Czechoslovak Mathematical Journal

János Galambos

Some remarks on the Lüroth expansion

Czechoslovak Mathematical Journal, Vol. 22 (1972), No. 2, 266-271

Persistent URL: http://dml.cz/dmlcz/101097

Terms of use:

© Institute of Mathematics AS CR, 1972

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SOME REMARKS ON THE LÜROTH EXPANSION

János Galambos, Philadelphia

(Received February 1, 1971)

1. Summary and introduction. Recently much attention was paid to the ergodic properties of the denominators d_{n} in the Lüroth expansion of real numbers $0<x \leqq$ $\leqq 1$. It was recognized independently by Šalát [7], Jager and deVroedt [5] and in my work [2] that the d_{n} are independent random variables on the probability space S where the basic set is the interval $(0,1)$ and the probability is Lebesgue measure. This fact provides much information concerning the sequence $\left\{d_{n}\right\}$ and different questions were extensively studied in the papers [2], [3], [4], [5] and [7]. This research was induced by the results of Šalát [7], who investigated the order of magnitude of d_{n} and the aim of the present paper is to give some results in this direction.

The algorithm for the Lüroth expansion of x is as follows. Let $x=x_{1}$ and let

$$
\begin{equation*}
d_{n}=\left[1 / x_{n}\right]+1, \quad x_{n+1}=\left(x_{n}-1 / d_{n}\right) d_{n}\left(d_{n}-1\right) \tag{1}
\end{equation*}
$$

where $[y]$ stands for the integer part of y. The algorithm (1) leads to the infinite series expansion

$$
\begin{equation*}
x=\frac{1}{d_{1}}+\frac{1}{s_{1}} \frac{1}{d_{2}}+\ldots+\frac{1}{s_{1} s_{2} \ldots s_{n-1}} \frac{1}{d_{n}}+\ldots \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{k}=d_{k}\left(d_{k}-1\right) . \tag{3}
\end{equation*}
$$

For the number theoretical aspects of this series expansion see Perron [6], pp. 116-127.

Let S be the probability space specified above, i.e. the interval $(0,1)$ being its basic set and the probability $P($.$) is Lebesgue measure. Evidently, the denominators d_{n}$ are functions $d_{n}(x)$ of x and it is easily seen that the d 's are random variables on S (i.e. Lebesgue measurable). We shall quote as Lemma 1 a result of the papers [2], [5] and [7] concerning the distribution of the d 's.

Lemma 1. The denominators d_{1}, d_{2}, \ldots are independent random variables on S and the distribution of d_{n} is given by

$$
P\left(d_{n}=t\right)=\frac{1}{t(t-1)}
$$

for $n=1,2, \ldots$ and $t \geqq 2$.
In the next section we shall investigate some questions related to the work [7] of Šalát and in the last section, the asymptotic behaviour of

$$
\begin{equation*}
D_{n}=D_{n}(x)=\max \left(d_{1}, d_{2}, \ldots, d_{n}\right) \tag{4}
\end{equation*}
$$

will be studied. The basic tool will be Lemma 1.
2. Extensions of some of the results of Šalát. In this section we shall concentrate on problems investigated in the first two sections of [7]. Some of the results were also obtained in [2] and [5], thus we do not discuss those questions here again.

Let a_{n} be a sequence of real numbers and put X_{n} for the indicator variable of the set $\left\{x: d_{n}>a_{n}\right\}$, i.e.,

$$
X_{n}= \begin{cases}1 & \text { if } d_{n}>a_{n} \tag{5}\\ 0 & \text { otherwise } .\end{cases}
$$

By Lemma 1, the random variables X_{n} are independent and

$$
\begin{equation*}
P\left(X_{n}=1\right)=\sum_{j=\left[a_{n}\right]+1}^{+\infty} \frac{1}{j(j-1)}=\frac{1}{\left[a_{n}\right]}, \tag{6}
\end{equation*}
$$

assuming that

$$
\begin{equation*}
a_{n} \geqq 1 \tag{7}
\end{equation*}
$$

This assumption is not a restriction concerning the generality of our investigation, since evidently from (1), $d_{n} \geqq 2$ for all n. We first prove

