Czechoslovak Mathematical Journal

Ján Jakubík

On σ-complete lattice ordered groups

Czechoslovak Mathematical Journal, Vol. 23 (1973), No. 1, 164-174

Persistent URL: http://dml.cz/dmlcz/101154

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON σ-COMPLETE LATTICE ORDERED GROUPS

JÁn Jakubík, Košice
(Received May 12, 1972)

INTRODUCTION

An l-group G is said to be σ-complete if each bounded countable subset of G has the supremum and the infimum. The concept of a singular l-group was used by Conrad and McAllister [4]. The importance of singular l-groups is emphasized by the fact that each complete l-group is a direct product of a singular l-group and a vector lattice. Rotkovič [15] examined σ-complete l-groups without semilinear elements. An l-group does not contain semilinear elements if and only if it is singular (Lemma 2.5.1).

An l-group G is called (conditionally) orthogonally complete if each (bounded) disjoint subset of G has the supremum. Analogously we can define orthogonal completennes of Boolean algebras. Orthogonally complete l-groups and vector lattices were studied in several papers (cf., e.g., Pinsker [12], Bernau [1], Conrad [3], JaKubík [6]). It is well-known that an orthogonally complete Boolean algebra must be complete (Smith - Tarski [17]). On the other hand, simple examples show that an orthogonally complete l-group need not be complete. Veksler and Gejler [19] have found necessary and sufficient conditions for a conditionally orthogonally complete vector lattice to be complete. In $\S 2$ we show that if a singular l-group is conditionally orthogonally complete and σ-complete, then it is complete.

Let α be an infinite cardinal. Weinberg [20] proved that if G is the additive l-group consisting of all continuous real-valued functions defined on a Hausdorff completelly regular topological space (with the natural partial order) then G satisfies the following condition:
(*) If G is $(\alpha, 2)$-distributive, then it is (α, α)-distributive.
By using the decomposition of a complete l-group G into a direct product of a singular l-group and a vector lattice it was proved in [7] that each complete l-group G fulfils $(*)$. In $\S 3$ we prove that each archimedean l-group G with the decomposition property satisfies $(*)$. Lattice ordered groups with the decomposition property
were studied by Bernau [1]; for the case of vector lattices cf. Veksler and Gejler [19]. Rabinovič [13], [14] examined the analogous notion of lattices with the decomposition property. Each lattice ordered group that is σ-complete and conditionally orthogonally complete has the decomposition property; therefore such an l-group fulfils (*). The problem (proposed by Weinberg [20]) wheather $(*)$ holds for each l-group remains still open.

1. BASIC NOTIONS

For the standard notions concerning lattices and lattice ordered groups ef. Birkhoff [2] and Fuchs [5]. We denote lattice operations by \wedge and \vee, the group operation is denoted by + (though it need not be commutative). Let G be an l-group, $\emptyset \neq X \subset G$. We put

$$
X^{\delta}=\{y \in G:|y| \wedge|x|=0 \text { for each } x \in X\}
$$

The set X^{δ} is said to be a polar of G. Each polar is a closed convex l-subgroup of G. Let $K^{0}(G)$ be the set of all polars of G; this system is partially ordered by the inclusion. $K^{0}(G)$ is a complete Boolean algebra and for each subset $\emptyset \neq\left\{A_{i}\right\} \subset K^{0}(G)$ the meet $\wedge A_{i}$ in $K^{0}(G)$ coincides with $\bigcap A_{i}\left(\right.$ Šik [18]). For $g \in G$ we denote $\{g\}^{\delta \delta}=[g]$.

Let A, B be convex l-subgroups of G such that $A \cap B=\{0\}$ and $A+B=G$. Then each element $g \in G$ can be written uniquelly as $x=a+b$ with $a \in A, b \in B$; the elements a, b are components of g in A or B, respectively. It is easy to verify that each operation $\circ \in\{\wedge, \vee,+\}$ in G is performed componentwise. The l-group G is said to be a direct product of its l-subgroups A, B; in symbols $G=A \otimes B$. The l-groups A, B are direct factors of G. The component of x in A will be denoted by $x(A)$. In the case $A=[g]$ for some $g \in G$ we write $x(A)=x[g]$.

An l-group G is said to have the decomposition property if $G=X^{\delta} \otimes X^{\delta \delta}$ for each $\emptyset \neq X \subset G$ (cf. Jameson [10]; another terminology is used by Bernau [1]).

Let $\left\{G_{i}\right\}(i \in I)$ be a system of l-groups and let ΠG_{i} be their direct product. Let H be an l-subgroup of ΠG_{i} such that for each $i \in I$ and each $g_{i} \in G_{i}$ there exists $h \in H$ with the property $h(i)=g_{i}, h(j)=0$ for each $j \in I, j \neq i$. Then H is said to be a completely subdirect product of l-groups G_{i}.

