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A i INTRODUCTION

An [-group G is said to be g-complete if each bounded countable subset of G has
the supremum and the infimum. The concept of a singular I-group was used by
ConrAD and McALLISTER [4]. The importance of singular I-groups is emphasized
by the fact that each complete I-group is a direct product of a singular I-group and
a vector lattice. RoTkovIiC [15] examined o-complete I-groups without semilinear
elements. An [-group does not contain semilinear elements if and only if it is singular
(Lemma 2.5.1). ‘

An I-group G is called (conditionally) orthogonally complete if each (bounded)
disjoint subset of G has the supremum. Analogously we can define orthogonal com-
pletennes of Boolean algebras. Orthogonally complete I-groups and vector lattices
were studied in several papers (cf., e.g., PINsKER [12], BERNAU [1], ConrAD [3],
Jaxusik [6]). It is well-known that an orthogonally complete Boolean algebra must
be complete (SMITH - TARSKI [17]). On the other hand, simple examples show that
an orthogonally complete l-group need not be complete. VEKSLER and GEJLER [19]
have found necessary and sufficient conditions for a conditionally orthogonally
complete vector lattice to be complete. In §2 we show that if a singular I-group is
conditionally orthogonally complete and o-complete, then it is complete.

Let  be an infinite cardinal. WEINBERG [20] proved that if G is the additive I-group
consisting of all continuous real-valued functions defined on a Hausdorff completelly
regular topological space (with the natural partial order) then G satisfies the
following condition:

(%) If G is (a,2)-distributive, then it is (a, o)-distributive.
By using the decomposition of a complete I-group G into a direct product of
a singular I-group and a vector lattice it was proved in [7] that each complete

l-group G fulfils (). In §3 we prove that each archimedean I-group G with the decom-
position property satisfies (). Lattice ordered groups with the decomposition property
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were studied by BERNAU [1]; for the case of vector lattices cf. VEKSLER and GEJLER
[19]. RaBNovi& [13], [14] examined the analogous notion of lattices with the decom-
position property. Each lattice ordered group that is o-complete and conditionally
orthogonally complete has the decomposition property; therefore such an I-group
fulfils (x). The problem (proposed by Weinberg [20]) wheather (*) holds for each
I-group remains still open. v

1. BASIC NOTIONS

For the standard notions concerning lattices and lattice ordered groups cf.
BIRKHOFF [2] and Fuchs [5]. We denote lattice operations by A and v, the group
operation is denoted by + (though it need not be commutative). Let G be an I-group,
0+ X = G. We put

X° ={yeG:|y| A |x| =0 foreach xe X} .

The set X° is said to be a polar of G. Each polar is a closed convex l-subgroup of G.
Let K°(G) be the set of all polars of G; this system is partially ordered by the inclusion.
K°(G) is a complete Boolean algebra and for each subset @ # {4;} = K°G) the
meet A4; in K°(G) coincides with N4, (Sik [18]). For g € G we denote {g}* = [g].

Let A, B be convex I-subgroups of G such that 4 n B = {0} and 4 + B = G.
Then each element g € G can be written uniquelly as x = a + b with ae 4, b e B;
the elements a, b are components of g in A or B, respectively. It is easy to verify
that each operation c € { A, v, +} in G is performed componentwise. The I-group G
is said to be a direct product of its I-subgroups A4, B; in symbols G = 4 ® B. The
I-groups A, B are direct factors of G. The component of x in 4 will be denoted by
x(A). In the case A = [g] for some g € G we write x(4) = x[g].

An I-group G is said to have the decomposition property if G = X? @ X% for each
0 & X < G (cf. JAMESON [10]; another terminology is used by BERNAU [1]).

Let {G;} (i € I) be a system of I-groups and let TIG; be their direct product. Let H
be an [-subgroup of I1G; such that for each i e I and each g; € G, there exists h € H
with the property h(i) = g;, h(j) = O for each jel, j # i. Then H is said to be
a completely subdirect product of I-groups G;.

Let {Hl} i1 b€ a system of [-subgroups of an I-group G such that each H; is a direct
factor of G. Assume that the mapping ¢(g) = (..., g(H)), ...)ir is an isomorphism
of G into ITH; such that ¢(G) is a completely by subdirect product of I-groups H,.
Then G is called a completely by subdirect product of its I-subgroups H;,.

Elements x, y € G are called disjoint if |x| A |y] = 0. A system X = G* is said
to be disjoint if any two distinct elements of X are disjoint.