Theorem 1. Let X_{n} be given by (5) and let (7) be satisfied. Then the series ΣX_{n} converges almost everywhere if, and only if, $\Sigma 1 / a_{n}<+\infty$. On the other hand, if

$$
A_{N}=\sum_{n=1}^{N} \frac{1}{\left[a_{n}\right]} \rightarrow+\infty
$$

then, putting

$$
Y_{N}=\sum_{n=1}^{N} X_{n} \quad \text { and } \quad B_{N}^{2}=\sum_{n=1}^{N} \frac{1}{\left[a_{n}\right]}\left(1-\frac{1}{\left[a_{n}\right]}\right),
$$

we have the following limit relation

$$
\begin{equation*}
P\left(Y_{N}-A_{N}<z B_{N}\right) \rightarrow(2 \pi)^{-1 / 2} \int_{-\infty}^{z} e^{-(1 / 2) t^{2}} \mathrm{~d} t \tag{8}
\end{equation*}
$$

as $N \rightarrow+\infty$, under the additional assumption $B_{N} \rightarrow+\infty$.
Proof. It immediately follows from (5) - (7) and from the fact that the X 's are independent. Namely, the first part is a consequence of the Borel-Cantelli lemma ([1], p. 188) and our conditions guarantee that the central limit theorem under Lindeberg's conditions are applicable to the X 's and we obtain the asymptotic normality (8), which terminates the proof (for Lindeberg's theorem, see [1], p. 239).
(8) implies that, in probability, Y_{N} is asymptotically A_{N} if both A_{N} and B_{N} tend to $+\infty$. Though in the general case much more can not be said, in a special case the following stronger statement applies.

Theorem 2. Assume that

$$
\lim _{N=+\infty} A_{N} / N=\alpha
$$

exists and is positive. Then for almost all x in $(0,1)$,

$$
\lim _{N=+\infty}\left(X_{1}+\ldots+X_{N}\right) / N=\alpha
$$

The statement remains to hold also if $\alpha=0$.
Proof. Introduce the random variables $Z_{n}=X_{n}-1 /\left[a_{n}\right]$. Putting $E($.$) and V($. for the expectation and the variance, respectively, of the random variable in the brackets, we have from (5) and (6) that $E\left(Z_{n}\right)=0$ and that $V\left(Z_{n}\right)=V\left(X_{n}\right)=$ $=\left(1-1 /\left[a_{n}\right]\right) /\left[a_{n}\right]$, hence by (7), Kolmogorov's theorem ([1], p. 243) is applicable to the Z 's, which yields that for almost all x in $(0,1)$,

$$
\lim _{N=+\infty}\left(Z_{1}+\ldots+Z_{N}\right) / N=0
$$

which now gives both parts of our theorem, hence the proof is complete.
Theorem 2 is related to the concept of asymptotic density, which is defined as follows. Let c_{1}, c_{2}, \ldots be an increasing sequence of positive integers and let $C(M)$ denote the number of elements of the sequence $\left\{c_{j}\right\}$ for which $c_{t} \leqq M$. If $C(M) / M$ has limit as $M \rightarrow+\infty$, then we say that the sequence $\left\{c_{j}\right\}$ has asymptotic density. Theorem 2 thus gives criterion for the sequence $\left\{n: d_{n}>a_{n}\right\}$ to have asymptotic density, for almost all x. Note that if $a_{n} \rightarrow+\infty$ then, in Theorem 2, α exists and equals zero, for which case the conclusion of Theorem 2 was obtained in [7]. The well known fact also follows from Theorem 2 that any positive integer $r \geqq 2$ has asymptotic density among the denominators d_{n}, for almost all x. As a matter of fact, applying Theorem 2 with $a_{n}=2$ for all n, then with $a_{n}=3$ for all n, and so on, we get successively the
densities of $\left\{n: d_{n}=2\right\},\left\{n: d_{n}=3\right\}, \ldots$ But this theorem also shows that the converse to the result of Šalát ([7], Theorem 2.4) is not valid, namely, the density of the set $\left\{n: d_{n}>a_{n}\right\}$ can be zero with liminf a_{n} being finite and also this density can be positive if limsup $a_{n}=+\infty$.