Let $\left\{H_{i}\right\}_{i \in I}$ be a system of l-subgroups of an l-group G such that each H_{i} is a direct factor of G. Assume that the mapping $\varphi(g)=\left(\ldots, g\left(H_{i}\right), \ldots\right)_{i \in I}$ is an isomorphism of G into ΠH_{i} such that $\varphi(G)$ is a completely by subdirect product of l-groups H_{i}. Then G is called a completely by subdirect product of its l-subgroups H_{i}.

Elements $x, y \in G$ are called disjoint if $|x| \wedge|y|=0$. A system $X \subset G^{+}$is said to be disjoint if any two distinct elements of X are disjoint.

An element $0<e \in G$ is a weak unit of G if $e \wedge|x|=0$ implies $x=0$ for each $x \in G$. A system $\left\{A_{i}\right\}(i \in I)$ of convex l-subgroups of G is disjoint if for any pair i, j of distinct elements of I and each $a_{i} \in A_{i}, a_{j} \in A_{j}$ we have $\left|a_{i}\right| \wedge\left|a_{j}\right|=0$.

Let L be a lattice and let α, β be cardinals. Let T, S be sets satisfying card $T \leqq \alpha$, card $S \leqq \beta$. Lis said to be $(\wedge, \vee)-(\alpha, \beta)$-distributive, if the equation

$$
\begin{equation*}
\bigwedge_{t \in T} \bigvee_{s \in S} x_{t, s}=\bigvee_{\varphi \in S T} \Lambda_{t \in T} x_{t, \varphi(t)} \tag{d}
\end{equation*}
$$

holds in L identically whenever all joins and meets standing in (d) exist in L. The $(\vee, \wedge)-(\alpha, \beta)$-distributivity is defined dually. If L satisfies both these laws then it is called (α, β)-distributive.

Let B be a Boolean algebra and let $X(B)$ be the Boolean space of B. We denote by $F(B)$ the system of all integer valued functions f on $X(B)$ such that for each integer n, the set $\{x \in X(B): f(x)=n\}$ is clopen in $X(B)$. Then $F(B)$ (with the natural partial order) is an additive lattice ordered group.

2. SINGULAR l-GROUPS

Let G be an l-group. An element $0<s \in G$ is called singular if $s \wedge(s-x)=0$ for each $x \in G, 0 \leqq x \leqq s$ (Conrad - McAllister [4]). Also, s is singular if and only if the interval $[0, s]$ is a Boolean algebra [7]. G is said to be singular if for each $0<g \in G$ there is a singular element $s \in G$ such that $0<s \leqq g$.

The following two propositions are known (cf. Birkhoff [2], Chap. XIV, Thm. 17 and Jameson [10], Proposition 2.5.6).
2.1. Each σ-complete l-group is archimedean and commutative.
2.2. Let G be a σ-complete l-group, $0<a \in G$. Then $G=\{a\}^{\delta} \otimes\{a\}^{\delta \delta}$.
2.3. Let $G \neq\{0\}$ be a σ-complete l-group and let $\left\{x_{i}\right\}$ be a maximal disjoint system of strictly positive elements of $G, H_{i}=\left[x_{i}\right]$. Then G is a complete subdirect product of l-subgroups H_{i}.

Proof. $\left\{H_{i}\right\}_{i \in I}$ is a maximal disjoint system of convex l-subgroups $\neq\{0\}$ of G and according to 2.2 each H_{i} is a direct factor of G. Hence the mapping

$$
\varphi: x \rightarrow\left(\ldots, x\left(H_{i}\right), \ldots\right)_{i \in I}
$$

is a homomorphism of G into ΠH_{i}. Let $y \in \varphi^{-1}(0), y \geqq 0$. Then $y\left(H_{i}\right)=0$, thus $y \wedge x_{i}=0$ for each $i \in I$. This implies $y=0$. Therefore $\varphi^{-1}(0)=\{0\}$ and so φ is an isomorphism of G into H_{i}. Let $i \in I, h_{i} \in H_{i}$. Then $h_{i}\left(H_{i}\right)=h_{i}$ and $h_{i}\left(H_{j}\right)=0$ for each $j \in I, j \neq i$. Hence $\varphi(G)$ is a completely subdirect product of l-groups H_{i}.

We denote by $S(G)$ the system of all singular elements of G.
2.4. Let G be a singular l-group and let $\left\{x_{i}\right\}$ be a maximal disjoint system of $S(G)$. Then $\left\{x_{i}\right\}$ is a maximal disjoint system of G.