An element 0 < ee G is a weak unit of G if e A |x| = 0 implies x = 0 for each
x € G. A system {4;} (i eI) of convex I-subgroups of G is disjoint if for any pair i, j
of distinct elements of I and each a; € 4;, a; € A; we have |a;| A |a;| = 0.
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Let Lbe a lattice and let «, § be cardinals. Let T, S be sets satisfying card T < a,
card S < B. Lis said to be (A, v) — («, f)-distributive, if the equation

(d) AteT VSES xt,s = V(peST AtsT xt,(p(r)

holds in L identically whenever all joins and meets standing in (d) exist in L. The
(v, A) = (a, p)-distributivity is defined dually. If Lsatisfies both these laws then it is
called (a, B)-distributive.

Let B be a Boolean algebra and let X(B) be the Boolean space of B. We denote by
F(B) the system of all integer valued functions f on X(B) such that for each integer n,
the set {x € X(B) : f(x) = n} is clopen in X(B). Then F(B) (with the natural partial
order) is an additive lattice ordered group.

2. SINGULAR [-GROUPS

Let G be an I-group. An element 0 < se G is called singular if s A (s — x) = 0
foreach x € G, 0 < x < s (CONRAD - MCALLISTER [4]). Also, s is singular if and only
if the interval [0, s] is a Boolean algebra [7]. G is said to be singular if for each
0 < g € G there is a singular element s € G such that 0 < s < g.

The following two propositions are known (cf. Birkhoff [2], Chap. XIV, Thm. 17
and Jameson [10], Proposition 2.5.6).

2.1. Each o-complete l-group is archimedean and commutative.
2.2. Let G be a g-complete I-group, 0 < ae G. Then G = {a}’ ® {a}*.

2.3. Let G + {0} be a g-complete I-group and let {x;} be a maximal disjoint
system of strictly positive elements of G, H; = [x;]. Then G is a complete subdirect
product of I-subgroups H,.

Proof. {H;},; is a maximal disjoint system of convex l-subgroups #{0} of G and
according to 2.2 each H; is a direct factor of G. Hence the mapping

Q:x —-+(, x(Hi), "')ie[

is a homomorphism of G into ITH;. Let ye ¢~ *(0), y = 0. Then y(H,) = 0, thus

y A x; = 0 for each i eI. This implies y = 0. Therefore ¢~!(0) = {0} and so ¢ is

an isomorphism of G into H;. Let i€l, h;e H,. Then h(H;) = h; and h(H;) = 0

for each jel, j % i. Hence ¢(G) is a completely subdirect product of I-groups H;.
We denote by S(G) the system of all singular elements of G.

24. Let G be a singular l-group and let {x;} be a maximal disjoint system of S(G).
Then {x;} is a maximal disjoint system of G.
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Proof. Let 0 < y e G be disjoint with each x;. If 0 < y, then there is s € S(G)
with 0 < s < y and so the element s is disjoint with each x;, a contradiction. There-
fore y = 0.

Obviously for each 0 < g € G, the element g is a weak unit of [g].

2.5. Let G be a o-complete singular I-group. Then G is a completely subdirect
product of l-groups H, (i € I) where each H; is a o-complete singular I-group with
a weak unit e; such that e; is singular.

The proof follows from 2.3, 2.4 and from the fact that each direct factor of
a singular and g-complete I-group is singular and o-complete.

An element x # 0 of an I-group G is called semilinear (RoTkovIC [15]) if for each
x" € G with 0 < x’ < |x| there exists y € G such that

0<2y=sx.

2.5.1. Let G be an I-group. The following conditions are equivalent:
(a) G is singular.
(b) G does not contain semilinear elements.

Proof. Let G be singular, 0 3 x € G. Then there is a singular element 0 + x" € G
with x’ < lx|.Lety,zeG,0<y§x’,x' =y+z.Wehavex' =y v z,y Az=
= 0, therefore 2y A z = 0 and hence by using distributivity of G,

X A2y=y, '

thus 2y non < x'. This shows that G has no semilinear elements. Conversely, assume
that (b) is valid. Hence for each 0 = x € G there exists X' € G, 0 < x’ £ || such that
for each 0 < y € G we have 2y non < x’. We show that the element x’ is singular.

Let z,teG*, z+t=x". Denote zAt=uand let u +z, =z, u+1t, =t
Then we have u, z;,t, € G* and

wsu+z+tu+t, =x,

thus u = 0 and hence z A t =0, z + t = z v t. Therefore z A (x' — z) = 0 for
each z € [0, x']. The element x' is singular and G is a singular [-group.

By using 2.5.1, the proposition 2.5 can be deduced also from [15], Thm. 5.

