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Czechoslovak Mathematical Journal, 23 (98) 1973, Praha 

ON cr-COMPLETE LATTICE ORDERED GROUPS 

JÂN JAKUBIK, Kosice 

(Received May 12, 1972) 

Ь INTRODUCTION 

An Z-group G is said to be c-complete if each bounded countable subset of G has 
the supremurn and the infimum. The concept of a singular /-group was used by 
CONRAD and MCALLISTER [4]. The importance of singular /-groups is emphasized 
by the fact that each complete /-group is a direct product of a singular /-group and 
a vector lattice. ROTKOVIC [15] examined c-complete /-groups without semilinear 
elements. An /-group does not contain semilinear elements if and only if it is singular 
(Lemma 2.5.1). 

An /-group G is called (conditionally) orthogonally complete if each (bounded) 
disjoint subset of G has the supremum. Analogously we can define orthogonal com-
pletennes of Boolean algebras. Orthogonally complete /-groups and vector lattices 
were studied in several papers (cf., e.g., PINSICER [12], BERNAU [1], CONRAD [3], 
JAKUBIK [6]). It is well-known that an orthogonally complete Boolean algebra must 
be complete (SMITH - TARSKI [17]). On the other hand, simple examples show that 
an orthogonally complete /-group need not be complete. VEKSLER and GEJLER [19] 
have found necessary and sufficient conditions for a conditionally orthogonally 
complete vector lattice to be complete. In §2 we show that if a singular /-group is 
conditionally orthogonally complete and cr-complete, then it is complete. 

Let a be an infinite cardinal. WEINBERG [20] proved that if G is the additive /-group 
consisting of all continuous real-valued functions defined on a Hausdorff* completelly 
regular topological space (with the natural partial order) then G satisfies the 
following condition: 

(*) / / G is {(x,i)-distributive, then it is (a, ocydistributive. 
By using the decomposition of a complete /-group G into a direct product of 

a singular /-group and a vector lattice it was proved in [7] that each complete 
/-group G fulfils (*). In §3 we prove that each archimedean /-group G with the decom­
position property satisfies (*). Lattice ordered groups with the decomposition property 

164 



were studied by BERNAU [1]; for the case of vector lattices cf. VEKSLËR and GEJLER 

[19]. RABINOVIC [13], [14] examined the analogous notion of lattices with the decom­
position property. Each lattice ordered group that is cr-complete and conditionally 
orthogonally complete has the decomposition property; therefore such an /-group 
fulfils (*). The problem (proposed by Weinberg [20]) wheather (*) holds for each 
/-group remains still open. ; , 

L BASIC NOTIONS ' 

For the standard notions concerning lattices and lattice ordered groups cf. 
BiRKHOFF [2] and FUCHS [5]. We denote lattice operations by л and v , the group 
operation is denoted by + (though it need not be commutative). Let G be an /-group, 
0 Ф Z c= G. We put 

X^ = [yeG: \y\ л |x| = 0 for each xeX} , 

The set X^ is said to be a polar of G. Each polar is a closed convex /-subgroup of G. 
Let K^(G) be the set of all polars of G; this system is partially ordered by the inclusion. 
K^(G) is a complete Boolean algebra and for each subset 0 Ф {Ai] a K^(G) the 
meet ДЛ^ in K%G) coincides with П^.- (SiK [18]). For g e G we denote {of}̂ ^ = [g]^ 

Let A, В be convex /-subgroups of G such that A n В = {0} and A + В = G. 
Then each element g e G can be written uniquelly as x = a + b with a e A, b e B; 
the elements a, b are components of g in A or B, respectively. It is easy to verify 
that each operation С Е { Л , V, +}inGis performed componentwise. The /-group G 
is said to be a direct product of its /-subgroups A, B; in symbols G = A ® B. The 
/-groups A, В are direct factors of G. The component of x in Л will be denoted by 
x[A). In the case A = [̂ f] for some g e G WQ write x(Ä) = x[^g^. 

An /-group G is said to have the decomposition property if G = Z^ ® X^^ for each 
0 Ф X с G (cf. JAMESON [10]; another terminology is used by BERNAU [1]). 