Proof. Let $0 \leqq y \in G$ be disjoint with each x_{i}. If $0<y$, then there is $s \in S(G)$ with $0<s \leqq y$ and so the element s is disjoint with each x_{i}, a contradiction. Therefore $y=0$.

Obviously for each $0<g \in G$, the element g is a weak unit of [g].
2.5. Let G be a σ-complete singular l-group. Then G is a completely subdirect product of l-groups $H_{i}(i \in I)$ where each H_{i} is a σ-complete singular l-group with a weak unit e_{i} such that e_{i} is singular.

The proof follows from 2.3, 2.4 and from the fact that each direct factor of a singular and σ-complete l-group is singular and σ-complete.

An element $x \neq 0$ of an l-group G is called semilinear (Rotкоvič [15]) if for each $x^{\prime} \in G$ with $0<x^{\prime} \leqq|x|$ there exists $y \in G$ such that

$$
0<2 y \leqq x^{\prime}
$$

2.5.1. Let G be an l-group. The following conditions are equivalent:
(a) G is singular.
(b) G does not contain semilinear elements.

Proof. Let G be singular, $0 \neq x \in G$. Then there is a singular element $0 \neq x^{\prime} \in G$ with $x^{\prime} \leqq|x|$. Let $y, z \in G, 0<y \leqq x^{\prime}, x^{\prime}=y+z$. We have $x^{\prime}=y \vee z, y \wedge z=$ $=0$, therefore $2 y \wedge z=0$ and hence by using distributivity of G,

$$
x^{\prime} \wedge 2 y=y
$$

thus $2 y$ non $\leqq x^{\prime}$. This shows that G has no semilinear elements. Conversely, assume that (b) is valid. Hence for each $0 \neq x \in G$ there exists $x^{\prime} \in G, 0<x^{\prime} \leqq|x|$ such that for each $0<y \in G$ we have $2 y$ non $\leqq x^{\prime}$. We show that the element x^{\prime} is singular.

Let $z, t \in G^{+}, z+t=x^{\prime}$. Denote $z \wedge t=u$ and let $u+z_{1}=z, u+t_{1}=t$. Then we have $u, z_{1}, t_{1} \in G^{+}$and

$$
2 u \leqq u+z_{1}+u+t_{1}=x^{\prime}
$$

thus $u=0$ and hence $z \wedge t=0, z+t=z \vee t$. Therefore $z \wedge\left(x^{\prime}-z\right)=0$ for each $z \in\left[0, x^{\prime}\right]$. The element x^{\prime} is singular and G is a singular l-group.

By using 2:5.1, the proposition 2.5 can be deduced also from [15], Thm. 5.
If G is an archimedean l-group, then we denote by G^{\wedge} the Dedekind completion of G. We may assume that G is a closed l-subgroup of G^{\wedge} and that each element $0<x \in G^{\wedge}$ is the least upper bound of a subset of G^{+}.
2.6. Let H be an archimedean l-group with a weak unit e such that e is singular in H. Then e is singular in H^{\wedge}.

Proof. We denote by $[0, e]$ the interval of H^{\wedge} with the endpoints 0 and e. Since each element of $[0, e]$ is a supremum of some subset of $[0, e] \cap H$ it follows that $[0, e]$ is the Dedekind completion of the lattice $[0, e] \cap H$. According to the assumption the lattice $[0, e] \cap H$ is a Boolean algebra and therefore its Dedekind completion $[0, e]$ is a Boolean algebra as well; thus e is a singular element of H^{\wedge}.

Let H be as in 2.6. Let H_{1} be the orthogonal completion of H^{\wedge}. Thus H_{1} is a complete l-group that is orthogonally complete, H^{\wedge} is a closed convex l-subgroup of H_{1} and for each $0<h_{1} \in H_{1}$ there is a disjoint subset $\left\{x_{j}\right\}(j \in J)$ of H^{\wedge} such that $h_{j}=\bigvee x_{j}$. (Cf. [6].) From this and from 2.6 it follows that e is a singular element of H_{1} and that e is a weak unit of H_{1}. Therefore the l-group H_{1} is singular.

