

ou

do; )
jr .t s Lt S i
= Qpji — <——6ui Crn + 00 1CrhCus | 4y — 0o Dy
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Thus we get

oo} ~ ot = :
ou
+ c:h(air¢£ -0 jr(pi) =

Crh

ou’

The trivial equality [0/ou’, 0[ou'] = 0 gives
0= ["J X, 03Xp] = G;u0 X, + Uja(Xao'ib) X,
(Gjao' wCap +

o, 0.,

_ r ib ja _

= O'jaaibcaer +o0o jaQav——Xb — OipQpw —6 X, =
w

v

and thus we have obtained the equality

do;, 0o, R
(2) a_u’ - :3‘1‘:7 = —0;,0pCap

which we use immediately in the next. We have

iz Jpi t r s .t
a#¢h - a#Qh - [~crhcabajaaib + Uiroju(crhcus

s J
+ crh(o-ir¢s -

On the other hand we have also

oo 00 ; . .
— t ir Jjr s .t s .t S J [ -
- [ <6uj - - + crhcusairaju - cuhcrsairaju a; + crh(o-irés a rdss) -

Jo; do;, ;
— t ir Jjr s .t s .t S J
[ rh(auj - ou + airaju(crhcus - cuhcrs) a, + Crh(o-ir¢s -0

4
ou’

J

0o; Jo;
t ir jr s .t s .t
(a 7 - + ConCusTir0 ju — CrnCusOjrTiu | Gy +
u

0.

- O'ib(Xija) X, =

_aLff X
ou’

- Ctschc:s)] a, +

iy __ s .t s .t s .t s Jj _ i
O-Jr(ps) = - (curcsh + crhcsu + chucsr) oiro.jua! + crh(air¢s a-jr¢s)

0 = [[X,. X,]. X,] + [[X.. X,), X,] + [[X» X.]. X,] =

(.S At s .t s .t
- (Curcsh + CrnCsu + Chucsr) X t

which implies
6,’@{; - 5,’;45,'; = C:h(o' # P! — ajr(p;.)
and this is the first equality from (1).
For the second equality we calculate
2 2 .
a;¢i = gy — 0 aj'.ar - agjr Ar;i = Qgji — o T ;9 — aa"
ou® ou’ ou* ou® ou’ ou®
2. . oo ;
= aa'jl' - 0 6" - + aa]r o-isc;r a, — UJ'
’ ou* ou'  ou* ou®
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Thus we get

03®) — i, =

I R L WP L DL SR L7 3
| ou*\ow'  ou’ ou* ou* ou® ou

= i %—% +aai.'0'jsc_:r—%air0:s ar""%(p{_%‘p::
| ou*\ow’  ou' ou’ ou* ou* ou

S Y R | L T L Y
| 0u*\ou;  ou’ ou* ou* ou* ou*

in view of (2), and we have proved the second equality. It is known (see [1], Th. 7.1.,
p. 42) that for a differential system @ of order 1 the existence of a regular chart with
respect to @ at x, € £P is equivalent to the involutiveness (ibid., Def. 7.1., p. 39)
of @ at x,. Therefore we have proved

Proposition 2. The differential system @ is involutive at any point x, € F®.

In view of the general method of construction of solutions of an involutive differen-
tial system of order 1 (see [1], §8, p. 51) we can easily see that for any x € J' there
exist its open neighborhood U, and n, vector functions a® = (a{”, a?’) defined on U,
with values in R™ which are on U, solutions of & and moreover ai” = &}, al” = &,
Here r = 1, ..., n,. Now we can prove

_ Proposition 3. For any x e J! the fiber Z(,1\(x) of &(o.1, at x as a module over
oL has a basis consisting of n, elements.

Proof. In view of the above considerations we can find to any x € J' its open
neighborhood U, and n, differentiable 1-forms ?, ..., ®™ such that

(i) g,(@’) € #o,1) for any ye U, and any i = 1,...,n,
(ii) w', ..., @™ are linearly independent at any yeU,.

Obviously g,(w"), ..., g(@™) are linearly independent. Let g (w)e %1y, Where w
is a differentiable 1-form defined on an open neighborhood of x. On a smaller
neighborhood we can write

o= fio'+ ...+ f,o"

where fi, ..., f,, are uniquely determined differentiable functions. For any differen-
tiable vector field X defined on a neighborhood of x and belonging to ' we get
applying Ly on the previous equality

0 = Lyw = (Xf,) o' + ... + (Xf,) @™.
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This implies Xf; = ... = Xf,, = 0 on a neighborhood of x and thus g.(fi),...
cows Guf,) € A% Therefore g (@), ..., g(w,,) is a basis of %y 1y(x).