Let {Gl} [i e/) be a system of /-groups and let IIG^ be their direct product. Let H 
be an /-subgroup of IIG^ such that for each / G / and each gi e Ĝ  there exists he H 
with the property h{i) = gi, h{j) = 0 for each j G/, j Ф /. Then H is said to be 
a completely subdirect product of /-groups Ĝ . 

Let {Hi}i^i be a system of /-subgroups of an /-group G such that each Hi is a direct 
factor of G. Assume that the mapping (p{g) = (..., g{H^), ...)jgj is an isomorphism 
of G into UHi such that (p{G) is a completely by subdirect product of /-groups Я .̂ 
Then G is called a completely by subdirect product of its /-subgroups Я^. 

Elements x, у e G are called disjoint if |x| л \y\ = 0. A system Z c: G"̂  is said 
to be disjoint if any two distinct elements of X are disjoint. 

An element 0 < e G G is a weak unit of G if ^ л |x| = 0 implies x = 0 for each 
X G G. A system {Л J (f e I) of convex /-subgroups of G is disjoint if for any pair /, j 
of distinct elements of/ and each a,- G AI, ÜJ G AJ we have ]а |̂ л |а^| = 0. 
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Let L be a lattice and let a, ß be cardinals. Let T, S be sets satisfying card T ^ a, 
card S S ß. Lis said to be ( л , v) — (a, jß)-distributive, if the equation 

(^) AteT VseS ^t,s = V«peS^ AteT ^tMO 

holds in L identically whenever all joins and meets standing in (d) exist in L. The 
( V, л) — (a, j8)-distributivity is defined dually. If Lsatisfies both these laws then it is 
called (a, j8)-distributive. 

Let Б be a Boolean algebra and let Х{В) be the Boolean space of B. We denote by 
F(B) the system of all integer valued functions / on X(B) such that for each integer n, 
the set {xeX(B) :f(x) = n} is clopen in X(B). Then F(B) (with the natural partial 
order) is an additive lattice ordered group. 

2. SINGULAR /-GROUPS 

Let G be an /-group. An element 0 < 5 e G is called singular if 5 л (s — x) = 0 
for each xeG, O g x ^ s (CONIUD - MCALLISTER [4]). Also, s is singular if and only 
if the interval [0, s] is a Boolean algebra [7]. G is said to be singular if for each 
0 < g e G there is a singular element SE G such that 0 < s ^ g. 

The following two propositions are known (cf. Birkhoff [2], Chap. XIV, Thm. 17 
and Jameson [10], Proposition 2.5.6). 

2.1. Each a-complete l-group is archimedean and commutative. 

2.2. Let G be a a-complete l-group, 0 < a e G. Then G = {аУ ® {ау\ 

2.3. Let G Ф {0} be a a-complete l-group and let {xj be a maximal disjoint 
system of strictly positive elements of G, Я̂ - = [x,]. Then G is a complete subdirect 
product of l-subgroups Я^. 

Proof. {ЯJfg^ is a maximal disjoint system of convex /-subgroups Ф{0} of G and 
according to 2.2 each Я^ is a direct factor of G. Hence the mapping 

;х->(...,х(Я^), ...),, l € / 

is a homomorphism of G into ПЯ^. Let у e (p~\0), у ^ 0. Then y{H^) = 0, thus 
у A Xi = 0 for each ieL This implies у = 0. Therefore Ф"Х^) = {̂ } ^^^ so cp is 
an isomorphism of G into Я^. Let iel, hieHi, Then hi{Hi) = hi and hi{Hj) = 0 
for each j el, j Ф /. Hence (p(G) is a completely subdirect product of /-groups Я^. 

We denote by S(G) the system of all singular elements of G. 

2.4. Let G be a singular l-group and let {x,} be a maximal disjoint system of S(G). 
Then {xj /5 a maximal disjoint system of G. 

166 



Proof. Let 0 ^ J e G be disjoint with each x,-. If 0 < j , then there is s e S(G) 
with 0 < s ^ y and so the element s is disjoint with each x ,̂ a contradiction. There­
fore y = 0. 

Obviously for each 0 < ^̂  e G, the element g is a weak unit of [^f]. 

2.5. Let G be a cr-complete singular l-group. Then G is a completely subdirect 
product of l-groups Hi [i el) where each Hi is a a-complete singular l-group with 
a weak unit Ci such that Cf is singular. 