The following assertion was proved in [8].
2.7. Let $H \neq\{0\}$ be an l-group that is singular, complete and orthogonally complete. Assume that H has a weak unit e such that e is a singular element of H. Let $0 \leqq h \in H$. Then h can be uniquelly represented in the form $h=\bigvee n e_{n}^{*}(n=$ $=1,2, \ldots)$ such that $e_{n_{1}}^{*} \wedge e_{n_{2}}^{*}=0$ for $n_{1} \neq n_{2}$ and $\bigvee e_{n}^{*}=e^{*} \leqq e$. If $0=h^{\prime}=$ $=\bigvee n e_{n}^{\prime}$ is another such representation for $h^{\prime} \in H$, then $h \leqq h^{\prime}$ if and only if $e^{*} \leqq e^{\prime}=\bigvee e_{n}^{\prime}$ and $e_{i}^{*} \wedge e_{j}^{\prime}>0 \Rightarrow i \leqq j$.

Let $0 \leqq h \in H, 0 \leqq h^{\prime} \in H$. Under the same denotations as above put $e_{0}^{*}=e-e^{*}$, $e_{0}^{\prime}=e-e^{\prime}$. Since $[0, e]$ is a Boolean algebra we infer that $e=\bigvee e_{n}^{*}=\bigvee e_{n}^{\prime}(n=$ $=0,1,2, \ldots)$ and $h=\bigvee n e_{n}^{*}, h^{\prime}=\bigvee n e_{n}^{\prime}(n=0,1,2, \ldots)$. Then we have:
2.7.1. $h \leqq h^{\prime}$ if and only if $e_{n}^{*} \leqq \bigvee e_{i}^{\prime}(i \geqq n)$ for each $n \geqq 1$.

Proof. Let $h \leqq h^{\prime}, n \geqq 1$. Then $e^{*} \leqq e^{\prime}$ and $e_{n}^{*} \wedge e_{j}^{\prime}=0$ for $1 \leqq j<n$, thus from

$$
e_{n}^{*} \leqq e^{\prime}=\left(e_{1}^{\prime} \vee \ldots \vee e_{n-1}^{\prime}\right) \vee\left(\bigvee_{j \geqq n} e_{j}^{\prime}\right)
$$

we obtain that $e_{n}^{*} \leqq \mathrm{~V}_{j \geqq n} e_{j}^{\prime}, n=1,2, \ldots$
Conversely, assume that $e_{n}^{*} \leqq \mathrm{~V}_{j \geqq n} e_{j}^{\prime}$ for each $n \geqq 1$. Then $\mathrm{V}_{n \geqq 1} e_{n}^{*} \leqq \mathrm{~V}_{n \geqq 1} e_{n}^{\prime}$ and $e_{n}^{*} \wedge e_{j}^{\prime}=0$ for $j=1,2, \ldots, n-1$. Therefore $h \leqq h^{\prime}$.

For a Boolean algebra B let $F(B)$ have the same meaning as in $\S 1$.
2.8. Let $\{0\} \neq H$ be an archimedean l-group with a weak unit e that is singular in H. Let $B=[0, e], F=F(B)$. Then H is isomorphic with an l-subgroup of F.

Proof. Let H_{1} be as above. The l-group H_{1} is orthogonally complete and also complete; H is a closed l-subgroup of H_{1}. According to 2.7.1 each $0 \leqq h \in H$ can be uniquelly represented in the form $h=\bigvee n e_{n}^{*}(n=0,1,2, \ldots), e_{n}^{*} \in H_{1}, \bigvee e_{n}^{*}=e$, $e_{n_{1}}^{*} \wedge e_{n_{2}}^{*}=0$ for $n_{1} \neq n_{2}$. From the construction of the elements e_{n}^{*} described in [8] and from the fact that H is a closed l-subgroup of H_{1} it follows that each e_{n}^{*} belongs to H and hence $e_{n}^{*} \in B$. Let \bar{e}_{n} be the subset of the Boolean space $X(B)$ of the Boolean
algebra B that corresponds to the element $e_{n}^{*} \in B$. Then \bar{e}_{n} is a clopen subset of $X(B)$ and $\bar{e}_{n_{1}} \cap \bar{e}_{n_{2}}=\emptyset$ for $n_{1} \neq n_{2}$. Consider the function $f \in F$ such that $f(x)=n$ whenever $x \in \bar{e}_{n}(n=0,1,2, \ldots)$. Then the mapping $h \rightarrow f$ is an isomorphism of the lattice ordered semigroup H^{+}into F^{+}. From this we obtain that there exists an isomorphism of the l-group H into F.

From the method of the above proof we simultaneously obtain the following generalization of 2.7:
2.9. Let $H \neq\{0\}$ be an l-group that is singular, archimedean and conditionally orthogonally complete. Assume that H has a weak unit e such that e is a singular element of H. Then the assertion of 2.7 is valid for H.
2.10. Let G be an l-group that is a completely subdirect product of l-subgroups H_{i} $(i \in I)$. Assume that G is conditionally orthogonally complete and that each H_{i} is a complete l-group. Then G is a complete l-group.