Let us keep the notation from the preceding proof. We take on U, the dual basis
Xy, .. X, to@',...,0" Foralli,j =1,..., n, we have

0 = Ly[0'(X;)] = (Lx@') (X;) + o'(LxX;) = o/(LxX))

which implies LyX; = Oforall j = 1,...,n;and any X € Z'. Now in the same way
as Proposition 3 we get

_ Proposition 3*. For any x e J' the fiber Ry 0)(X) of H(s,0y at x as a module over
' has a basis consisting of n, elements.

Finally combining Propositions 3 and 3* we have immediately

Proposition 4. For any integers r 2 0, s = 0 and any xeJ' the fiber %, y(x)
of &, s at x as a module over o has a finite basis.

2. PROLONGATION OF COVARIANT-TENSOR INVARIANTS

Throughout the first part of this paragraph we shall consider an open set U <
< J'*1(1 z 0) with an associated coordinate system (x’, %, ¥5,, ..., Vi, 110 )

Definition 2. Let r = s = —1 be integers. A vector field X defined on an open
set V < J' is said to be projectable into J* if there exists a vector field Y on n}(V)
such that Y,(,, = (dn}), X, for any x e V. If such Y exists it is uniquely determined
and we shall denote it by dnj(X). A function f defined onV is said to be projectable
into J* if there exists a function g on (V) such that f = g o n}. If such g exists it is

uniquely determined and will be mostly denoted again by f.
For example a vector field
I+1 a

X = ai“—:-f" a'i'[ i <
ox! kgo oy

no
it

on U is projectable into J' if and only if the functions a’, a?,_, for 0 < k < I are

~ iy dn
projectable into J'.

Now let X be a differentiable vector field on U projectable into J'. For any dif-
ferentiable function f on V = n;*'(U) we define differentiable functions (&5 X)f
on U by

(53 X) [ = o5 ((dni "' X) ) — X(377) -

Instead of &3, 65 we shall often write &%, dj. We have
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Proposition 5. Let f, f1, f, be differentiable functions on'V, X, X,, X, differenti-
able vector fields on U projectable into J'. There is
(0:X) (fy + f2) = (3iX) £y + (3iX) />
(3:X) (f1f2) = (3:X) f1 - (faomy* ) + (from™) - (6:X) 2
Os(X 1 + X2)) f = (5:X 1) + (3:X) [ -

Proof. The only non obvious equality is the second one

(3:X) (f1f2) = o3[(dnX) (f112)] — X[04(f:12)] =
= O3[(dnX) fy - f2 + f1 - (dnX) f2] = X[0sf 1 - f2 + /1 02f2] =
= 0}((dnX) f1) - f2 + (dnX) fy - 0if, + 04fy - (dnX) f2 + fy - 04((dnX) f,) —
- X(a;fx) “f2— a;fx : (d”X)fz - (d”X)ft : 51';f2 - i 'X(as:fz) =
= (8:X) f1 " f2 + f1-(8:X) 1> -

We denote by 2T!*! the vector space of 1-jets of all projectable into J* dif-
ferentiable vector fields at x € J**! and by T, the tangent vector space of J' at y € J'.
For 1 £i < n,xeU, y=n""(x) we define maps xi:2'Ti*"' > T, by

1x(X)) f = ((8:X) ) () -
It can be easily seen from Prop. 5 that x(ji(X)) is really a vector.

Proposition 6. Let X'*! be a differentiable vector field defined on an open neigh-
borhood of x €U which is the (I + 1)-th prolongation of a differentiable vector

field X defined on an open neighborhood of & = qny"'(x). X'** is projectable
into J' and xi(j(X'*1)) = 0.

Proof. The projectability of X'*! can be seen for example from its coordinate
expression (see [2], p. 456). Moreover dnj*'(X'*') = X'. We denote by h, the
local 1-parameter group generating X and by hj its r-th prolongation. For x =
= jirl(c) we have

Xl = () 1) GG =

- (%)‘20[(%‘) (L H(12o)] = (§) B [(ai ) f(ji(h?a))] .
= (o) [(5) _sowon] = (55) _ torn e =

= [3(X1)] (G2 '(0) = [2:(X'N)] (x)

from which our assertion immediately follows.
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Now we change slightly our notation. Let V = J* (I =2 0) be an open set with an
associated coordinate system (x', y* y%,, ..., »7. ), and let o be a differentiable
r-linear form on V. We are going to define on U = (nj*')~! V differentiable r-linear
forms diw. Let xe U and Yy, ..., Y, € To*1. Let X4, ..., X, be differentiable vector
fields defined on an open neighborhood of x projectable into J* and such that X (x) =
=Y, We set

(050)c (Yen -, ;) = {04 0(dm; ™1 Xy, ..., dr}* 1 X))} (%) —
- ley(dnf“Xl, o XH(XL)s - dmptIX)

where y = m}*!(x). Of course we must prove now that (diw), (Y;, ..., ¥;) does not
depend on the choice of X, ..., X,. As usual we shall prove that Y; = 0 for some
1 £ s < r implies (9;0), (Y3, ..., ¥,) = 0. For simplicity let Y; = 0. We can write

a 1+1 a
Xy =a —+ Z Jedie
ax! a ;’1 .’k

where a/(x) = a, ;.