By Lemma 1 and by the Borel-Cantelli lemma, we can have a deeper insight into the behaviour of the sequence $\left\{d_{n}\right\}$. The following theorem appears to be of interest in the light of the present investigation.

Theorem 3. Let $1<a_{n} \leqq b_{n}$ be two sequences of real numbers which tend to $+\infty$. Let us further assume that

$$
\begin{equation*}
\limsup a_{n} \mid b_{n}=u<1 \tag{9}
\end{equation*}
$$

and that

$$
\begin{equation*}
\sum_{n=1}^{+\infty} \frac{1}{a_{n} b_{n}}=+\infty . \tag{10}
\end{equation*}
$$

Then for almost all x, the inequalities $b_{n}<d_{n} \leqq b_{n}\left(1+1 / a_{n}\right)$ hold for inflnite many values of n.

Proof. Since

$$
P\left(v<d_{n} \leqq w\right)=P\left(v<d_{n}\right)-P\left(w<d_{n}\right)
$$

we have from (6)

$$
\begin{gather*}
P\left(b_{n}<d_{n} \leqq b_{n}+b_{n} / a_{n}\right)=1 /\left[b_{n}\right]-1 /\left[b_{n}+b_{n} / a_{n}\right] \geqq \tag{11}\\
\geqq 1 / b_{n}-1 /\left(b_{n}+b_{n} / a_{n}-1\right) \geqq\left(1-a_{n} / b_{n}\right) /\left(a_{n} b_{n}+b_{n}\right) \geqq c / a_{n} b_{n}
\end{gather*}
$$

where c is a suitable constant, which, in view of (9), for n sufficiently large, can be chosen arbitrarily close to $1-u$, hence $c>0$. Now, by Lemma 1, the Borel-Cantelli lemma is applicable, hence (10) and (11) imply the conclusion of Theorem 3. The proof is thus complete.

Theorem 3 states that if for a sequence b_{n} tending to $+\infty$, there is a sequence a_{n} such that (9) and (10) hold, then, for almost all x, infinitely often $d_{n} \sim b_{n}$. This raises the question whether $D_{n}=\max \left(d_{1}, d_{2}, \ldots, d_{n}\right)$ has an asymptotic law. We shall deal with this question in the next section.
3. The distribution of the largest of the first n denominators. Let D_{n} be the maximum of the first n denominators.

Theorem 4. For any fixed $y>0$, as $n \rightarrow+\infty$,

$$
\begin{equation*}
\lim P\left(D_{n} / n \leqq y\right)=\exp (-1 / y) \tag{12}
\end{equation*}
$$

Proof. Define the events $T_{j}=\left\{x: d_{j} / n \leqq y\right\}, 1 \leqq j \leqq n$. Evidently

$$
\left\{x: D_{n} / n \leqq y\right\}=\bigcap_{j=1}^{n} T_{j}
$$

and therefore by Lemma 1 and by (6)

$$
P\left(D_{n} / n \leqq y\right)=\prod_{j=1}^{n} P\left(d_{j} / n \leqq y\right)=\prod_{j=1}^{n}\left(1-P\left(d_{j} / n>y\right)\right)=(1-1 /[n y])^{n}
$$

which by the well known elementary limit relation, yields our statement, hence the theorem is established.