Proof. Let $g_{j} \in G(j \in J), g \in G, 0 \leqq g_{j} \leqq g$ for each $j \in J$. Then

$$
0 \leqq g_{j}\left(H_{i}\right) \leqq g\left(H_{i}\right)
$$

for each $j \in J$ and each $i \in I$. Since H_{i} is a complete l-group, there exists

$$
\bigvee_{j \in J} g_{j}\left(H_{i}\right)=\bar{g}_{i}
$$

in H_{i}. We have $\bar{g}_{i} \leqq g\left(H_{i}\right) \leqq g$. Since the system $\left\{\bar{g}_{i}\right\}(i \in I)$ is disjoint and G is conditionally orthogonally complete, $\mathrm{V} \bar{g}_{i}=x$ exists in G. Then $x\left(H_{i}\right)=\bar{g}_{i} \geqq$ $\geqq g_{j}\left(H_{i}\right)$ for each $i \in I$ and each $j \in J$, thus $x \geqq g_{j}$ for each $j \in J$. Let $y \in G, g_{j} \leqq y$ for each $j \in J$. Hence $g_{j}\left(H_{i}\right) \leqq y\left(H_{i}\right)$ for each $i \in I$ and each $j \in J$. Therefore $x\left(H_{i}\right)=$ $=\bar{g}_{i} \leqq y\left(H_{i}\right)$ for each $i \in I$ and this implies $x \leqq y$. Thus $x=\mathrm{V}_{j \in J} g_{j}$. This shows that G is a complete l-group.
2.11. Theorem. Let H be an l-group that is conditionally orthogonally complete and archimedean. Assume that H has a weak unit e such that e is a singular element of H. Then H is a complete l-group.

Proof. Because the weak unit e is singular, the l-group H is singular. Since H is conditionally orthogonally complete, the Boolean algebra $B=[0, e]$ is orthogonally complete. Hence B is complete (Smith - Tarski [17]; cf. also Sikorski [15], Thm. 20.1). Let $g, g_{k} \in H^{+}(k \in K), g_{k} \leqq g$ for each $k \in K$. According to 2.9 the elements g, g_{k} can be represented in the form described in 2.7; let

$$
g=\bigvee n e_{n}^{\prime}, \quad g_{k}=\bigvee n e_{n}(k) \quad(n=0,1,2, \ldots)
$$

be such representations. All elements $e_{n}^{\prime}, e_{n}(k)$ belong to the complete Boolean algebra B. From $g_{k} \leqq g$ it follows $e_{n}(k) \leqq \bigvee_{i \geqq n} e_{i}^{\prime}$ for each $k \in K$ and each $n \geqq 1$.

We define by induction elements $e_{n} \in B(n=0,1,2, \ldots)$ as follows. We put

$$
e_{0}=\bigvee_{k \in K} e_{0}(k)
$$

Assume that e_{0}, \ldots, e_{n} are defined and the system $\left\{e_{0}, \ldots, e_{n}\right\}$ is disjoint. Denote $f_{n}=e_{0} \vee \ldots \vee e_{n}$ and let g_{n}^{\prime} be the complement of f_{n} in B. We put

$$
e_{n+1}=g_{n}^{\prime} \wedge\left(\bigvee_{k \in K} e_{n+1}(k)\right)
$$

Then the system $\left\{e_{n}\right\}(n=1,2, \ldots)$ is disjoint and hence the system $\left\{n e_{n}\right\}$ ($n=$ $=1,2, \ldots)$ is disjoint as well. Let $k \in K$ be fixed. We will verify that

$$
n e_{n} \leqq g_{k} \quad(n=1,2, \ldots)
$$

We have to show that

$$
e_{n} \leqq \bigvee_{i \geqq n} e_{i}(k)
$$

Thus it suffices to prove that

$$
\begin{equation*}
e_{n} \wedge e_{t}(k)=0 \tag{1}
\end{equation*}
$$

for each $t<n$. From $e=e_{0} \vee e_{1} \vee \ldots \vee e_{n-1} \vee g_{n-1}^{\prime}$ we obtain $e_{n}(k)=\left(e_{n}(k) \wedge\right.$ $\left.\wedge e_{0}\right) \vee\left(e_{n}(k) \wedge e_{1}\right) \vee \ldots \vee\left(e_{n}(k) \wedge e_{n-1}\right) \vee\left(e_{n}(k) \wedge g_{n-1}^{\prime}\right) \leqq e_{0} \vee \ldots \vee e_{n-1} \vee$ $\vee\left(\bigvee_{j \in K} e_{n}(j) \wedge g_{n-1}^{\prime}\right)=e_{0} \vee \ldots \vee e_{n-1} \vee e_{n}$ and therefore