If G is an archimedean I-group, then we denote by G” the Dedekind completion

of G. We may assume that G is a closed I-subgroup of G" and that each element
0 < x € G" is the least upper bound of a subset of G*.

2.6. Let H be an archimedean l-group with a weak unit e such that e is singular
in H. Then e is singular in H".
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Proof. We denote by [0, e] the interval of H* with the endpoints 0 and e. Since
each element of [0, e] is a supremum of some subset of [0, e] N H it follows that
[0, e] is the Dedekind completion of the lattice [0, e] n H. According to the assump-
tion the lattice [0, ¢] N H is a Boolean algebra and therefore its Dedekind completion
[0, e] is a Boolean algebra as well; thus e is a singular element of H".

Let H be as in 2.6. Let H, be the orthogonal completion of H”. Thus H, is a com-
plete I-group that is orthogonally complete, H" is a closed convex I-subgroup of H,
and for each 0 < hy € H, there is a disjoint subset {x;} (je J) of H" such that
h; = Vx;. (Cf. [6].) From this and from 2.6 it follows that e is a singular element
of H, and that e is a weak unit of H,. Therefore the I-group H, is singular.

The following assertion was proved in [8].

2.7. Let H % {0} be an l-group that is singular, complete and orthogonally
complete. Assume that H has a weak unit e such that e is a singular element of H.
Let 0 < he H. Then h can be uniquelly represented in the form h = Vne} (n =
=1,2,...) such that e}, A ey, =0 for ny = n, and Vey =e* < e If 0 =h" =
= Vne, is another such representation for h' € H, then h < h' if and only if
e* < e =Ve,and ef Aej>0=i=<].

Let 0 < he H,0 < h' € H. Under the same denotations as above put ey = e — e¥*,
eo = e — €. Since [0, e] is a Boolean algebra we infer that e = Ve, = Ve, (n =
=0,1,2,...)and h = Vne,, i’ = Vne, (n =0, 1,2, ...). Then we have:

2.7.1. h < k' if and only if e} < Ve; (i = n) for each n = 1.

Proof. Let h < I', n = 1. Then e* < ¢’ and € A e; =0 for 1 £j < n, thus
from

er e =(efv...ve )V (Vze)

we obtain that ¢f < V;s,ej,n=1,2,...
Conversely, assume that e < V;zne; for each n = 1. Then V,,gle,’," = Vusi6€,

and ef A €;=0forj=1,2,...,n — 1. Therefore h < I'".
For a Boolean algebra B let F(B) have the same meaning as in §1.

2.8. Let {0} & H be an archimedean l-group with a weak unit e that is singular
in H. Let B = [0, e], F = F(B). Then H is isomorphic with an l-subgroup of F.

Proof. Let H, be as above. The I-group H, is orthogonally complete and also
complete; H is a closed I-subgroup of H,;. According to 2.7.1 each 0 < h e H can be
uniquelly represented in the form h = Vne} (n =0,1,2,...), ey e Hy, Ve = e,

ey A ef = 0for n; % n,. From the construction of the elements e described in [8]

ny

and from the fact that H is a closed [-subgroup of H, it follows that each e belongs
to H and hence ¢ € B. Let &, be the subset of the Boolean space X(B) of the Boolean
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algebra B that corresponds to the element e € B. Then ¢, is a clopen subset of X(B)
and e, né, =0 for n; + n,. Consider the function fe F such that f(x) =n
whenever xe e, (n = 0, 1, 2, ) Then the mapping h — f is an isomorphism of the
lattice ordered semigroup H* into F*. From this we obtain that there exists an
isomorphism of the I-group H into F.

From the method of the above proof we simultaneously obtain the following gener-
alization of 2.7:

2.9. Let H #+ {0} be an l-group that is singular, archimedean and conditionally
orthogonally complete. Assume that H has a weak unit e such that e is a singular
element of H. Then the assertion of 2.7 is valid for H.

2.10. Let G be an I-group that is a completely subdirect product of l-subgroups H;
(i€l). Assume that G is conditionally orthogonally complete and that each H; is
a complete I-group. Then G is a complete I-group.

Proof. Let g;€ G (je J), g€ G, 0 < g; < g for each je J. Then
0= gj(Hi) =< g(Hi)

for each j e J and each i e I. Since H; is a complete /-group, there exists
VjsJ gj(Hi) =g;

in H;. We have §; < g(H;) < g. Since the system {g,} (i el) is disjoint and G is
conditionally orthogonally complete, Vg; = x exists in G. Then x(H,) = g; =
> gj(Hi) for each iel and each je J, thus x = g; foreach je J. Let ye G, g; < y
for each j e J. Hence g;(H;) < y(H,) for each i e I and each j € J. Therefore x(H;) =
= g; < y(H,) for each iel and this implies x < y. Thus x = V,,g;. This shows

that G is a complete I-group.