The p r o o f follows from 2.3, 2.4 and from the fact that each direct factor of 
a singular and cr-complete /-group is singular and (x-complete. 

An element x Ф 0 of an /-group G is called semilinear (ROTKOVIC [15]) if for each 
x' e G with 0 < x' ^ |x| there exists y e G such that 

0 < 23; ^ x' . 

2.5.1. Let G be an l-group. The following conditions are equivalent: 

(a) G is singular. 

(b) G does not contain semilinear elements. 

Proof. Let G be singular, 0 Ф x e G. Then there is a singular element 0 Ф x' e G 
with x' ^ [x|. Let y, z e G, 0 < y :^ x\ x' = y + z. We have x' = y\/z, yAz== 
= 0, therefore 2y A z = 0 and hence by using distributivity of G, 

x' A 2y = y, ' 

thus 2y non g x\ This shows that G has no semilinear elements. Conversely, assume 
that (b) is vahd. Hence for each 0 Ф x G G there exists x' e G, 0 < x' ^ |x| such that 
for each 0 < j^ e G we have 2y non ^ x'. We show that the element x' is singular. 

Let z, t e G"*", z + t = x\ Denote z A t = и and let w -Ь z^ = z, w + f̂  = t. 
Then we have м, z^, t^ e G"*" and 

2u ^ и + Zi + и + ti = x', 

thus M = 0 and hence zAt = Q, z~\-t = zwt. Therefore z л (x' — z) = 0 for 
each z G [0, x ' ] . The element x' is singular and G is a singular /-group. 

By using 2.5.1, the proposition 2.5 can be deduced also from [15], Thm. 5. 
If G is an archimedean /-group, then we denote by G'̂  the Dedekind completion 

of G. We may assume that G is a closed /-subgroup of G^ and that each element 
0 < X G G"" is the least upper bound of a subset of G"*". 

2.6. Let H be an archimedean l-group with a weak unit e such that e is singular 
in H. Then e is singular in H^. 
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Proof. We denote by [0, e] the interval of H^ with the endpoints 0 and e. Since 
each element of [0, e] is a supremum of some subset of [0, e] r\ H it follows that 
[0, e] is the Dedekind completion of the lattice [0, e] n Я . According to the assump­
tion the lattice [0, e] n Я is a Boolean algebra and therefore its Dedekind completion 
[0, e] is a Boolean algebra as well; thus e is a singular element of H^. 

Let Я be as in 2.6. Let H^ be the orthogonal completion of Я ^ . Thus H^ is a com­
plete /-group that is orthogonally complete, Я"" is a closed convex /-subgroup of H^ 
and for each 0 < h^ e H^ there is a disjoint subset {xj} (je J) of Я ^ such that 
h J = \/Xj. (Cf. [6].) From this and from 2.6 it follows that e is a singular element 
of Hi and that e is a weak unit of Я^. Therefore the /-group H^ is singular. 

The following assertion was proved in [8]. 

2.7. Let H Ф {0} be an l-group that is singular, complete and orthogonally 
complete. Assume that H has a weak unit e such that e is a singular element of H. 
Let 0 S h e H. Then h can be uniquelly represented in the form h = \/fie^ (n = 
= 1, 2, ...) such that e^^ л *̂2 ~ ^ /^^ ^i + ^2 ^^d. S/e^ = e* ^ e. / / 0 = /г' = 
= Упе'п is another such representation for h' e H, then h -^ h' if and only if 
e* ^ e' = V^,i <^̂ ^ ^* A ^j > 0 => / ^ j . 

Let 0 ^ /г G Я, 0 ^ /î' e Я. Under the same denotations as above put e* = e — e*, 
e'o = e — e\ Since [0, e] is a Boolean algebra we infer that e = V^* = V^n (^ = 
= 0, 1, 2, ...) and h = \/ne^, W = \/ne'„ (n = 0,1,2, ...). Then we have: 

2.7.1. h й h' if and only if e* ^ \/e\ (i ^ n) for each n ^ 1. 