$$
e_{n}(k) \wedge e_{n+j}=0 \quad \text { for } \quad j \geqq 1
$$

Thus the relation (1) is proved. Hence the system $\left\{n e_{n}\right\}(n=0,1,2, \ldots)$ is bounded and so according to the assumtpion there exists the element

$$
h=\bigvee n e_{n} \quad(n=0,1,2, \ldots)
$$

in H and $h \leqq g_{k}$ for each $k \in K$.
Let $0<h^{\prime} \in H, h^{\prime} \leqq g_{k}$ for each $k \in K$. The element h^{\prime} can be represented in the form $h^{\prime}=\mathrm{V} n e_{n}^{\prime \prime}(n=0,1, \ldots)$ where the system $\left\{e_{n}^{\prime \prime}\right\}$ is disjoint and $\bigvee e_{n}^{\prime \prime}=e$. From $h^{\prime} \leqq g_{k}$ we obtain

$$
e_{n}^{\prime \prime} \wedge e_{m}(k)=0
$$

for each $n \geqq 1, m<n, k \in K$ and therefore

$$
e_{n}^{\prime \prime} \wedge e_{m} \leqq e_{n}^{\prime \prime} \wedge\left(\bigvee_{k \in K} e_{m}(k)\right)=0
$$

for each $n \geqq 1$ and each $m<n$. This implies that $h^{\prime} \leqq h$. We have proved that $h=$ $=\Lambda g_{k}(k \in K)$. From this it follows that H is complete.
2.12. Theorem. Let G be a singular l-group. Then the following conditions are equivalent:
(i) G is complete.
(ii) G is σ-complete and conditionally orthogonally complete.

Proof. Obviously (i) \Rightarrow (ii). From 2.5, 2.10 and 2.11 it follows that (ii) \Rightarrow (i).
2.13. Let G be a vector lattice. Then the conditions (i). and (ii) from 2.12 are equivalent.

This follows from [19], Thm. 3 and 4.
It remains as an open question whether the assertion of Thm. 2.12 holds for each l-group G.

3. THE (α, β)-DISTRIBUTIVITY

In this section we prove that if G is an archimedean l-group with the decomposition property that is $(\alpha, 2)$-distributive, then it is (α, α)-distributive and the Dedekind completion G^{\wedge} of G is also (α, α)-distributive. In particular, an orthogonally complete and σ-complete l-group that is $(\alpha, 2)$-distributive must be (α, α)-distributive.
3.1. Let G be an archimedean l-group. Then the mapping $A \rightarrow A \cap G(A \in$ $\in K^{0}\left(G^{\wedge}\right)$) is an isomorphism of the Boolean algebra $K^{0}\left(G^{\wedge}\right)$ onto $K^{0}(G)$.

Proof. Let $A \in K^{0}\left(G^{\wedge}\right)$. Then it is easy to verify that $A \cap G \in K^{0}(G)$ and the mapping $\varphi: A \rightarrow A \cap G$ is monotone. Let $B \in K^{0}(G)$ and let X be the set of all elements $x \in G$ with $|x| \wedge|b|=0$ for each $b \in B$. Further let $\psi(B)=A_{1}$ be the set of all elements of G^{\wedge} that are disjoint to each element of X. Then $A_{1} \in K^{0}\left(G^{\wedge}\right)$ and $\varphi\left(A_{1}\right)=B$; hence φ is onto.
Let $A \in K^{0}\left(G^{\wedge}\right), \varphi(A)=B$, and let X, A_{1} be as above, $0 \leqq a \in A$. There exists a system $\left\{g_{i}\right\} \subset G^{+}$such that $\bigvee g_{i}=a$. Then $\left\{g_{i}\right\} \subset A$, thus $g_{i} \in B$; therefore $g_{i} \wedge$ $\wedge|x|=0$ for each $x \in X$. Since G is infinitely distributive, we obtain $a \wedge|x|=0$ and therefore $a \in A_{1}$. From this it follows $A \subset A_{1}$. Conversely, let $0 \leqq a_{1} \in A_{1}$. Again, there is a system $\left\{g_{i}^{\prime}\right\} \subset G^{+}$such that $\bigvee g_{i}^{\prime}=a_{1}$. We have $\left\{g_{i}^{\prime}\right\} \subset B \subset A$ and since A is a closed sublattice of G^{\wedge}, we obtain $a_{1} \in A$. Therefore $A_{1} \subset A$. Thus $A_{1}=A$, hence φ is a monomorphism. Because the mapping ψ is monotone and $\psi=\varphi^{-1}, \varphi$ is an isomorphism.
3.2. Let G be an l-group with the decomposition property, $A, B \in K^{0}(G)$ and let C be the supremum of $\{A, B\}$ in $K^{0}(G), 0 \leqq g \in C$. Then there exist $a \in A^{+}, b \in B^{+}$ such that $g=a+b$.