2.11. Theorem. Let H be an l-group that is conditionally orthogonally complete
and archimedean. Assume that H has a weak unit e such that e is a singular element
of H. Then H is a complete lI-group.

Proof. Because the weak unit e is singular, the [-group H is singular. Since H is
conditjonally orthogonally complete, the Boolean algebra B = [0, ] is orthogonally
complete. Hence B is complete (SMiTH - TARsKI [17]; cf. also SIKORskI [15], Thm.
20.1). Let g, g, € H* (ke K), g, < g for each k € K. According to 2.9 the elements
g, g, can be represented in the form described in 2.7; let

g =Vne,, g,=Vne(k) (n=01,2,..)

be such representations. All elements e;, e,,(k) belong to the complete Boolean
algebra B. From g < g it follows e,(k) = V5 ,¢! for each k € K and each n = 1.
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We define by induction elements e, € B (n =0,1,2, ) as follows. We put
e = Viex eo(k) .

Assume that e, ..., e, are defined and the system {e, ..., e,} is disjoint. Denote
fa=¢€ V ... v e, and let g, be the complement of f, in B. We put

i1 = gp A (VkeK €t 1(k))-

Then the system {e,} (n = 1,2,...) is disjoint and hence the system {ne,} (n =
= 1,2,...) is disjoint as well. Let k € K be fixed. We will verify that

ne, <g, (n=12..).
We have to show that
e, = Vign ei(k) .
Thus it suffices to prove that

) e, Ae(k)=0

foreacht < n. Frome =e, v e; V... V e,y V g,_; we obtain e, (k) = (e,(k) A
Aeg) v (efk) ne) V.. vi(eflk)ne,)v(efk)Agi))SeV...Ve_,V
V (Vjex €J) A gr—1) =€ VvV ... V e,_; V e, and therefore

efk) A e,e; =0 for j=1.

Thus the relation (1) is proved. Hence the system {ne,} (n = 0, 1, 2, ...) is bounded
and so according to the assumtpion there exists the element

h=Vne, (n=0,1,2,..)

in H and h < g, for each ke K.

Let 0 < W e H, ¥ £ g, for each k € K. The element h’ can be represented in the
form b’ = Vne, (n = 0, 1,...) where the system {e}} is disjoint and Ve = e. From
h'" < g, we obtain

en A ey(k) =0

foreachn = 1, m < n, k € K and therefore
elr/r A é e:: A (VkeK em(k)) =0
for each n = 1 and each m < n. This implies that i’ < h. We have proved that h =

= AY; (k € K). From this it follows that H is complete.

2.12. Theorem. Let G be a singular I-group. Then the following conditions are
equivalent:

(i) G is complete.
(i) G is o-complete and conditionally orthogonally complete.
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Proof. Obviously (i) = (ii). From 2.5, 2.10 and 2.11 it follows that (ii) = (i).

2.13. Let G be a vector lattice. Then the conditions (i). and (ii) from 2.12 are
equivalent.

This follows from [19], Thm. 3 and 4.

It remains as an open question whether the assertion of Thm. 2.12 holds for each
I-group G.

3. THE («, §)-DISTRIBUTIVITY

In this section we prove that if G is an archimedean I-group with the decomposition
property that is («, 2)-distributive, then it is (, «)-distributive and the Dedekind
completion G of G is also (oc, «)-distributive. In particular, an orthogonally complete
and g-complete [-group that is («, 2)-distributive must be («, «)-distributive.

3.1. Let G be an archimedean I-group. Then the mapping A— AN G (Ae
€ K%G")) is an isomorphism of the Boolean algebra K°(G") onto K°(G).

Proof. Let 4e€K%G"). Then it is easy to verify that 4 n GeK%G) and the
mapping ¢ : A > A n G is monotone. Let Be K°(G) and let X be the set of all
elements x € G with |x| A |b| = 0 for each b € B. Further let y(B) = 4, be the set
of all elements of G" that are disjoint to each element of X. Then 4, € K°(G") and
¢(A;) = B; hence ¢ is onto.