Let us deduce the following
Corollary. Let Z_{n} be a random variable on S and assume that $Z_{n} \rightarrow 1$ in probability. Then

$$
\begin{equation*}
\lim _{n=+\infty} P\left(Z_{n} / D_{n}<y\right)=1-e^{-y} \tag{13}
\end{equation*}
$$

Proof. Rewrite Z_{n} / D_{n} as

$$
\frac{Z_{n}}{D_{n}}=\frac{Z_{n}}{n} \frac{n}{D_{n}}=\frac{n}{D_{n}}+\frac{n}{D_{n}}\left(\frac{Z_{n}}{n}-1\right) .
$$

If we show that the second term stochastically tends to 0 , then by a well known lemma of Cramer we obtain the statement of the Corollary, namely the first term above has the limit distribution being on the right hand side of (13), as it was shown in (12). Thus we have to show that for any positive real number t,

$$
P\left(\left|\frac{n}{D_{n}}\left(\frac{Z_{n}}{n}-1\right)\right| \geqq t\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty
$$

Apply that, for any fixed T,

$$
P\left(\left|\frac{n}{D_{n}}\left(\frac{Z_{n}}{n}-1\right)\right| \geqq t\right) \leqq P\left(\frac{n}{D_{n}}>T\right)+P\left(\left|\frac{Z_{n}}{n}-1\right| \geqq \frac{t}{T}\right) .
$$

Here the first term is smaller than any prescribed real number by (12) and so is the second one by the assumption on Z_{n}, and thus the proof is complete.

As an application of the Corollary, let U_{n} be the number of $d_{k}, k \leqq n$, such that $d_{k}=2$. Then from Theorem 2 we have that $2 U_{n} \rightarrow 1$, therefore Corollary states that $2 U_{n} / D_{n}$ is asymptotically exponential variate. Similar examples can be listed from Theorem 2 and from the Corollary. The occurence of the exponential distribution in these theorems suggest that the number of terms of the sequence d_{1}, d_{2}, \ldots which are of the same order as D_{n}, follows a Poisson distribution. This is shown to hold in the next theorem.

Theorem 5. Let Q_{n} denote the number of terms in the sequence $d_{1}, d_{2}, \ldots, d_{n}$ for which $d_{j} / n>y$. Then

$$
\lim _{n=+\infty} P\left(Q_{n}=k\right)=\frac{e^{-1 / y}}{k!y^{k}} .
$$

Proof. By Lemma 1 the d 's are independent and identically distributed, therefore Q_{n} has a binomial distribution with parameters n and $1 /[n y]$, the latter having been obtained in (6). Since $n /[n y] \rightarrow 1 / y$, by a well known result ($[1], \mathrm{p} .143$), the limit distribution of Q_{n} is Poisson, as stated. The proof is terminated.

I am indebted to the referee for his valuable comments, which led to significant corrections of the first version.

References

[1] W. Feller: An introduction to probability theory and its applications, Vol. I., 2nd ed., Wiley, New York, 1957.
[2] J. Galambos: The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals, Quart. J. Math. (Oxford) (2), 21 (1970), 177-191.
[3] J. Galambos: On the speed of convergence of the Oppenheim series, Acta Arith., 19 (1971), 335-342.
[4] L. Holzer: Zur Bestimmung des Lebesgueschen Masses linearer Punktmengen, deren Elemente durch systematische Entwicklungen gegeben sind, Sitzungsberichte Akad. der Wissensch. in Wien, Mat.-Naturwiss., 137 (1928), 421-453.
[5] H. Jager and C. deVroedt: Lüroth series and their ergodic properties, Nederl. Akad. Wet., Proc., Ser. A, 72 (1969), 31-42.
[6] O. Perron: Irrationalzahlen, 2nd ed., Chelsea, New York, 1948.
[7] T. Šalát: Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen, Czechosl. Math. J. 18 (93) (1968), 489-522.

Address of the author: Department of Mathematics, Temple University, Philadelphia, Pa. 19122, U.S.A.