Proof. This follows from the fact that the supremum in the lattice of direct factors is the sum ([18], Thm. 1).
3.3. Theorem. Let G be an archimedean l-group with the decomposition property that is ($\alpha, 2$)-distributive. Then the l-group G^{\wedge} is (α, α)-distributive.

Proof. Assume that G^{\wedge} is not (α, α)-distributive. For any complete l-group H, the Boolean algebra $K^{0}(H)$ is (α, α)-distributive if and only if H is (α, α)-distributive [9]. Hence the Boolean algebra $K^{0}\left(G^{\wedge}\right)$ is not (α, α)-distributive. Thus (cf. [11], [17]) $K^{0}\left(G^{\wedge}\right)$ is not $(\alpha, 2)$-distributive. According to 3.1, the Boolean algebra $K^{0}(G)$ is not $(\alpha, 2)$-distributive. Then there exists a system $\left\{X_{t, s}\right\} \subset K^{0}(G)(t \in T, s \in S$, card $T \leqq \alpha$, $S=\{1,2\})$ such that

$$
\bigwedge_{t \in T} \bigvee_{s \in S} X_{t, s}=X, \quad \bigvee_{\varphi \in S^{T}} \bigwedge_{t \in T} X_{t, \varphi(t)}=Y
$$

and $X \neq Y$. Hence Y is a proper subset of X. Let $Y_{t, s}=\left(X_{t, s} \vee Y\right) \wedge X$. Since $K^{0}(G)$ is infinitely distributive, we have

$$
\bigwedge_{t \in T} \bigvee_{s \in S} Y_{t, s}=X, \quad \bigvee_{\varphi \in S^{T}} \bigwedge_{t \epsilon T} Y_{t, \varphi(t)}=Y
$$

Further, since $Y_{t, s} \in[Y, X]$, we obtain

$$
\begin{array}{lll}
Y_{t, 1} \vee Y_{t, 2}=X & \text { for each } \quad t \in T \\
\bigwedge_{t \in T} Y_{t, \varphi(t)}=Y & \text { for each } & \varphi \in\{1,2\}^{T} .
\end{array}
$$

Let A be the relative complement of Y in the interval $[\{0\}, X]$ of $K^{0}(G)$. The mapping $\psi: Z \rightarrow A \wedge Z(Z \in[Y, X])$ is an isomorphism of $[Y, X]$ onto $[\{0\}, A]$. Put $A_{t, s}=$ $=\psi\left(Y_{t, s}\right)$. Then

$$
\begin{array}{lll}
A_{t, 1} \vee A_{t, 2}=A \neq\{0\} & \text { for each } & t \in T \\
\bigwedge_{t \in T} A_{t, \varphi(t)}=\{0\} & \text { for each } & \varphi \in\{1,2\}^{T} . \tag{3}
\end{array}
$$

There exists $0<a \in A$. According to (2) and 3.2 the element a can be written in the form

$$
\begin{equation*}
a_{t, 1} \vee a_{t, 2}=a \quad \text { for each } t \in T, \tag{4}
\end{equation*}
$$

where $0 \leqq a_{t, 1} \in A_{t, 1}, 0 \leqq a_{t, 2} \in A_{t, 2}$. From (3) we obtain $\cap A_{t, \varphi(t)}=\{0\}$ and therefore

$$
\begin{equation*}
\bigwedge_{t \epsilon T} a_{t, \varphi(t)}=0 \quad \text { for each } \quad \varphi \in\{1,2\}^{T} . \tag{5}
\end{equation*}
$$

From (4) and (5) it follows that the l-group G is not $(\alpha, 2)$-distributive, which is a contradiction.

Since G is a closed l-subgroup of G^{\wedge}, we obtain from 3.3 immediately:
3.4. Corollary. Let G be an archimedean l-group with the decomposition property that is $(\alpha, 2)$-distributive. Then G is (α, α)-distributive.

Since each complete l-group is an archimedean l-group with the decomposition property, we have:
3.5. Corollary. ([7], Thm. 3.9.) If a complete l-group G is ($\alpha, 2$)-distributive, then it is (α, α)-distributive.
3.6. Let G be a σ-complete and conditionally orthogonally complete l-group. Then G is an l-group with the decomposition property.