(x) =0 for 0 < k <1+ 1. The projectability of X, into J*
implies the projectability of a’, al, ; for 0 < k < I. Thus X, can be expressed as
a sum of differentiable vector ﬁelds of type aW; where a and W, are projectable into
J', a(x) =0, and differentiable vector fields of type bW, where drn}*'W, =0,
b(x) = 0. We have

1:(jx(aWy)) = (Gza) (x) - dm " Wi, 2{(jx(bW,)) = 0.
Using this we get
{os[o(dn(aWr), dnX,, ..., dnX,)]} (x) — o (ri(jx(aW,), dnX,, ..., dnX,) —
- 2 wadnWy, dnX,, ..., K(jXX,), ..., dnX,) =

= (04a) (x) - o (dnW;, dnX,, ..., dnX,) —
— (930) (x) - o (dnW,, dnX,,...,dnX,) =0

and the same result in the second case. Thus we have shown that our definition is
good. Very simple calculation gives.

Proposition 7. Let w, w,, w, be differentiable r-linear froms on V,Q; and Q,
differentiable r, and r,-linear forms on V respectively. Let ¢ be a differentiable
function on V. There is

diw, + w,) = diw, + djw,
di(cw) = djc - (Mm™)* @ + (com*') d4

0402, ® Q,) = 0iQ, @ (n}*)* @, + (n}")* 2, ® 392, .
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Now we should like to prove the following

Proposition 8. Let y = n}*'(x), xe U, and let g )€ %y, Then g(diw)e
€ Righ foralll <i <.

But for its proof we must first develop some necessary tools. We start with

Definition 3. A differentiable vector field X on U is called admissible with respect
to (X', Y5 - Viotne,) if it is projectable into J' and for any differentiable

function f defined on an open set ¥; =V the function (5;X) f is projectable into J*
foralli=1,...,n.

Clearly if X is admissible and x,, x, € U such that n}*!(x,) = n}*!(x,) = y then
25,(j5,(X)) = 2,(j2,(X)) and we can define a differentiable vector fields x’X on V
setting for every ye V

('X)y = 1:(7x(X)) = [(0:X) F1(x)
where x is any element of U such that n;*'(x) = y. For such vector fields we shall

prove

Proposition 9. Let Y be an admissible differentiable vector field on U. Let X'*!
be a differentiable vector field on U which is the (l + 1)-th prolongation of a vector
field X defined on an open subset of M. For any x € U there is

GIXTL Y] = [XY 1Y,
where X' is the I-th prolongation of X and y = mj*'(x).
Proof. In view of Prop. 6 we get
GIXULYLS - [XL 4], f =
= [(G:[x" YD f1(%) = X(0) f + (67), Xf =
= [2i(x'(dnY) )] (x) — [2i(dn¥) X'N)] (x) — XL 1¥(aif) +
+ Y, XHak) — XE(63) 1) + [63) (X)] () =
= [3i(X*(dnY) £)] (x) — [2i((d¥) X'1)] (x) — X5** ¥(3if) +
+ Y, X' Y(0if) — XL [0i(dnY) £)] + XH[Y(0if)] +
+ [0:((dnY) (X/))] (x) — Y[0:(Xf)] =
= [(3:X"%) ((dn) )] (x) — Y[(5X"* ) ] = 0.

Corollary. [X'*', X] is an admissible vector field and there is y'[X'*!, X] =
= [X', ¥'X].
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For a projectable vector field

. 1+1 a
X-w D Sa 0
0x) k=0 oyt .
J1eeJk

an easy calculation gives

i _ A Of - i af
(6#X)f - a#al 5 +k§o(a#a?1--».ik - a;"x.--l'ki) ay,,

Jiede

and from this we can conclude that X is admissible if for example the functions

a,al, ;. for 0 < k <1 are projectable into J'™! and the functions al i

projectable into J'. From this trivially follows .

are

Proposition 10. Let x € U be an arbitrary point and Ye T'*! an arbitrary vector.
Then there exists on U a differentiable vector field X admissible with respect to
(x5, ¥ V5, oo Viotie,) and such that Y = X .