Proof. Let h g h\ n ^ 1. Then e* ^ e' and e* A Cj = 0 for 1 g j < n, thus 
from 

e^ ^ e' = (e[ V ... V e;„i) v (Vj^n<-) 

we obtain that e* ^ Vj^n^p n = 1,2,... 
Conversely, assume that e^ ^ Vj^n^'j ^^^ ^^^^ ^ ^ 1- Then Vn^i^* = Vn^i^n 

and ^* л ê - = 0 for 7 = 1, 2 , . . . , n ~ L Therefore h S h'. 
For a Boolean algebra В let F ( B ) have the same meaning as in §1. 

2.8. Let {0} 4" H be an archimedean l-group with a weak unit e that is singular 
in H. Let В = [0, e~\, F = F(B). Then H is isomorphic with an Isubgroup of F. 

Proof. Let Hi be as above. The /-group H^ is orthogonally complete and also 
complete; Я is a closed /-subgroup of H^. According to 2.7.1 each 0 -^ he H can be 
uniquelly represented in the form h = V^^* (^ = 0, 1,2,...), e* e Я^, V^* = в, 
^*i ^ «̂2 ~ ^ f̂ ^ ^1 + ^2- From the construction of the elements e* described in [8] 
and from the fact that Я is a closed /-subgroup of H^ it follows that each e* belongs 
to Я and hence e* e B. Let ё„ be the subset of the Boolean space X(B) of the Boolean 
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algebra В that corresponds to the elements* e B, Then ё„ is a clöpen subset of Х{В) 
and ё„^ тё„^ = 0 for n^ Ф «2- Consider the function fe F such that /(x) = n 
whenever x e ë„{n = 0, 1,2,...). Then the mapping /г ->/ is an isomorphism of the 
lattice ordered semigroup H^ into F^. From this we obtain that there exists an 
isomorphism of the /-group Я into F, 

From the method of the above proof we simultaneously obtain the following gener­
alization of 2.7: 

2.9. Let H 4= {0} be an l-group that is singular, archimedean and conditionally 
orthogonally complete. Assume that H has a weak unit e such that e is a singular 
element of H. Then the assertion of 2 J is valid for H. 

2.10. Let G be an hgroup that is a completely subdirect product of l-subgroups Hi 
(iel). Assume that G is conditionally orthogonally complete and that each H^ is 
a complete l-group. Then G is a complete l-group. 

Proof. Let gj e G (j e J), g E G, 0 S 9j S g for each j e J. Then 

for each j e J and each i e L Since H^ is a complete /-group, there exists 

VieJ dj{Hd = gi 

in Hi. We have g^ S 9{Hi) ^ g. Since the system [д^] (i el) is disjoint and G is 
conditionally orthogonally complete, V^i = ^ exists in G. Then х(Я^) == g^ ^ 
> gj{H^ for each i e I and each j e J, thus x ^ gj for each j e J. Let у GG, gj ^ у 
for each 7 e J. Hence gj{H^ ^ K^O ^̂ ^ ̂ ^̂ ^̂  ^ ^ ̂  ^^^ each j e J. Therefore х(Я^) = 
= gi -^ y{H^ for each i e / and this implies x S. У- Thus x = \/j^jgj. This shows 
that G is a complete /-group. 

2.11. Theorem. Let H be an l-group that is conditionally orthogonally complete 
and archimedean. Assume that H has a weak unit e such that e is a singular element 
of H. Then H is a complete l-group. 

Proof. Because the weak unit e is singular, the /-group Я is singular. Since Я is 
conditionally orthogonally complete, the Boolean algebra В = [0, e] is orthogonally 
complete. Hence В is complete (SMITH - TARSKÏ [17]; cf. also SIKORSKI [15], Thm. 
20.1). Let g, gu^H^ {keK), g^, ^ g for each кеК. According to 2.9 the elements 
g, g I, can be represented in the form described in 2.7; let 

g - V«< , 9k = Vne„{k) {n = 0, 1, 2, ...) 

be such representations. All elements ê , e„(/c) belong to the complete Boolean 
algebra B. From g^ è g it follows e,{k) й Vt^ne'i for each кеК and each n ^ 1. 
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We define by induction elements e„e В (n = 0, 1,2,...) as follows. We put 