Proof. Let $X \subset G^{+}$. From the Axiom of Choice it follows that there exists a system $\left\{y_{i}\right\}(i \in I), 0 \leqq y_{i}$ such that (i) $y_{i_{1}} \wedge y_{i_{2}}=0$ for any pair of distinct elements $i_{1}, i_{2} \in I$, (ii) $y_{i} \wedge|x|=0$ for each $i \in I$ and each $x \in X$, and (iii) if $0<y \in X^{\delta}$, then $y \wedge y_{i}>0$ for some $i \in I$. Let $0 \leqq z \in G$. According to 2.2 for each $i \in I$ there exists $z\left[y_{i}\right]$. Clearly $z\left[y_{i}\right] \leqq z$ and the system $\left\{z\left[y_{i}\right]\right\}(i \in I)$ is disjoint. By the assumption, the join $\bigvee_{i \in I} z\left[y_{i}\right]=t$ exists in G. Then $z-t=z_{0} \geqq 0$. We have $t\left[y_{i}\right] \leqq z\left[y_{i}\right]$ and $z\left[y_{i}\right] \leqq t$, thus

$$
z\left[y_{i}\right]=z\left[y_{i}\right]\left[y_{i}\right] \leqq t\left[y_{i}\right] ;
$$

therefore $z\left[y_{i}\right]=t\left[y_{i}\right]$ and hence $z_{0}\left[y_{i}\right]=0$ for each $i \in I$. From this it follows that $z_{0} \in X^{\delta \delta}$. We have proved that each $z \in G^{+}$can be written in the form $z=$ $=z_{0}+t$ with $0 \leqq z_{0} \in X^{\delta \delta}, 0 \leqq t \in X^{\delta}$. Therefore $G=X^{\delta \delta} \otimes X^{\delta}$.

From 3.4 and 3.6 we obtain:
3.7. Theorem. Let G be a σ-complete and conditionally orthogonally complete l-group. If G is $(\alpha, 2)$-distributive, then it is (α, α)-distributive.

References

[1] S. J. Bernau: Orthocompletion in lattice groups. Proc. London Math. Soc. 16 (1966), 107-130.
[2] G. Birkhoff: Lattice theory, 2nd edition, Providence 1948.
[3] P. Conrad: The lateral completion of a lattice ordered group. Proc. London Math. Soc. 19 (1969), 444-480.
[4] P. Conrad, D. McAllister: The completion of a lattice ordered group. J. Austral. Math. Soc. 9 (1969), 182-208.
[5] Л. Фукс: Частично упорядоченные алгебраические системы, Москва 1965.
[6] Я. Якубик: Представления и расширения l-групп. Чех. мат. ж. 13 (1963), 267-283.
[7] J. Jakubik: Distributivity in lattice ordered groups. Czech. Math. J. 22 (1972), 108-125.
[8] J. Jakubik: Cantor-Bernstein theorem for lattice ordered groups. Czech. Math. J. 22 (1972), 159-175.
[9] M. Jakubiková: Abgeschlossene vollständige l-Untergruppen der Verbandsgruppen. Matem. časopis 23 (1973), 55-63.
[10] G. Jameson: Ordered linear spaces. Lecture Notes in Mathematics 141, Springer Verlag, Berlin 1970.
[11] R. S. Pierce: Distributivity in Boolean algebras. Pacif. J. Math. 7 (1957), 983-992.
[12] А. Г. Пинскер: Расширение полуупорядоченных групп и пространств. Уч. зап. Ленинград. гос. пед. инст. им. Герцена 86 (1949), 235-284.
[13] М. Г. Рабинович: Вполне разложимые структуры, Сибир. мат. ж. 10 (1969), 920-939.
[14] М. Г. Рабинович: О пополнении одного класса структур. Сибир. мат. ж. (1970), 585-596.
[15] Г. Й. Роткович: О полуупорядоченных группах. Уч. зап. Ленинград. гос. пед. инст. им. Герцена 404 (1971), 439-451.
[16] R. Sikorski: Boolean algebras. Berlin 1964.
[17] E. C. Smith, A. Tarski: Higher degrees of distributivity and completeness in Boolean algebras. Trans. Amer. Math. Soc. 84 (1957), 230-257.
[18] Ф. Шик: К теории структурно упорядоченных групп. Чех. мат. ж. 6 (1956), 1-25.
[19] А. И. Векслер, В. А. Гейлер: О порядковой и дизюнктной полноте линейных полуупорядоченных пространств. Сибир. Мат. ж. 13 (1972), 43-51.
[20] E. C. Weinberg: Higher degrees of distributivity in lattices of continuous functions. Trans. Amer. Math. Soc. 104 (1962), 334-346.

Author's address: 04000 Košice, Zbrojnícka 7, ČSSR (Vysoká škola technická)