Let A€ K%(G"), ¢(4) = B, and let X, 4, be as above, 0 < a € A. There exists
a system {g;} = G* such that Vg, = a. Then {g;} < A, thus g, € B; therefore g, A
A |x| = 0 for each x € X. Since G is infinitely distributive, we obtain a A |x| =0
and therefore a € A;. From this it follows 4 < A4,. Conversely, let 0 < a; € 4,.
Again, there is a system {gj} = G* such that Vg; = a,. We have {g}} =« B< 4
and since A is a closed sublattice of G", we obtain a; € A. Therefore A; = A. Thus
A; = A, hence ¢ is a monomorphism. Because the mapping y is monotone and
Y = ¢!, ¢ is an isomorphism.

3.2. Let G be an I-group with the decomposition property, A, B € K%G) and let C
be the supremum of {A, B} in K°(G), 0 < g e C. Then there exist aec A*, be B*
such that g = a + b.

Proof. This follows from the fact that the supremum in the lattice of direct factors
is the sum ([18], Thm. 1).

3.3. Theorem. Let G be an archimedean l-group with the decomposition property
that is (a, 2)-distributive. Then the I-group G" is («, a)-distributive.
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Proof. Assume that G" is not («, «)-distributive. For any complete I-group H,
the Boolean algebra K°(H) is («, a)-distributive if and only if H is (o, o)-distributive
[9]. Hence the Boolean algebra K°(G*) is not («, «)-distributive. Thus (cf. [11], [17])
K°(G*) is not (a, 2)-distributive. According to 3.1, the Boolean algebra K°(G) is not
(2, 2)-distributive. Then there exists a system {X, ;} = K%G)(te T,se S,card T £ «,
S = {1, 2}) such that

/\teT VseS Xt,s =X s V(pEST AteT Xt,(p(t) =Y

and X # Y. Hence Yis a proper subset of X. Let Y, , = (X,, v Y) A X. Since K%(G)
is infinitely distributive, we have

Aer Vies Yo = X, V(pEST Ater Y!,(p(t) =Y. ‘ !
Further, since Y, ;€ [Y, X], we obtain
Y,y vY,=X foreach teT,
Awer Yipm =Y foreach ¢@e{1,2}7.

Let A be the relative complement of Yin the interval [{0}, X] of K%(G). The mapping
Y :Z—> A A Z(Ze[Y,X])is an isomorphism of [¥, X] onto [{0}, A]. Put 4, =
= (Y, ). Then

(2 A,y v A, = A+ {0} foreach teT,
(3) Aeer Ai oy = {0} for each @e{1,2}".

There exists 0 < a € A. According to (2) and 3.2 the element a can be written in the
form

(4) a,, v a,, =a foreach teT,

where 0 < a,,€4,,, 0<a,,€A,, From (3) we obtain NA,,, = {0} and
therefore

(5) Acer @y 50y = 0 foreach ¢e{1,2}7.

From (4) and (5) it follows that the I-group G is not (o, 2)-distributive, which is
a contradiction.

Since G is a closed l-subgroup of G*, we obtain from 3.3 immediately:

3.4. Corollary. Let G be an archimedean I-group with the decomposition property
that is («, 2)-distributive. Then G is («, o)-distributive.

Since each complete I-group is an archimedean I-group with the decomposition
property, we have:
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3.5. Corollary. ([7], Thm. 3.9.) If a complete l-group G is (a, 2)-distributive, then
it is (o, o)-distributive.

3.6. Let G be a o-complete and conditionally orthogonally complete I-group.
Then G is an I-group with the decomposition property.

Proof. Let X = G*. From the Axiom of Choice it follows that there exists a system
{y:} (iel), 0 < y; such that (i) y; A y;, =0 for any pair of distinct elements
iy, i, €I, (i) y; A |x| = 0 for each i eI and each x € X, and (iii) if 0 < y € X’, then
y A y;>0forsomeiel Let 0 < ze G. According to 2.2 for each i € I there exists
z[y;]- Clearly z[y;] < z and the system {z[y;]} (i €I) is disjoint. By the assumption,
the join Vg z[y;] =t exists in G. Then z — t = z, = 0. We have #[y;] < z[y,]
and z[y;] < ¢, thus

z[y] = z[yi] [yid] < tlvi]s

therefore z[y;] = #[y;] and hence zo[y;] = 0 for each iel. From this it follows
that z, € X**. We have proved that each ze G* can be written in the form z =
=z, + t with 0 < z, € X%, 0 < t € X°. Therefore G = X* ® X°.

From 3.4 and 3.6 we obtain:

3.7. Theorem. Let G be a o-complete and conditionally orthogonally complete
I-group. If G is (a, 2)-distributive, then it is (, o)-distributive.
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