Assume that ^o,..., „̂ are defined and the system {eQ,..., e„] is disjoint. Denote 
f„ = eo V ... V e„ and let g'„ be the complement of/„ in B. We put 

Then the system {e„} (n = 1,2,...) is disjoint and hence the system {ne„} (n = 
= 1, 2,...) is disjoint as well. Let кеКЪс fixed. We will verify that 

ne„ й Gk (« = 1,2,...). 
We have to show that 

en SVi^n elk). 
Thus it suffices to prove that 

(1) e„ A e,{Jc) = 0 

for each t < n. From e = eo v e^ v ... v e„^i v g'„_^ we obtain ejji) = (e„(fc) л 
A ^o) V {ej^k) л e^) v ... v [е^Щ л e^.^) v {ejjc) л g'^^^ ^ ô v ... v e„_i v 
V (VjeKenij) л ö^ -̂i) = 0̂ V ... V e„_i V ß„ and therefore 

e„{k) A e^^j = 0 for j ^1. 

Thus the relation (1) is proved. Hence the system {ne„] (n = 0, 1, 2, ...) is bounded 
and so according to the assumtpion there exists the element 

h = \/ne„ (n = 0,1,2,...) 

in H and h -^ gk for each кеК, 
Let 0 < h' e H, h' ^ g^ for each кеК. The element h' can be represented in the 

form /i' = V'ï̂ 'n (w = 0, 1, ...) where the system {ej,'} is disjoint and V^̂ ' = e. From 
h' ^ gjçWQ obtain 

< л e^{k) = 0 

for each n'^1, m<n, кеК and therefore 

e: ле^й e: л (V.ex .̂(̂ c)) = 0 

for each n ^ 1 and each m < n. This implies that h' ^ /i. We have proved that h = 
~ /\Qk {k e K). From this it follows that H is complete. 

2.12. Theorem. Let G be a singular l-group. Then the following conditions are 
equivalent: 

(i) G is complete. 
(ii) G is a-complete and conditionally orthogonally complete. 
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Proof. Obviously (i) => (ii). From 2.5, 2.10 and 2.11 it follows that (ii) => (i). 

2.13. Let G be a vector lattice. Then the conditions (i) and (ii) from 2.12 are 
equivalent. 

This follows from [19], Thm. 3 and 4. 
It remains as an open question whether the assertion of Thm. 2.12 holds for each 

/-group G. 

3. THE (a, i5)-DISTRIBUTIVITY 

In this section we prove that if G is an archimedean /-group with the decomposition 
property that is (a, 2)-distributive, then it is (a, a)-distributive and the Dedekind 
completion G^ of G is also (a, a)-distributive. In particular, an orthogonally complete 
and <T-complete /-group that is (a, 2)-distributive must be (a, a)-distributive. 

3.1. Let G be an archimedean l-group. Then the mapping A -^ A n G (Ae 
eK^(G^y) is an isomorphism of the Boolean algebra X^(G^) onto K^(G). 

Proof. Let AeK^G""). Then it is easy to verify that A n GeK%G) and the 
mapping cp : A -^ A n G is monotone. Let В e K^(G) and let X be the set of all 
elements xe G with |x| л [fe| = 0 for each b e B. Further let il/{B) = Л^ be the set 
of all elements of G"" that are disjoint to each element of X. Then Ai eK^^G"") and 
(p(Ai) = B; hence cp is onto. 

Let AeK^{G^), (p{A) = B, and let X, A^ be as above, 0 ^ a e Л. There exists 
a system {gi} c: G^ such that \/gi = a. Then {gi] a A, thus gi e B; therefore gi л 
A |x| = 0 for each xeX. Since G is infinitely distributive, we obtain a л |x| = 0 
and therefore a E A^. From this it follows A с A^. Conversely, let 0 ^ д̂  e A^. 
Again, there is a system {̂ 'J с G^ such that Vö̂ i = ^i- We have {g'l} cz В a A 
and since Л is a closed sublattice of G"", we obtain a^e A. Therefore A^ a A. Thus 
AI = A, hence <p is a monomorphism. Because the mapping ф is monotone and 
xj/ z= (p~^, ф is an isomorphism. 

3.2. Let G be an l-group with the decomposition property, A, В e K^[G) and let С 
be the supremum of {A, B] in K^(G), 0 -^ g e C. Then there exist a e A'^, b e B^ 
such that g = a + b. 