Now we are in position for

Proof of Prop. 8: Let ¢ = gng"(x) and X4, ..., X, be differentiable vector fields
defined on an open neighborhood of ¢ such that gg(X 1), . gg(X «) are generators
of F,. As g,(w) € %(o,, there exists an open neighborhood U’ = U of y on which
Lyyw = ...= Ly,o =0. We are going to prove the equality Ly .+:(0jw) =
= 0)(Ly, ) from which our assertion immediately follows. In view of Prop. 10 it
is quite sufficient to prove the equality

(Lx,i+1(8f0)) (Y1, ..., X)) = (8)(Lx ) (Y1, ..., Xr)

for admissible vector fields Y, ..., Y,. We omit the subscript i and write Y instead
of dn}*'Y. We get

(Lyis (8l)), (Y, ... X)) = X1 [(00) (Vs .., V)] —

- Zx(‘ﬁ“’)z ¥, ... [X*L Y] .. X)) =

r —
= XYy 0 T) = Y X(Tisooos 19 o T) =
1

u=

~§WW2WJKXLWQMA+

+ Y Yo T, .. [XL Y], YY)+

u=1p=1

+ Y 0,V #[X5 V] X))
u=1
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(OULy); (Y, .. %) = [O4(Lyi0o) (T, ..o T (2) =
- g(Lx:w)z (Yo oo Y., X)) =

u=1

= (o[ X (Y, ..., V) — z oV [XLT] o D] () =

- ZX;(w(Y,, ) AN 4) I

+ Z Z oYy, ..o [XL Y] Y L V) +

u=1v=1
+ Y 0Tss oo [XE Y], o )
u=1

and these two expressions coincide in view of Prop. 6 and Prop. 9 with its Corollary.

Proposition 11. Let f be a differentiable function on V. There is 04(df) = d(6;f)-

Proof. Let xe U, Ye Tt*!, y = n}**(x) and let X be a differentiable vector field
defined on an open neighborhood of x, projectable into J', and such that X(x) =
We have

[0:(d)] () = [0:(d(dnX))] (x) = (df), (1a/x(X)) =
= [0:((dnX) )] (x) = (x2ix(X))f = [0:((dnX) /)] (x) — ((8:X) /) (x) =
= [0:((d7X) )] (x) — [3:((d=X) /)] () + X(05S) =
= [d(2:)]. (Y) .-

Let us define a subset K = J tq 5 in this way: g (w)e J (g »» Where o is a differen-
tiable r-linear form defined on an open neighborhood of x € J'*1, belongs to K if and
only if there exist either a differentiable r-linear form «’ defined on an open neigh-
borhood of y = n}*(x) such that g,(o')€ () and g o) = g((xi*")* @) or
a differentiable r-linear form w” defined on an open neighborhood V of y and an

associated coordinate system (x, y%, y%, ..., y%..;) on V such that g,(") € %,
and for some 1 < i < n there is g, (w) = gx(ﬁ‘ o). K € T {3} is clearly a subsheaf

of sets. Let us denote by th(O ) the smallest subsheaf of &7'*1 — algebrasof I :g’ )

containing K. The subsheaf p%(o - will be called the formal prolongatzon of ?/Z(o -
Proposition 8 gives us immediately the inclusion p&?(o.,) c J(o,,) Moreover for
y = m;*(x) e J' = J' (for the definition of J' see [2], Def. 10, p. 464) we get

Proposition 12. Let xe J'*!, y = n}*!(x)e J'. Then there is (pR(o,) (x) =
= R 1(x), where (pR(o ,)) (x) and R(g 1(x) denotes the fibers at the point x of the
sheaves pR(, ., and Ry ), respectively.
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Proof. ye J' = J' and thus we can find an open neighborhood V = J' of y with
a coordinate system (fy, ..., f,) on it such that g.(fi+1)s - 9:(fn,) is @ @-basis
of ! for every z e V. In view of our considerations in the first part of this paper we
can find differentiable 1-forms w,, ..., w, which can be supposed without loss of
generality to be defined again on V, such that the germs g,(,), ..., (@), 9.(dfz+ 1), - --
..., §(df,,) form a basis of the ;-module @50,1) for every z € V. Again without loss
of generality we can suppose that there is given on ¥ an associated coordinated
system (x, % ¥%,, ..., ¥},..1,)- Now because ye J' we can according to Prop. 15
from [2] choose from the system (f;on;*?, a;‘f,.; i=1,.,nj=k+1,..,n)
of differentiable functions on U = (n}**)™* Va subsystem, which we denote (f¢1, -
woos far,1) such that (g.(fis1)s .- 9-(fr,,,) is @ o-basis of «}"! for any z from
a sufficiently small neighborhood of x. It is clear from our construction of (fy4y, ...
--s fur,y) and from Prop. 11 that g.(df; 1), ---» 9:(df;.,,) € P2(o.1)- As well we have
g () @), ..., g (7] 1)* i) € pPRo.1)- It is easy to see that the differentiable
1-forms (n;*')* oy, ..., (n}*')* o, dfisy, ..., df},,, are linearly independent at the
point x, and thus because of their number n,, ; they form a basis of the o+ *-module
A5 3)(x) from which our proposition immediately follows.
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