Proof. This follows from the fact that the supremum in the lattice of direct factors 
is the sum ([18], Thm. 1). 

3.3. Theorem. Let G be an archimedean l-group with the decomposition property 
that is (a, 2)-distributive. Then the l-group G^ is (a, (xydistributive. 
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Proof. Assume that G^ is not (a, a)-distributive. For any colnplete /-group Я, 
the Boolean algebra K^{H) is (a, a)-distributive if and only if H is (a, a)-distributive 
[9]. Hence the Boolean algebra K%G^) is not (a, a)-distributive. Thus (cf. [11], [17]) 
K^(G'') is not (a, 2)-distributive. According to 3.1, the Boolean algebra X^(G) is not 
(a, 2)-distributive. Then there exists a system (X^^J с K^(G) {t e Zs e 5, card T ^ a, 
S = (1 , 2}) such that 

AteT VseS ^t,s = ^ ? VcpeS^ AteT ^t,q>{t) ~ ^ 

and X Ф 7. Hence 7is a proper subset of X. Let Y,, = (X,,, v У) л X. Since K^{G) 
is infinitely distributive, we have 

Further, since Y^s e [7, X] , we obtain 

Yt^^ V Yt^2 = X for each teT, 

AteT ^г,ф(о = ^ for each cp G {1, 2}^ . 

Let Л be the relative complement of 7in the interval [{O}, X] of X^(G). The mapping 
ф :Z -^ A A Z {Ze[Y, X]) is an isomorphism of [7, X] onto [{O}, A]. Put А^^,= 
= ф{YJ,^hm 

(2) Л,д V A,^2 = Л Ф {0} for each teT, 

(3) Л.ег ^., .(0 = {0} for each <p e {1 ,2}^ . 

There exists 0 < a e A. According to (2) and 3.2 the element a can be written in the 
form 

(4) а^д V at 2 = ^ for each teT, 

where О ^ а ^ д е Л ^ д , 0 ^ a ^ 2 ^ ^ f , 2 ' From (3) we obtain П^Г,Ф(О = {0} and 
therefore 

(5) AteT citMi) = Ö for each cp e {1, 2}^ . 

From (4) and (5) it follows that the /-group G is not (a, 2)-distributive, which is 
a contradiction. 

Since G is a closed /-subgroup of G^, we obtain from 3.3 immediately: 

3.4. Corollary. Let G be an archimedean l-group with the decomposition property 
that is (a, 2)-distributive. Then G is (a, ci)-distributive. 

Since each complete /-group is an archimedean /-group with the decomposition 
property, we have: ,ь 
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3.5. Corollary. ([7], Thm. 3.9.) If a complete l-group G is (a.iydistributive, then 
it is (oc, a)-distributive. 

3.6. Let G be a a-complete and conditionally orthogonally complete l-group. 
Then G is an l-group with the decomposition property. 

Proof. Let X cz G^. From the Axiom of Choice it follows that there exists a system 
{yi} (iel), 0 ^ j i such that (i) yi^ A yi^ = 0 for any pair of distinct elements 
z'l, Ï2 ̂  ̂ 5 00 ïi л |x| = 0 for each i e I and each xeX, and (iii) if 0 < у e X^, then 
у A yi > Ofov some i e I. Let 0 ^ z e G. According to 2.2 for each i e I there exists 
z[j;J. Clearly z [ j j ^ z and the system {z[};̂ ]} {i el) is disjoint. By the assumption, 
the join Viel z[yî] = t exists in G. Then z - t = ZQ ^ 0. WQ have r[j J й ^[УО 
and z[yi] ^ t, thus 

therefore z[yj = t[y[] and hence ^o[ji] = ^ for each iel. From this it follows 
that ZQ eX^^. We have proved that each z e G'^ can be written in the form z = 
= zo + t with 0 ^ zo GX^\ O^teX^ Therefore G = X^̂  ® Z^ 

From 3.4 and 3.6 we obtain: 

3.7. Theorem. Let G be a a-complete and conditionally orthogonally complete 
l-group. If G is (a, 2)-distributive, then it is (a, oc)-distributive. 
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